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Abstract

This paper presents a simple pricing model for valuing callable convertible bonds under
the setting of a coupled stopping game between the issuer (firm) and the investor (holder).
We use the model to provide the valuation formula for such bonds and to explore some
analytical properties of optimal conversion and call strategies as well as several numerical
results by using the finite element method. Furthermore, optimal critical prices for call
and conversion are examined numerically.
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1 Introduction

Consider a zero-coupon callable convertible bond (abbreviated by CB) which permits an
investor to exchange the bond for a certain number of the underlying stock at any time of his
choosing and gives the issuer the right to purchase back the bond at any time for a specific
amount. Since the convertible bond with such a call feature should clearly be evaluated less
than the convertible bond without that feature, it is an attractive and complex security.

In this paper we present a pricing model for callable CBs where the underlying stock
pays dividends. In section 2 we formulate the valuation of the callable CB under the setting
of a coupled stopping game based upon the Kifer’s game option model [8]. In section 3 we
discuss optimal call and convertible policies for the issuer and the investor, respectively. It
will be shown that the CB with the call feature is worth less than the bond without and
that the conversion feature increases the value of the CB to the investor. In section 4 we
show that the value of the callable CB can be decomposed into four terms of the bond price,
the value of the European call option with the face value as the exercise price, the early
conversion premium and the callable discounted value. Section 5 provides some numerical
results to recognize some analytical properties of the value of the callable and non-callable
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CBs by using the finite element approach. Finally, in section 6 we summarize the paper with
some concluding remarks.

Brennan and Schwartz [1] provides the groundwork for the pricing model of convertible
bond together with Ingersoll [5]. On the other hand, Kifer[8] paves a way of the pricing
model of American options with the call feature. McConell and Schwartz [10] provides and
analyzes a typical example, LYON, of the callable American option. Seko and Sawaki [12]
considers the valuation of the callable American put and call options following the Kifer’s
approach. Myneni [11] and Bunch and Johnson [2] study the pricing model for American
options. Longstaff and Schwartz [9] presents a new computational approach based upon
the least-squares simulation for callable option. Kariya and Tsuda [7] proposes a statistical
model for valuing the CB. Yagi and Sawaki [13] studies a simple binomial model for valuing
the convertible bond but analyzes neither the optimal boundaries nor the decomposition of
the CB price. The inspiration behind our work was the work of [1], [8] and [12]. However,
these ideas cannot be transfered directly but must be revised to the callable CB because the
call feature does not rise the penalty lost in CBs. So far, there are not so many analytical
papers which analyze the value and optimal boundaries of callable CBs although there are
many empirical studies on CBs, [3] and [4].

2 The Pricing Model for Callable Convertible Bonds

Consider a firm financing stocks and convertible bonds in the capital market. The value of
the firm at time t Vt is given by

Vt ≡ CB(t, Vt) + mSb
t (1)

where CB(t, Vt) is the total value of the CB with the face value F and the maturity T , and
Sb

t the stock value with the number of shares m before conversion. Let Sa
t be the stock value

after conversion and n the number of stocks converted from the CB. Then, equation (1) can
be rewritten as

Vt = (n + m)Sa
t . (2)

Letting z = n/(n + m) as the dilution ratio, the conversion value at time t CV (t, Vt) is given
by

CV (t, Vt) = nSa
t = zVt. (3)

Denote CP (t) = F the call price when the firm calls the CB at time t. Then the firm pays
the investor max(zVt, F ).

A riskless asset price Bt with the interest rate r is given by

dBt = rBtdt, B0 > 0, r > 0. (4)

Let Zt be a standard Brownian motion defined on a probability space (Ω,F , {Ft}, P ). Define
the risk neutral probability measure P̃ which is equivalent to P as

dP̃

dP

∣∣∣
Ft

= exp

{
−1

2

(
µ− r

κ

)2

t− µ− r

κ
Z(t)

}
. (5)
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Then, the stochastic differential equation of the firm value can be written as the well known
geometric Brownian motion

dVt = (r − δ)Vtdt + κVtdZ̃t (6)

where δ is the constant rate of dividend payments for the firm value, κ the volatility and Z̃t

the standard Brownian motion defined on the probability space (Ω,F , {Ft}, P̃ ).
The CB holder as the investor should follow an optimal conversion policy so as to maximize

the value of the CB. In other words, if the value of the CB exceeds its conversion value given
by (3), it is optimal for the investor not to convert. On the other hand, since the issuer seeks
to minimize the value of the CB, it is optimal for the issuer not to call the CB when the
greater of call price or the conversion value is greater than the value of the CB. It follows
from these arguments that the value of the callable CB must satisfy the inequalities

zVt ≤ CB(t, Vt) ≤ max(zVt, F ) (7)

which provides the lower and upper bounds of the CB value and allows the firm to declare
the bankruptcy in the maximum of zVt and F .

