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Abstract. To discuss Rosser sentences, Guaspari and Solovay [GS79] enriched the modal language by
adding, for each �A and �B, the formulas �A ≺ �B and �A � �B, with their arithmetic realizations
the Σ1-sentences “A∗ is provable by a proof that is smaller than any proof of B∗”, and “A∗ is provable
by a proof that is smaller than or equal to any proof of B∗”. They axiomatized modal logic R− complete
for the above arithmetic interpretation. Here we introduce a sequent system for R− with a kind of
subformula property.

1 The logic R−

We use lower case Latin letters p, q, r, possibly with suffixes, for propositional variables. We use ⊥
(contradiction), and logical connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication), � (provability),
� (witness comparison), and ≺ (witness comparison).

Definition 1.1. Formulas are defined inductively as follows:
(1) every propositional variable is a formula,
(2) ⊥ is a formula,
(3) if A and B are formulas, then so are (A ∧ B), (A ∨ B) and (A ⊃ B),
(4) if A is a formula, then so is (�A),
(5) if �A and �B are formulas, then so are (�A ≺ �B) and (�A � �B).

We use upper case Latin letters A, B, C, · · ·, possibly with suffixes, for formulas. The expression ¬A
denotes the formula A ⊃ ⊥. A formula of the form �A is said to be a �-formula. Also a formula of the
form �A � �B (�A ≺ �B) is said to be a �-formula (≺-formula).

Definition 1.2. Sigma-formulas are defined inductively as follows:
(1) formulas �A, �B, �A ≺ �B and �A � �B are Sigma-formulas,
(2) if A and B are Sigma-formulas, then so are (A ∧ B) and (A ∨ B).

Definition 1.3. The modal system R− is defined by the following axioms and inference rules:
Axioms:
A1 : all tautologies,
A2 : �(A ⊃ B) ⊃ (�A ⊃ �B),
A3 : �(�A ⊃ A) ⊃ �A,
A4 : A ⊃ �A, where A is a Sigma-formula,
A5 : (�A � �B) ⊃ �A,
A6 : (�A � �B) ∧ (�B � �C) ⊃ (�A � �C),
A7 : (�A ∨�B) ⊃ (�A � �B) ∨ (�B ≺ �A),
A8 : (�A ≺ �B) ⊃ (�A � �B),
A9 : (�A � �B) ∧ (�B ≺ �A) ⊃ ⊥,

Inference rules:
MP : A, A ⊃ B ∈ R− implies B ∈ R−,
N : A ∈ R− implies �A ∈ R−.
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In [GS79] and Symoriński [Sym85], the following two formulas are also axioms of R−, but they are
redundant

A10 : �A ⊃ (�A � �A),
A11 : (�A ∧ ¬�B) ⊃ (�A ≺ �B).

Lemma 1.4. A10 and A11 are provable in R−.

Proof. For A10, we use the following axioms:
A1 : �A ⊃ �A ∨ �A,
A7 : (�A ∨�A) ⊃ (�A � �A) ∨ (�A ≺ �A),
A8 : (�A ≺ �A) ⊃ (�A � �A).
For A11, we use the following axioms:
A1 : �A ⊃ �B ∨ �A,
A7 : (�B ∨ �A) ⊃ (�B � �A) ∨ (�A ≺ �B),
A8 : (�B � �A) ⊃ �B,

and obtain
�A ⊃ (�B ∨ (�A ≺ �B)).

Definition 1.5. A Kripke pseudo-model for R− is a triple 〈W, <, |=〉 where
(1) W is a non-empty finite set,
(2) < is an irreflexive and transitive binary relation on W satisfying

α < γ and β < γ imply either one of α = β, α < β or β < α,

(3) |= is a valuation satisfying, in addition to the usual boolean laws,

α |= �A if and only if for any β ∈ α↑ (= {γ | α < γ}), β |= A.

Definition 1.6. A Kripke pseudo-model 〈W, <, |=〉 for R− is said to be a Kripke model for R− if
the following conditions hold, for any formula A, B, and C,

(1) α |= �A � �B implies for any β ∈ α↑, β |= �A � �B
(2) α |= �A ≺ �B implies for any β ∈ α↑, β |= �A ≺ �B,
(3) α |= �A � �B implies α |= �A,
(4) α |= �A � �B and α |= �B � �C imply α |= �A � �C,
(5) α |= �A ∨ �B implies α |= (�A � �B) ∨ (�B ≺ �A),
(6) α |= �A ≺ �B implies α |= �A � �B,
(7) α |= �A ≺ �B implies α �|= �B � �A.

