A Quantitative Approach to the Design of the Center Console of Automobiles

Mihiro Sasaki, Fumio Ishizaki, Atsuo Suzuki, Isao Takami, Yutaka Tanaka, Eiichi Yamamoto and Kazuhiko Nakashima

October 2004

Technical Report of the Nanzan Academic Society
Mathematical Sciences and Information Engineering
A Quantitative Approach to the Design of the Center Console of Automobiles

Mihiro Sasaki
Department of Mathematical Sciences
Nanzan University
27 Seirei, Seto, Aichi, 489-0863, Japan
Tel: +81-561-89-2000 Fax: +81-561-89-2083
Email: mihiro@ms.nanzan-u.ac.jp,

Fumio Ishizaki
Dept. of Information and Telecommunication Engineering, Nanzan University,

Atsuo Suzuki, Isao Takami, Yutaka Tanaka
Dept. of Mathematical Sciences, Nanzan University,

Eiichi Yamamoto and Kazuhiko Nakashima
Kojima Press Industry, Co., Ltd.

Abstract
We consider a statistical approach to design the center console of automobiles. The design of the center console is an important part in the sense that it has a strong effect on user satisfaction. From this standpoint, the center console should be adequately designed. However, the design process usually relies on a trial and error approach, which consumes lots of time. If the relationships between usability and physical specifications are revealed, we may design the center console with higher user satisfaction in a shorter time. For this purpose, we carry out a questionnaire survey. The results show several interesting relationships.

1 Introduction
Dials and switches are major components of center consoles of automobiles. Since the usability of such components has a strong effect on user satisfaction, it is very important to pay attention how to design each dial and switch within a center console. So far, we don’t have any quantitative relationships between the usability and the physical specifications of dials and switches. If we have some information about the relationship in advance, it will be a useful tool to reduce the design time.

Our first target is to obtain the relationships between the usability and the physical specifications by statistical methods. We prepared 12 samples of center consoles for our analysis, which are all commercially offered. We made a survey questionnaire for a sensory test and measured each component of the 12 samples to know the specifications of each of them, such as dimensions, stroke, friction and so on. We also made a statistical analysis of the survey data and the physical data.

We used two statistical methods, which are the principal component analysis and the canonical correlation analysis [1, 2]. It turned out that there was no clear relationship between the linear combination of the survey results and the linear combination of the physical data. However, there was partially strong correlation between the survey data and the physical data. For example, the sense of heaviness for temperature control dial has a strong correlation to the range of its rotation angle.
This paper is organized as follows. In Section 2, we describe the survey questionnaire in detail. In Section 3, we briefly mention the specifications of each center console. In Section 4, we show the results of the statistical data analysis. Finally, we will conclude the paper in Section 5.

2 Survey questionnaire

We carried out a questionnaire survey using the 12 samples by 10 respondents. The survey questionnaire consists of 30 questions. Each question has five choices: very good, good, fair, bad and very bad. An example of the questions is "How do you feel when you turn on the switch? Have you recognized clearly the click?" It took about one hour to answer all questions of the 12 samples for a respondent. Figure 1 shows some of the photos taken during the survey. The age of the respondents is distributed from twenties to sixties. Six out of ten respondents are female. Table 1 shows a part of the questions of the survey. We have seven such questions for each switch of the 12 samples. The other questionnaire items are as follows:

- How do you feel about the heaviness when you turn on or turn off the switch?
- How do you feel about the stroke of the switch?
- How do you feel when you touch the switch?
- How easily do you recognize what the switch is for?
- Do you operate the switch very easily?
- Do you feel satisfaction when you operate the switch? Why?
How do you feel about the click when you turn on or turn off the following switches?
1. Air Conditioner On-Off:
2. Air Conditioner Auto-Manual:
3. Temperature Control:
4. Mode of Cabin Air Duct:
5. Air Circulation Internal-External:
6. Rear Defroster: 
7. Hazard Lamp On-Off
8. Front Defroster:

In addition to these questions, we asked the respondents about their personal data including driving experience, driving distance per day, and the frequency of operating each switch in the center console of their own cars.

3 Physical specifications of the switches

In order to get the specifications of the 12 samples, we measured each component of each sample. There are 59 items to measure. Table 2 shows a part of the results. The measured items are the dimension of center console, the types of switches, the dimensions of switch and the other physical data like stroke and friction of the switch. We have three types of switches. They are rotational dial type, lid dial type (knob type) and rectangular push type. We incorporate dummy 0-1 variables to distinguish the types of switches.