Let σ be a call time (a stopping time) by the issuer and τ a conversion time (a stopping
time) by the investor. Denote Tt,T the set of stopping times with respect to the filtration
{Ft; 0 ≤ t ≤ T}. The payoff function at the stopping time σ ∧ τ is given by

R(σ, τ) = max(zVσ, F )1{σ<τ} + zVτ1{τ≤σ} (8)

where 1{σ<τ} = 1 if the issuer stops first and 1{τ≤σ} = 1 if the investor stops first, and the
issuer pledges to pays the investor at any stopping time. At the time of σ = τ the investor’s
right dominates the issuer’s one. At the maturity T the value of the callable CB is the smaller
of the value of the firm or the maximum between the conversion value and the face value of
the CB, that is,

CB(T, VT ) = min(VT , max(zVT , F )). (9)

After a minor revision , we can use the following theorem given by Kifer [8] which paved
a way of the pricing model for a game option. We use the model to value a callable CB as a
special case.

Theorem 1. Define

Jv
t (σ, τ) = Ẽ

[
e−r(σ∧τ∧T−t)

(
R(σ, τ) + min(VT ,max(zVT , F ))1{σ=T,τ=T}

) |Vt = v
]
. (10)

Suppose that for all v > 0

E

[
sup

0≤τ≤T
e−rτzVτ

∣∣∣ V0 = v

]
< ∞.

There is a unique no-arbitrage price process CB(t, v) of the game option in the sense of
Black-Scholes model such that CB(t, v) can be represented by the right continuous process

CB(t, v) = inf
σ∈Tt,T

sup
τ∈Tt,T

Jv
t (σ, τ)

= sup
τ∈Tt,T

inf
σ∈Tt,T

Jv
t (σ, τ). (11)
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Moreover, the optimal stopping times σ̂t and τ̂t for the issuer and the investor, respectively,
are given by

σ̂t = inf {σ ∈ [t, T ) | CB(σ, Vσ) = max(zVσ, F )} ,

τ̂t = inf {τ ∈ [t, T ) | CB(τ, Vτ ) = zVτ } . (12)

Furthermore, there exists a self-financing portfolio π∗ such that (σ̂, π∗) is a hedge against
the callable contingent claim with initial capital Jv

0 (σ̂, τ) = CB(0, v) for all τ and with P̃ -
probability such portfolio π∗ is unique.

Proof should be referred to Kifer [8] after putting Yt = zVt as the payoff function of the
investor.

3 Optimal Call and Conversion Policies and Their Optimal

Boundaries to Value the Callable CB

To value the callable CB we must identify the call and conversion policies for the firm and
the investor to follow. In according to the spirit of Brennan Schwartz [1] we assume that it is
optimal for the firm to minimize the value of CB and for the investor to maximize the value
of the CB at each stopping time.

Optimal call policy The firm will never call the CB when its value is less than the greater
of the call price or its conversion value because the firm wishes to minimize the value
of the CB. Under such an optimal call policy the following condition holds;

CB(t, Vt) ≤ max(zVt, F ), at all t, Vt

Optimal conversion policy The investor will never convert the CB when its value is
greater than the conversion value because the investor seeks to maximize the value
of the CB. Under an optimal conversion policy we have

CB(t, Vt) ≥ zVt.

Define the stopping region Sf for the firm, Si for the investor and the continuation region C
for the both of them as follows;

Sf = {(t, v) | CB(t, v) = max(zv, F )}
Si = {(t, v) | CB(t, v) = zv} (13)

C = {(t, v) | zv < CB(t, v) < max(zv, F )}

On the other hand, defining the value of non-callable CB by CB(t, v), the stopping region Si

and the continuation region C for the investor is

Si = {(t, v) | CB(t, v) = zv}
C = {(t, v) | CB(t, v) > zv}
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because the non-callable CB allows only the investor to exercise the right for the conversion.
For each t define

Sf
t = {v| (t, v) ∈ Sf}, Si

t = {v| (t, v) ∈ Si}, Ct = {v| (t, v) ∈ C}

and similarly
Si

t = {v| (t, v) ∈ Si}, Ct = {v| (t, v) ∈ C}.