De Jongh [Jon87] and Voorbraak [Vor90] showed simpler proofs for the completeness theorem. Also
their axiomatization of R− is slightly different form Definition 1.3, but equivalent. They use the following
axioms instead of A7, A8 and A9:

�A ⊃ (�A � �B) ∨ (�B � �A),
(�A ≺ �B) ≡ (�A � �B) ∧ ¬(�B � �A),

where X ≡ Y = (X ⊃ Y ) ∧ (Y ⊃ X).

Lemma 1.7. A ∈ R− if and only if A is valid in any Kripke model for R−.

2 A sequent system for R−

In this section we introduce a sequent system GR− for R−. We use Greek letters, possibly with suffixes,
for finite sets of formulas, especially we use Σ for a finite set of Sigma-formulas. The expression ΓA
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denotes the set Γ − {A}. The expression �Γ denotes the set {�A | A ∈ Γ}. By a sequent, we mean the
expression

Γ → ∆.

For brevity’s sake, we write

A1, · · · , Ak, Γ1, · · · , Γ� → ∆1, · · · , ∆m, B1, · · · , Bn

instead of
{A1, · · · , Ak} ∪ Γ1 ∪ · · · ∪ Γ� → ∆1 ∪ · · · ∪∆m ∪ {B1, · · · , Bn}.

By Sub(A), we mean the set of subformulas of A. We put

Sub+(A) = Sub(A) ∪ {�B � �C|�B, �C ∈ Sub(A)} ∪ {�B ≺ �C|�B, �C ∈ Sub(A)},

Sub(Γ → ∆) =
⋃

B∈Γ∪∆

Sub(B),

Sub+(Γ → ∆) =
⋃

B∈Γ∪∆

Sub+(B).

The system GR− is defined from the following axioms and inference rules in the usual way.

Axioms of GR−

A → A

⊥ →
�A � �B, �B � �C → �A � �C

�A → �A � �B, �B ≺ �A

�B → �A � �B, �B ≺ �A

�A ≺ �B → �A � �B

�A � �B, �B ≺ �A →
Inference rules of GR−

Γ → ∆
A, Γ → ∆

(W →)
Γ → ∆

Γ → ∆, A
(→ W )

Γ → ∆, A A, Γ → ∆
Γ → ∆

(cut)

Ai, Γ → ∆
A1 ∧ A2, Γ → ∆

(∧ →i)
Γ → ∆, A Γ → ∆, B

Γ → ∆, A∧ B
(→ ∧)

A, Γ → ∆ B, Γ → ∆
A ∨ B, Γ → ∆

(∨ →)
Γ → ∆, Ai

Γ → ∆, A1 ∨ A2
(→ ∨i)

Γ → ∆, A B, Γ → ∆
A ⊃ B, Γ → ∆

(⊃→)
A, Γ → ∆, B

Γ → ∆, A ⊃ B
(→⊃)

�A, Σ, Γ, �Γ → A

Σ, �Γ → �A
(�)

�A, Γ → ∆
�A � �B, Γ → ∆

(�→)
Γ → ∆, �A

Γ → ∆, �A � �A
(→�)

By GR−
1 , we mean the system obtained by restricting a cut to the following two forms:

Γ → ∆, �A � �B �A � �B, Γ → ∆
Γ → ∆
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Γ → ∆, �A ≺ �B �A ≺ �B, Γ → ∆
Γ → ∆

where �A and �B are subformulas of some formula occurring in the lower sequent.

Example. A proof figure in GR−
1 :

⊥ →
→ � (→⊃)

→ �� (�)

→ �� � �� (→�)

�� → �� ≺ �⊥, �⊥ � ��

⊥ →
⊥ → �� ≺ �⊥ (→ W )

�⊥ → �(�� ≺ �⊥)
(�)

�⊥ � �� → �(�� ≺ �⊥)
(�→)

�� → �(�� ≺ �⊥), �� ≺ �⊥ (cut)

�� � �� → �(�� ≺ �⊥), �� ≺ �⊥ (�→)

→ �(�� ≺ �⊥), �� ≺ �⊥ (cut)
�� ≺ �⊥ → �� ≺ �⊥

�� ≺ �⊥ → �(�� ≺ �⊥)
(�)

→ �(�� ≺ �⊥)
(cut)

where � = ¬⊥.

