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Abstract. To discuss Rosser sentences, Guaspari and Solovay [GS79] enriched the modal language by
adding, for each OA and OB, the formulas OA < OB and OA < OB, with their arithmetic realizations
the ¥;-sentences “A* is provable by a proof that is smaller than any proof of B*”, and “A* is provable
by a proof that is smaller than or equal to any proof of B*”. They axiomatized modal logic R~ complete
for the above arithmetic interpretation. Here we introduce a sequent system for R~ with a kind of
subformula property.

1 The logic R~

We use lower case Latin letters p, ¢, r, possibly with suffixes, for propositional variables. We use L
(contradiction), and logical connectives A (conjunction), V (disjunction), D (implication), O (provability),
=< (witness comparison), and < (witness comparison).

Definition 1.1. Formulas are defined inductively as follows:

(1) every propositional variable is a formula,

(2) L is a formula,

(3) if A and B are formulas, then so are (A A B),(AV B) and (A D B),
(4) if A is a formula, then so is (OA),

(5) if OA and OB are formulas, then so are (DA < OB) and (DA < OB).

We use upper case Latin letters A, B, C, - - -, possibly with suffixes, for formulas. The expression = A
denotes the formula A D L. A formula of the form OA is said to be a O-formula. Also a formula of the
form OA < OB (0OA < OB) is said to be a <-formula (<-formula).

Definition 1.2. Sigma-formulas are defined inductively as follows:
(1) formulas OA,0B,0A < OB and OA < OB are Sigma-formulas,
(2) if A and B are Sigma-formulas, then so are (A A B) and (A V B).

Definition 1.3. The modal system R~ is defined by the following axioms and inference rules:
Axioms:

A1l : all tautologies,

A2:0(AD B) D> (0ADOB),
A3:0(0ADA)DOA,

A4 : A D UOA, where A is a Sigma-formula,
A5 : (0A < OB) D 0OA,

A6: (DA =<0OB)A (OB =0OC) D (04 =0C),
A7:(0AvVOB) D (0A=<0OB)V (OB < 0OA4),
A8: (0A <0OB) D> (0A=<0OB),

A9: (DA<OB)A(OB<0OA)D 1,

Inference rules:
MP: A ADBeR™ implies Be R™,
N:AeR™ implies 0A € R™.



In [GS79] and Symorinski [Sym85], the following two formulas are also axioms of R, but they are
redundant

A10: OA D (OA < OA),

All: (DAA-OB) D (DA < OB).

Lemma 1.4. A10 and All are provable in R™.

Proof. For A10, we use the following axioms:
Al:0ADOAVUOA,
A7:(ODAVOA) D (O0A <OA)V (OA < OA),
A8: (0DA < UOA) D (ODA < OA).
For Al1, we use the following axioms:
Al:0A D OBV OA,
A7:(O0BvOA) D> (OB =<0A4)V (0OA < OB),
A8 : (OB < 0A) > OB,

and obtain
OA D (OBV (0A < OB)).

Definition 1.5. A Kripke pseudo-model for R~ is a triple (W, <, =) where
(1) W is a non-empty finite set,
(2) < is an irreflexive and transitive binary relation on W satisfying

a < v and [ <y imply either one of a = 3, a < for § < q,
(3) = is a valuation satisfying, in addition to the usual boolean laws,

a = 0A if and only if for any S € af (={v|a<~}), B E A.

Definition 1.6. A Kripke pseudo-model (W, <, |=) for R~ is said to be a Kripke model for R~ if
the following conditions hold, for any formula A, B, and C,
(1) a = 0A < OB implies for any 5 € of, = 0A < OB

(2) a = 0A < OB implies for any § € af, 5 |=0A < OB,
(3)  EOA <X OB implies a = 04,

(4) a FOA < 0B and o« OB < 0C imply a | OA < 0OC,
(5) o =EOAV OB implies o = (DA < OB) V (OB < 0OA4),
(6) a = 0A < OB implies o |=0A < OB,

(7) a = 0A < OB implies o [ OB < OA.

De Jongh [Jon87] and Voorbraak [Vor90] showed simpler proofs for the completeness theorem. Also
their axiomatization of R~ is slightly different form Definition 1.3, but equivalent. They use the following
axioms instead of A7, A8 and A9:

0A D (0OA < OB)V (OB < 0OA),

(0DA < OB) = (DA < OB) A—~(0OB < 0OA),
where X =Y = (X DY)A (Y D X).