Proposition 2. The value of callable CB is less than or equal to the value of non-callable,
that is,

CB(t, v) ≤ CB(t, v) for all t and v (14)

and moreover,
Si

t ⊇ Si
t for all t. (15)

The proof immediately follows from Theorem 1 because only the investor seeks to maxi-
mize the value of CB in equation (11). Equation (15) follows from equation (14).

The optimal call boundary for the firm can be defined as the graph of vf
t ≡ inf{v| v ∈ Sf

t }.
Similarly, the optimal conversion boundary for the investor is the graph of vi

t ≡ inf{v| v ∈ Si
t},

t ∈ [0, T ].
Set v∗t = min(vf

t , vi
t) and similarly vi

t the optimal conversion boundary for the non-callable
CB.

Theorem 3. The following relationships hold between the callable and non-callable CB,

(i) Sf
t = [vf

t ,∞), Si
t = [vi

t,∞), Ct = [0, v∗t )

(ii) Si
t = [vi

t,∞), Ct = [0, vi
t)

(iii) vi
t ≤ vi

t and vf
t ≤ F/z

Proof of (i) and (ii) follows from the definitions of Sf
t , Si

t and Ct, Si
t and Ct. Property (iii)

can be proved from Proposition 2. Note that the optimal call and conversion policies depend
upon the conversion ratio, the value of the CB and the time remained before the maturity.

4 A Decomposition of the Value of the Convertible Bond

Ingersoll [5] has shown that it is optimal for the investor not to convert the non-callable CB
before the maturity when the stock pays no dividend, and hence the value of the non-callable
CB can be presented in term of the sum of the bond price and the price of the European
call option when the CB pays no coupon. This means that when the stock pays a constant
dividend, the value of the non-callable CB can be rewritten as the sum of the bond price and
the price of American call option.
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Theorem 4. Let B(t, v) be the bond price when the value of firm is v at time t and C the
price of the American call option. Then, the value of the non-callable CB can be decomposed
as follows;

CB(t, v) = B(t, v) + C(t, zv;B(t, v))

= B(t, v) + Ce(t, zv; F ) + p(t, v) (16)

where Ce(t, zv; F ) is the European call option when the exercise price is the face value with
the underwriting asset value zv and p(t, v) is the premium of the early conversion given by

p(t, v) = Ẽ

[∫ T

t
e−r(s−t)δzVs1{vi

s≤Vs}ds
∣∣∣Vt = v

]
. (17)

Proof. It is well known from Ingersoll [5] that we have

CB(t, v) = B(t, v) + C(t, zv).

Putting f(t, v) = e−rtC(t, zv) and applying the Ito’s lemma we obtain

f(T, VT ) = f(t, v) +
∫ T

t

∂f

∂v
dVs +

∫ T

t

(
1
2
κ2V 2

s

∂2f

∂v2
+

∂f

∂s

)
ds. (18)

Therefore,

e−rT C(T, zVT )

= e−rtC(t, zv) +
∫ T

t
e−rs ∂C

∂v
dVs +

∫ T

t
e−rs

(
1
2
κ2V 2

s

∂2C

∂v2
− rC +

∂C

∂s

)
ds

= e−rtC(t, zv) +
∫ T

t
e−rsκVs

∂C

∂v
dZ̃s

+
∫ T

t
e−rs

(
1
2
κ2V 2

s

∂2C

∂v2
+ (r − δ)Vs

∂C

∂v
− rC +

∂C

∂s

)
ds. (19)

Note that

1
2
κ2v2 ∂2C

∂v2
+ (r − δ)v

∂C

∂v
− rC +

∂C

∂t

=





0, (t, v) ∈ C
−δzv −

(
1
2
κ2v2 ∂2B

∂v2
+ (r − δ)v

∂B

∂v
− rB +

∂B

∂t

)
, (t, v) ∈ Si

and
1
2
κ2v2 ∂2B

∂v2
+ (r − δ)v

∂B

∂v
− rB +

∂B

∂t
= 0.

Equation (19) can be rearranged as

e−rT C(T, zVT ) = e−rtC(t, zv) +
∫ T

t
e−rsκVs

∂C

∂v
dZ̃s −

∫ T

t
e−rsδzVs1{vi

s≤Vs}ds.