Theorem 2.1. The following conditions are equivalent:
(1) A1, · · · , Am → B1 , · · · , Bn ∈ GR−

1 ,
(2) A1, · · · , Am → B1 , · · · , Bn ∈ GR−,
(3) A1 ∧ · · · ∧ Am ⊃ B1 ∨ · · · ∨ Bn ∈ R−,
(4) A1 ∧ · · · ∧ Am ⊃ B1 ∨ · · · ∨ Bn is valid in any Kripke model for R−.

“(1) implies (2)” is clear. From Lemma 1.7, it follows that “(3) implies (4)”. “(2) implies (3)” is shown
by checking the corresponding formula of each axiom in GR− is provable in R− and each inference rule
in GR− preserves the provability of R−. The former can be easily seen and the latter can be shown in
the usual way using Lemma 1.4. To prove “(4) implies (1)”, we need some preparations.

Definition 2.2. A sequent Γ → ∆ is said to be saturated if the following conditions hold:
(1) if A ∧B ∈ Γ, then A, B ∈ Γ,
(2) if A ∨B ∈ Γ, then A ∈ Γ or B ∈ Γ,
(3) if A ⊃ B ∈ Γ, then A ∈ ∆ or B ∈ Γ,
(4) if A ∧B ∈ ∆, then A ∈ ∆ or B ∈ ∆,
(5) if A ∨B ∈ ∆, then A, B ∈ ∆,
(6) if A ⊃ B ∈ ∆, then A ∈ Γ and B ∈ ∆,
(7) if �A � �B ∈ Γ, then �A ∈ Γ,
(8) if �A � �A ∈ ∆, then �A ∈ ∆.
(9) if �A, �B ∈ Sub(Γ → ∆), then �A � �B, �A ≺ �B ∈ Γ ∪ ∆.

Lemma 2.3. If Γ → ∆ �∈ GR−
1 , then there exists a sequent Γ′ → ∆′ satisfying the following four

conditions:
(1) Γ′ → ∆′ �∈ GR−

1 ,
(2) Γ′ → ∆′ is saturated,
(3) Γ ⊆ Γ′ ⊆ Sub+(Γ → ∆),
(4) ∆ ⊆ ∆′ ⊆ Sub+(Γ → ∆).

Proof. Since Sub+(Γ → ∆) is finite, there exist formulas A0, A1, · · · , An−1 such that

Sub+(Γ → ∆) = {A0, A2, · · · , An−1}.
We define a sequence of sequents

Γ0 → ∆0, Γ1 → ∆1, · · · , Γk → ∆k, · · ·
inductively as follows.

Step 1: (Γ0 → ∆0) = (Γ → ∆).
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Step k + 1: (Γk+1 → ∆k+1)

=

����������������������
���������������������

(B, C,Γk → ∆k) if A(k+1)modn = B ∧ C ∈ Γk − ∆k

(Γk → ∆k, B) if A(k+1)modn = B ∧ C ∈ ∆k − Γk and (Γk → ∆k, B) 	∈ GR−
1

(Γk → ∆k, C) if A(k+1)modn = B ∧ C ∈ ∆k − Γk, (Γk → ∆k, B) ∈ GR−
1 and (Γk → ∆k, C) 	∈ GR−

1

(B, Γk → ∆k) if A(k+1)modn = B ∨ C ∈ Γk − ∆k and (B, Γk → ∆k) 	∈ GR−
1

(C,Γk → ∆k) if A(k+1)modn = B ∨ C ∈ Γk − ∆k(B, Γk → ∆k) ∈ GR−
1 and (C,Γk → ∆k) 	∈ GR−