<table>
<thead>
<tr>
<th>Table 2: Physical specifications</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dimensions of center console (mm)</th>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td></td>
<td>95</td>
<td>84.5</td>
<td>120</td>
<td>95</td>
<td>66.6</td>
<td>195</td>
<td>137</td>
<td>270</td>
<td>135</td>
<td>144</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
<td>230</td>
<td>205</td>
<td>330</td>
<td>240</td>
<td>187</td>
<td>264</td>
<td>264</td>
<td>370</td>
<td>310</td>
<td>240</td>
<td>188</td>
<td>200</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td>80</td>
<td>96</td>
<td>65</td>
<td>150</td>
<td>82.1</td>
<td>163</td>
<td>143</td>
<td>130</td>
<td>75</td>
<td>215</td>
<td>46.6</td>
<td>81.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch type</th>
<th>Rotational dial</th>
<th>Lid dial</th>
<th>Rect. push</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions of Temp. control switch (mm)</th>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td></td>
<td>60.4</td>
<td>35</td>
<td>48.3</td>
<td>44.7</td>
<td>36.4</td>
<td>41.5</td>
<td>53.1</td>
<td>55.3</td>
<td>33.5</td>
<td>32.6</td>
<td>41</td>
<td>25.8</td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
<td>60.4</td>
<td>35</td>
<td>48.3</td>
<td>44.7</td>
<td>24.4</td>
<td>41.5</td>
<td>53.1</td>
<td>55.3</td>
<td>24.6</td>
<td>31</td>
<td>22.1</td>
<td>25.8</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td>10.5</td>
<td>27</td>
<td>15</td>
<td>10.2</td>
<td>11.6</td>
<td>12.2</td>
<td>16.6</td>
<td>22.2</td>
<td>15.1</td>
<td>15.1</td>
<td>15.1</td>
<td>14.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical data</th>
<th>Stroke</th>
<th>Friction</th>
<th>Rotation range</th>
<th>Dial pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1.2</td>
<td>2.75</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>250</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td>10</td>
<td>13.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
4 Data Analysis

We made a data analysis of the survey data and the physical data. First, we made a principal component analysis for both the survey data and the physical data. Figure 2 shows a scatterplot of the first and second principal components of the survey data. We can see two groups. The cumulative proportion up to the third component is about 65% and up to the fourth component is about 75%. The first component can be interpreted as heaviness and click feelings, although the meanings of other components are not so clear. Figure 3 shows a scatterplot of the 1st and 2nd principal components of the physical data. We can also see three groups. The cumulative proportion up to the third component is 69% and up to the fourth component is 78%. Each component can be interpreted as follows: the first component: the type of switch is rotational dial and the dimension is bigger; the second component: the type of switch is rectangular push and the stroke and the friction is light; the third component: the type of switch is lid dial or round push and the height of the switch and the range of dial rotation angle are both big.

For the next step, we applied the canonical correlation analysis so as to find the correlation between the linear combinations of the survey data and the physical data. As a result of this analysis, we do not find clear correlations between them. We consider that a lack of samples caused this rather unsatisfactory results. Another possible reason may be nonlinearity of the relationships. We need to make a sensory test by many respondents to collect more precise survey data, and also do more precise analysis to check the nonlinearity of the data.

Finally, we simply calculated correlation factors between each item of the survey data and each item of the physical data. This simple analysis provided several interesting relationships between the user preferences and the physical specifications of the center console. The results are as follows:

- Dimension of the center console should be bigger.
- Dimension of the switches should be bigger.
- Rotational dial switch is the best.
- Stroke of the switch should be short.
- Range of the dial rotation angle should be small.
- There is no relationships between the user satisfaction of the design of center console and feelings of operation.
- Click feeling, friction and stroke of the switches have strong correlation to feelings of operation.

5 Concluding remarks

We made a simple experimental analysis to obtain the relationships between the survey (sensory test) results and the physical specifications of the center console. We used two multivariate analysis methods, which are the principal component analysis and the canonical
Figure 2: Scatterplot of the 1st and 2nd principal components of the survey data

Figure 3: Scatterplot of the 1st and 2nd principal components of the physical data
correlation analysis. We found some interesting features by the principal component analysis. We also got some useful results from the correlation factors between each item of the survey questionnaire and the physical specifications. However, we do not get clear relationships by the canonical correlation analysis. We could have obtained better results if we had made the survey by more samples. Other possible matters to find better results are that we check the linearity of the data and examine the experiments in themselves whether they are suitably designed for our purpose of extracting the relationships.

Although our strategy of the experiments and the analysis is still in a preliminary stage, we got some useful results and made a prototype of the center console based on the results. Further research for sophisticated strategy to design a center console will be a necessary future topic. For this purpose, we need to reconsider how to design the experiments and enlarge the questionnaire survey. We also should check the linearity of the data. These efforts will enable us to establish a useful integrated strategy to design a center console with higher user satisfaction in a shorter time.

References