After multiplying by ert and taking the expectation conditioning on Vt = v, we have

Ẽ[e−r(T−t)C(T, zVT ) | Vt = v] = C(t, zv)− Ẽ

[∫ T

t
e−r(s−t)δzVs1{vi

s≤Vs}ds
∣∣∣ Vt = v

]
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Next, we present the decomposition of the value of the callable CB. Let C(t, v) be the
value of conversion option which is the difference between the value of the callable CB and
the bond price.

Theorem 5. The value of the callable CB can be represented by the following decompo-
sition;

CB(t, v) = B(t, v) + C(t, v)

= B(t, v) + Ce(t, zv; F ) + p(t, v)− d(t, v), (20)

where

p(t, v) = Ẽ

[∫ T

t
e−r(s−t)δzVs1{v∗s≤Vs}ds

∣∣∣Vt = v

]
(21)

and

d(t, v) = Ẽ

[∫ T

t
e−r(s−t)

(
∂C

∂v
(s, v∗+s )− ∂C

∂v
(s, v∗−s )

)
dLv

s(v
∗
s)

∣∣∣Vt = v

]
. (22)

where we can call p(t, v) the early conversion premium and d(t, v) the callable discounted
value, respectively, and Lv

t (v
∗
t ) the local time of Vt at the level v∗t in the time interval [0, t].

Proof. Put g(t, v) = e−rtC(t, v) and applying the generalized Ito’s lemma for convex
functions [6]. Then we obtain

g(T, VT ) = g(t, v) +
∫ T

t

∂g

∂v
dVs +

∫ T

t

(
1
2
κ2V 2

s

∂2g

∂v2
+

∂g

∂s

)
ds

+
∫ T

t

(
∂g

∂v
(s, v∗+s )− ∂g

∂v
(s, v∗−s )

)
dLv

s(v
∗
s). (23)

Note from the free boundary conditions that

1
2
κ2v2 ∂2C

∂v2
+ (r − δ)v

∂C

∂v
− rC +

∂C

∂t
=

{
0, (t, v) ∈ C
−δzv, (t, v) ∈ Si ∪ Sf .

(24)

Therefore, we have

e−rT C(T, VT ) = e−rtC(t, v) +
∫ T

t
e−rsκVs

∂C

∂v
dZ̃s −

∫ T

t
e−rsδzVs1{v∗s≤Vs}ds

+
∫ T

t
e−rs

(
∂C

∂v
(s, v∗+s )− ∂C

∂v
(s, v∗−s )

)
dLv

s(v
∗
s).

Multiplying by ert and taking the expectation conditioning on Vt = v, we obtain

Ẽ[e−r(T−t)C(T, VT ) | Vt = v] = C(t, v)− Ẽ

[∫ T

t
e−r(s−t)δzVs1{v∗s≤Vs}ds

∣∣∣ Vt = v

]

+ Ẽ

[∫ T

t
e−r(s−t)

(
∂C

∂v
(s, v∗+s )− ∂C

∂v
(s, v∗−s )

)
dLv

s(v
∗
s)

]

(25)

which can be rewritten as in equation (20).
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Corollary 6. The early conversion premium for the callable CB is less than or equal to
the one for the non-callable CB, that is, p(t, v) ≥ p(t, v) for all t, v and hence d(t, v) ≥ 0 for
all t, v.

Proof. From definition of v∗t and Theorem 3 (iii) we have v∗t ≤ vi
t for all t. Then,

from equation (17) and (21) we obtain p(t, v) ≥ p(t, v) for all t, v because the conditional
expectations should be taken over the time interval [t, T ].

5 Numerical Examples

In this section we present the numerical valuation of the callable and non-callable CBs, and
the optimal call and conversion boundaries through a simple finite element method. Table 1
shows the data we use to evaluate the values of the CB.