1

(Γk → ∆k, B, C) if A(k+1)modn = B ∨ C ∈ ∆k − Γk

(Γk → ∆k, B) if A(k+1)modn = B ⊃ C ∈ Γk − ∆k and (Γk → ∆k, B) 	∈ GR−
1

(C,Γk → ∆k) if A(k+1)modn = B ⊃ C ∈ Γk − ∆k(Γk → ∆k , B) ∈ GR−
1 and (C,Γk → ∆k) 	∈ GR−

1

(B, Γk → ∆k, C) if A(k+1)modn = B ⊃ C ∈ ∆k − Γk

(Γk → ∆k, �B � �C) if A(k+1)modn = �B � �C, (Γk → ∆k, �B � �C) 	∈ GR−
1 and B 	= C

(Γk → ∆k, �B � �B,�B) if A(k+1)modn = �B � �B and (Γk → ∆k, �B � �B) 	∈ GR−
1

(�B,�B � �C,Γk → ∆k) if A(k+1)modn = �B � �C, (Γk → ∆k, �B � �C) ∈ GR−
1 and (�B � �C,Γk → ∆k) 	∈ GR−

1

(Γk → ∆k) otherwise.

By an induction on k, it is not hard to show that Γk → ∆k satisfies the conditions (1), (3) and (4).
Also in the usual way, we can prove that

∞⋃

i=1

Γi →
∞⋃

i=1

∆i

is a sequnt and satisfies the conditions (1),(2),(3) and (4). �

For Γ → ∆ �∈ GR−
1 , we fix a sequent satisfying the four conditions in the above lemma and call it a

saturation of Γ → ∆, write sat(Γ → ∆).1 For Γ → ∆ ∈ GR−
1 , we put sat(Γ → ∆) = (Γ → ∆).

Definition 2.4. A sequence of formulas is defined as follows:
(1) [ ] is a sequence of formulas,
(2) if [A1, · · · , An] is a sequence of formulas, then so is [A1, · · · , An, B].

We call the sequence [ ] the empty sequence and use λ to express the empty sequence. A binary
operator ◦ is defined by

[A1, · · · , Am] ◦ [B1, · · · , Bn] = [A1, · · · , Am, B1, · · · , Bn]

We use τ and σ, possibly with suffixes, for sequences of formulas.

Definition 2.5. Let S0 be a sequent, which is not provable in GR−
1 . We define the set W(S0) of

pairs of a sequent and a sequence of formulas as follows:
(1) (sat(S0); λ) ∈ W(S0),
(2) if a pair (Γ → ∆, �A; τ ) belongs to W(S0), then so does the pair

(sat(�A, {D | �D ∈ Γ}, {D | D ∈ Γ, D is a Sigma-formula} → A); τ ◦ [�A]).

Lemma 2.6. Let S0 be a sequent, which is not provable in GR−
1 and let (S; τ ) be a pair in W(S0).

Then
(1) S �∈ GR−

1 ,
(2) S consists of only formulas in Sub+(S0),
(3) τ consists of only �-formulas in Sub(S0).

Proof. We use an induction on (S; τ ) as an element in W(S0). If (S; τ ) = (sat(S0); λ), then the
lemma is clear. Suppose that (S; τ ) �= (sat(S0); λ). Then by Definition 2.5, there exists a pair (Γ →
∆, �A; σ) ∈ W(S0) such that S is the saturation of

�A, {D | �D ∈ Γ}, {D | D ∈ Γ, D is a Sigma-formula} → A.

1Note that a sequence A0,A1, · · ·An is not unique, and neither is
�∞

i=1 Γi → �∞
i=1 ∆i in the proof of Lemma 2.3.
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and τ is the sequence σ ◦ [�A]. By the induction hypothesis, we have the following three:
(4) Γ → ∆, �A �∈ GR−

1 ,
(5) Γ → ∆, �A consists only formulas in Sub+(S0)
(6) σ consists of only �-formulas in Sub(S0).

From (5) and (6), we obtain (3). By Lemma 2.3 and (5), we have (2). Also we consider the following
figure.

�A, {D | �D ∈ Γ}, {D | D ∈ Γ, D is a Sigma-formula} → A

{�D | �D ∈ Γ}, {D | D ∈ Γ, D is a Sigma-formula} → �A

using weakening rules, possibly several times
Γ → ∆, �A

(�)

The figure says that if the sequent at the top of the figure is provable in GR−
1 , then so is the sequent

Γ → ∆, �A, and so, we have a contradiction. Hence the sequent at the top of the figure is not provable
in GR−

1 , and using Lemma 2.3, neither is S. We have (1). �

Lemma 2.7. Let S0 be a sequent, which is not provable in GR−
1 . Then

(1) S1 = S2 for any (S1 ; τ ), (S2; τ ) ∈ W(S0),
(2) if (Γ1 → ∆1; τ ), (Γ2 → ∆2; τ ◦ σ) ∈ W(S0), then each Sigma-formula in Γ1 is a member of Γ2,
(3) if (Γ → ∆; τ ◦ σ) ∈ W(S0), then (Γ1 → ∆1; τ ) ∈ W(S0) for some Γ1 → ∆1,
(4) if (Γ → ∆; τ ◦ [�A] ◦ σ) ∈ W(S0), then �A ∈ Γ,
(5) (S; τ1 ◦ [�A] ◦ τ2 ◦ [�A] ◦ τ3) �∈ W(S0), for any A and S,
(6) W(S0) is finite.

Proof. For (1). We use an induction on τ . If τ = λ, then by Definition 2.5, we have S1 = sat(S0).
Similarly, we also have S2 = sat(S0).

Suppose that τ = σ ◦ [A]. Then by Definition 2.5, there exists (Γ1 → ∆1, �A; σ) ∈ W(S0) such that
S1 = sat(�A, {D | �D ∈ Γ1}, {D | D ∈ Γ1, D is a Sigma-formula} → A). Similarly, there exists (Γ2 →
∆2, �A; σ) ∈ W(S0) such that S2 = sat(�A, {D | �D ∈ Γ2}, {D | D ∈ Γ2, D is a Sigma-formula} → A).
By the induction hypothesis, (Γ1 → ∆1, �A) = (Γ2 → ∆2, �A), and so, we have S1 = S2.

For (2). We use an induction on σ. If σ = λ, then by (1), we have Γ1 = Γ2. Suppose that
σ = σ′ ◦ [�A]. Then by Definition 2.5, there exists (Γ3 → ∆3, �A; τ ◦ σ′) ∈ W(S0) such that (Γ2 →
∆2) = sat(�A, {D | �D ∈ Γ3}, {D | D ∈ Γ3, D is a Sigma-formula} → A). By the induction hypothesis,
each Sigma-formula in Γ1 is also a member of Γ3. On the other hand, by Lemma 2.3(3), {D | D ∈
Γ3, D is a Sigma-formula} ⊆ Γ2. Hence each Sigma-formula in Γ1 is also a member of Γ2.

For (3). We use an induction on σ. If σ = λ, then the lemma is clear. Suppose that σ = σ′ ◦ [A]. Then
by Definition 2.5, there exists (Γ1 → ∆1, �A; τ ◦ σ′) ∈ W(S0) such that (Γ → ∆) = sat(�A, {D | �D ∈
Γ1}, {D | D ∈ Γ1, D is a Sigma-formula} → A). By the induction hypothesis, (Γ2 → ∆2; τ ) ∈ W(S0)
for some Γ2 → ∆2.

For (4). By (3), (Γ1 → ∆1; τ ◦ [�A]) ∈ W(S0) for some Γ1 → ∆1. Using Definition 2.5 and Lemma
2.3, we have �A ∈ Γ1. Using (2), we have �A ∈ Γ.

For (5). Suppose that (S; τ1◦[�A]◦τ2◦[�A]◦τ3) ∈ W(S0). Then by (3), (Γ → ∆; τ1◦[�A]◦τ2◦[�A]) ∈
W(S0) for some Γ → ∆. By Definition 2.5, there exists (Γ1 → ∆1, �A; τ1 ◦ [�A] ◦ τ2) ∈ W(S0). Using
(4), �A ∈ Γ1. So, Γ1 → ∆1, �A ∈ GR−

1 . This is contradictory to Lemma 2.6.