Table 1: Data

Face value F 100

Maturity T 3

Conversion ratio z 0.4

Interest rate r 0.05

Dividend rate δ 0.02

Volatility κ 0.3

Figure 1 illustrates the values of the callable and non-callable CB and the bond prices
as functions of v. We may identify the relationship between the callable and non-callable
CB given by equation (14). Figure 2 demonstrates the differences between the callable and
non-callable CB prices which present the callable discounted values. Table 2 shows the values
of the callable and non-callable bonds and the bond for the various v, T , z, r, δ, κ. Figure
3 shows the behavior of the optimal conversion and call boundaries for the non-callable and
the callable CBs, respectively, for the different levels of t.
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Table 2: CB: callable convertible bond, CB: non-callable convertible bind, B: bond

v T z r δ κ CB CB B CB −B CB −B CB − CB

50 3 0.4 0.05 0.02 0.3 45.1250 45.1250 45.1222 0.0028 0.0028 0.0000
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
150 3 0.4 0.05 0.02 0.3 82.9816 85.2760 80.9672 2.0144 4.3088 2.2944
200 3 0.4 0.05 0.02 0.3 90.8296 96.3348 84.2080 6.6216 12.1267 5.5052
250 3 0.4 0.05 0.02 0.3 100.0000 109.1865 85.3454 14.6546 23.8411 9.1865
300 3 0.4 0.05 0.02 0.3 120.0000 124.3606 85.7698 34.2302 38.5908 4.3606
100 1 0.4 0.05 0.02 0.3 85.0013 85.0081 84.9999 0.0015 0.0082 0.0067
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
100 5 0.4 0.05 0.02 0.3 62.7310 63.7709 61.5294 1.2016 2.2415 1.0399
100 7 0.4 0.05 0.02 0.3 56.2548 57.6278 53.5805 2.6743 4.0473 1.3730
100 10 0.4 0.05 0.02 0.3 49.3920 50.7265 43.9595 5.4325 6.7670 1.3345
100 3 0.2 0.05 0.02 0.3 71.3818 71.3818 71.3790 0.0028 0.0028 0.0000
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
100 3 0.6 0.05 0.02 0.3 73.7240 75.6884 71.3790 2.3450 4.3094 1.9644
100 3 0.8 0.05 0.02 0.3 81.8913 83.5720 71.3790 10.5123 12.1930 1.6807
100 3 1.0 0.05 0.02 0.3 100.0000 100.0000 71.3790 28.6210 28.6210 0.0000
100 3 0.4 0.01 0.02 0.3 76.0225 76.4018 75.9804 0.0421 0.4214 0.3793
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
100 3 0.4 0.1 0.02 0.3 65.8969 66.3694 65.1264 0.7705 1.2430 0.4726
100 3 0.4 0.2 0.02 0.3 54.8890 55.3233 52.0554 2.8336 3.2679 0.4343
100 3 0.4 0.3 0.02 0.3 46.5636 46.8285 39.9547 6.6089 6.8738 0.2648
100 3 0.4 0.05 0.01 0.3 72.5999 73.1061 72.3026 0.2973 0.8035 0.5062
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
100 3 0.4 0.05 0.03 0.3 70.6660 71.0328 70.4244 0.2416 0.6085 0.3669
100 3 0.4 0.05 0.04 0.3 69.6573 69.9691 69.4401 0.2172 0.5290 0.3118
100 3 0.4 0.05 0.05 0.3 68.6225 68.8870 68.4276 0.1949 0.4595 0.2645
100 3 0.4 0.05 0.02 0.1 83.0857 83.0857 83.0857 0.0000 0.0000 0.0000
100 3 0.4 0.05 0.02 0.2 77.3445 77.3761 77.3195 0.0251 0.0567 0.0316
100 3 0.4 0.05 0.02 0.3 71.6472 72.0784 71.3790 0.2683 0.6994 0.4311
100 3 0.4 0.05 0.02 0.4 66.2945 67.6892 65.4951 0.7994 2.1941 1.3947
100 3 0.4 0.05 0.02 0.5 61.4190 64.0102 59.7349 1.6842 4.2753 2.5912
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6 Summary and Concluding Remarks

In this paper we have studied the pricing of the callable convertible bonds and the optimal call
and conversion policies of the callable CB by means of a coupled stopping game between the
issuer and the investor. We have shown that the value of the callable CB can be decomposed
into the sum of the bond price, the value of the European call and the difference between the
early conversion premium and the callable discounted value. Furthermore, we have embodied
the optimal conversion and call boundaries numerically computed by the finite differential
method.

We assume that the bond has no coupon payment beside the stock pays a constant
dividend. Further investigation is left for future research when the bond pays coupons to the
bond holder because the bond usually pays coupons. It is interesting to investigate how the
coupon payments affect the value and optimal boundaries of the callable CB. What happens
to the value of the CB if the call time is restricted ? For example, the firm is allowed to
call only in some certain time interval. Considering these questions leads more practical
evaluation of existing financial commodities traded in the actual market.
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