For (6). By (5), {τ | (S; τ ) ∈ W(S0)} contains only sequences of �-formulas in Sub(S0), in which no
formulas occurs twice. So, {τ | (S; τ ) ∈ W(S0)} is finite, and by (1), so is W(S0). �

Definition 2.8. Let S0 be a sequent, which is not provable in GR−
1 . We define a structure K(S0) =

〈W(S0), <, |=〉 as follows:
(1) (Γ1 → ∆1; τ1) < (Γ2 → ∆2; τ2) if and only if τ2 = τ1 ◦ σ for some non-empty sequence σ,
(2) |= is a valuation, in addition to the conditions in Definition 1.5(3), satisfying,
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(2.1) p ∈ Γ if and only if (Γ → ∆; τ ) |= p, for any propositional variable p,
(2.2) �A � �B ∈ Γ if and only if (Γ → ∆; τ ) |= �A � �B, for any �A, �B ∈ Sub(S0),
(2.3) �A ≺ �B ∈ Γ if and only if (Γ → ∆; τ ) |= �A ≺ �B, for any �A, �B ∈ Sub(S0).

Lemma 2.9. Let S0 be a sequent, which is not provable in GR−
1 . Then for any A ∈ Sub+(S0) and

for any (Γ → ∆; τ ) ∈ W(S0),
(1) A ∈ Γ implies (Γ → ∆; τ ) |= A,
(2) A ∈ ∆ implies (Γ → ∆; τ ) �|= A.

Proof. We use an induction on A.
If A = ⊥, then by Lemma 2.6(1), A �∈ Γ. So we have (1). On the other hand, (Γ → ∆; τ ) �|= A, and

so, we have (2).
If A is a propositional variable, then (1) is clear. Suppose that p ∈ ∆. By Lemma 2.6(1), p �∈ Γ, and

so, we have (2).
Suppose that A is not a propositional variable. If A is a �-formula or a ≺-formula, then the lemma

can be shown similarly to the case that A is a propositional variable. Other cases can be shown in the
usual way (cf. Avron [Avr84]). Here we show only the case that A = �B.

For (1). Suppose that �B ∈ Γ and (Γ → ∆; τ ) < (Γ1 → ∆1; τ1). Then τ2 = τ1 ◦ σ ◦ [�C ] for some σ
and C. Hence there exists (Γ2 → ∆2, �C; τ1 ◦ σ) ∈ W(S0) such that (Γ1 → ∆1) = sat(�C, {D | �D ∈
Γ2}, {D | D ∈ Γ2, D is a Sigma-formula} → C). By Lemma 2.7(2), we have �B ∈ Γ2. Using Lemma
2.3, B ∈ Γ1. By the induction hypothesis, we have (Γ1 → ∆1; τ1) |= B. Hence (Γ → ∆; τ ) |= �B.

For (2). Suppose that �B ∈ ∆. Then

(Γ → ∆; τ ) < (sat(�B, {D | �D ∈ Γ}, {D | D ∈ Γ, D is a Sigma-formula} → B); τ ◦ [�B]) ∈ W(S0).

By Lemma 2.3, B belongs to the succeedent of the above saturation. By the induction hypothesis, B is
false at the new pair above. Hence (Γ → ∆; τ ) �|= �B. �

Corollary 2.10. Let A1, · · · , Am → B1, · · · , Bn be a sequent, which is not provable in GR−
1 .

Then in K(A1, · · · , Am → B1, · · · , Bn),

(sat(A1, · · · , Am → B1, · · · , Bn); λ) �|= A1 ∧ · · · ∧ Am ⊃ B1 ∨ · · · ∨ Bn.

Lemma 2.11. Let S0 be a sequent, which is not provable in GR−
1 . Then K(S0) is a Kripke pseudo-

model for R− satisfying the seven conditions in Definition 1.6 for any �A, �B, �C ∈ Sub(S0).

Proof. By Lemma 2.7(6), W(S0) is finite. The irreflexivity and the transitivity of < can be shown
easily. We show

α < γ and β < γ imply either one of α = β, α < β or β < α.

Suppose that (S1 ; τ1) < (S3; τ3) and (S2; τ2) < (S3; τ3). Then τ3 = τ1 ◦ σ1 = τ2 ◦ σ2 for some non-empty
sequences σ1 and σ2. Hence either τ1 = τ2 ◦ σ′

2 or τ1 ◦ σ′
1 = τ2 holds. Hence we have either one of

(S1; τ1) = (S2; τ2), (S1; τ1) < (S2; τ2) or (S2; τ2) < (S1; τ1).
We show the seven conditions in Definition 1.6 for any �-formulas. Let be that �A, �B, �C ∈ Sub(S0).
For (1). Suppose that (Γ1 → ∆1; τ1) |= �A � �B and (Γ1 → ∆1; τ1) < (Γ2 → ∆2; τ2). Then

�A � �B ∈ Γ1. By Lemma 2.7(2), �A � �B ∈ Γ2. Hence (Γ2 → ∆2; τ2) |= �A � �B.
For (2). (2) can be shown similarly to (1).
(3) Suppose that (Γ → ∆; τ ) |= �A � �B. Then �A � �B ∈ Γ. Since Γ → ∆ is a saturation, we

have �A ∈ Γ. Using Lemma 2.9, we obtain (3).
(4) Suppose that (Γ → ∆; τ ) |= �A � �B and (Γ → ∆; τ ) |= �B � �C. Then �A � �B, �B �

�C ∈ Γ. Since Γ → ∆ is a saturation, we have �A � �C ∈ Γ ∪ ∆. By Lemma 2.6, �A � �C �∈ ∆ and
so, �A � �C ∈ Γ. Hence (Γ → ∆; τ ) |= �A � �C.
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(5) Suppose that (Γ → ∆; τ ) �|= (�A � �B) ∨ (�B ≺ �A). Then (Γ → ∆; τ ) �|= �A � �B and
(Γ → ∆; τ ) �|= �B ≺ �A, and so, �A � �B �∈ Γ and �B ≺ �A �∈ Γ. Since Γ → ∆ is a saturation,
�A � �B, �B ≺ �A ∈ ∆.

Also �A � �A ∈ Γ ∪ ∆. If �A � �A ∈ Γ, then �A ∈ Γ since Γ → ∆ is a saturation. Using �A �
�B, �B ≺ �A ∈ ∆, we have Γ → ∆ ∈ GR−

1 , which is contradictory to Lemma 2.6. If �A � �A ∈ ∆,
then �A ∈ ∆ since Γ → ∆ is a saturation. Using Lemma 2.9, (Γ → ∆; τ ) �|= �A.

Similarly, we also have (Γ → ∆; τ ) �|= �B.
(6) Suppose that (Γ → ∆; τ ) |= �A ≺ �B. Then �A ≺ �B ∈ Γ. Since Γ → ∆ is a saturation,

�A � �B ∈ Γ ∪ ∆. If it belongs to ∆, then we have Γ → ∆ ∈ GR−
1 , which is contradictory to Lemma

2.6. Hence it belongs to Γ, and so, (Γ → ∆; τ ) |= �A � �B.
(7) Suppose that (Γ → ∆; τ ) |= �A ≺ �B and (Γ → ∆; τ ) |= �B � �A. Then �A ≺ �B, �B �

�A ∈ Γ, and so, Γ → ∆ ∈ GR−
1 , which is contradictory to Lemma 2.6. �

Theorem 2.12. Let A1, · · · , Am → B1, · · · , Bn be a sequent, which is not provable in GR−
1 . Then

there exists a Kripke model K for R−, in which the formula A1 ∧ · · · ∧Am ⊃ B1 ∨ · · · ∨Bn is not valid.
Proof. Let S be a set of formulas satisfying

A ∈ S implies Sub+(A) ⊆ S

and Let K∗ be a Kripke pseudo-model for R− satisfying the seven conditions in Definition 1.6 for any
�A, �B, �C ∈ S. [GS79] showed that there exists a Kripke model K for R− such that for any A ∈ S,

A is valid in K∗ if and only if A is valid in K
So, by Corollary 2.10 and Lemma 2.11, we obtain the theorem. �

Corollary 2.13. If a sequent A1 ∧ · · · ∧ Am ⊃ B1 ∨ · · · ∨ Bn is valid in any Kripke model for R−,
then A1, · · · , Am → B1, · · · , Bn ∈ GR−

1 .

From the above corollary, we obtain the proof of “(4) implies (1)” in Theorem 2.1, and hence, we
obtain Theorem 2.1.

Corollary 2.14. If a sequent S is provable in GR−, then there exists a proof figure P for S such
that each formula occurring in P belongs to Sub+(S).
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