Lemma 1.7. A € R~ if and only if A is valid in any Kripke model for R™.

2 A sequent system for R~

In this section we introduce a sequent system GR™ for R™. We use Greek letters, possibly with suffixes,
for finite sets of formulas, especially we use X for a finite set of Sigma-formulas. The expression I'4



denotes the set I' — {A}. The expression OI" denotes the set {JA | A € T'}. By a sequent, we mean the
expression

I — A.
For brevity’s sake, we write
Av, oo  Ag, Ty, . Ty — A, -+, A, By, -+ -, Ba,
instead of
{Al,---,Ak}UrlU---UrgHA1U---UAmU{Bl,---,Bn}.
By Sub(A), we mean the set of subformulas of A. We put
Sub™(A) = Sub(A) U {OB < OC|0OB,0C € Sub(A)} U {OB < OC|0OB,0C € Sub(A)},
Sub(M — A)= | J Sub(B
BeTuA

Sub™(I' = A) = U Sub™(B

BeT'UA

The system GR™ is defined from the following axioms and inference rules in the usual way.
Axioms of GR™
A— A
1 —
0A < 0OB,0B <0C — 0A < 0OC
0OA — 0OA<0OB,0B < 0A
OB — 0OA < OB,0B < OA
0OA<0OB—0OA<0OB
0OA <0OB,0B < 0A —

Inference rules of GR™

r—A r—A
A,F—)A(W_)) F—)A,A(_)W)
r—-AA A,F—>A( )

T A cu
A, T — A r-AA T'—-AB
T AN (= A)
Al/\AQ,F—)A F—>A,A/\B
AT — A B,F—)A(v ) I — A A (= Vi)
— (= V;
AVBT = A I = A A VA !
I'r—-AA B,F—)A( ) A,F—)A,B( )
ASBT—A 7 T>AASB  ~
OA, % T, DF—)A(D)
¥, 00 — 0A
OAT — A I'— AO0A
(=) (—=)
OA <0OB,I'— A I' - A 0A<0O4

By GR;, we mean the system obtained by restricting a cut to the following two forms:

I A 0A<0OB OA<OBT —A
- A




I' - A, 0A<0OB OA<OB,I' — A
r—A
where OA and OB are subformulas of some formula occurring in the lower sequent.

Example. A proof figure in GR7:

N S S
1 —-07T<0L1
Ol —O0@T <0l1)

(= W)
(O)

1 — <—)
= (—D) OT —-0T<01,0l <07 O0L<X0T-00T-=<0l) (cut)
o7 (D)(—><) 0T - 00T <0L1),0T <Ol <)
— 07T 0T - OT 0T —-0(0T <0L1),07 <0l >~ OT <0l 0T <01
— 00T <0L1),0T <0OL (cut) OT <0l —-0(0T <0L) ©
— 00T <0Ol) cut)
where T = —.1.

Theorem 2.1. The following conditions are equivalent:
(1) Ala"';Am_)Bla"',Bn S GRl_,

(2) Ala"';Am,_)Bla"'aBnEGR_;
3) AiN---NA,DBV---VB, R,
(4) Ay N---NA, DBy V-V B, is valid in any Kripke model for R™.

“(1) implies (2)” is clear. From Lemma 1.7, it follows that “(3) implies (4)”. “(2) implies (3)” is shown
by checking the corresponding formula of each axiom in GR™ is provable in R™ and each inference rule
in GR™ preserves the provability of R™. The former can be easily seen and the latter can be shown in
the usual way using Lemma 1.4. To prove “(4) implies (1)”, we need some preparations.

Definition 2.2. A sequent I' — A is said to be saturated if the following conditions hold:
(1)if AANB €T, then A,BeT,

(2)if AVB €T, then AecT or BeT,

3)if ADBeT, then Ae Aor BeT,

(4)if ANBe A then A€ Aor BeA,

(5)if AvB e A, then A, B € A,

(6)if ADBe A, then AeT and B € A,

(7)if DA < OB €T, then OA €T,

(8) if DA < 0OA € A, then OA € A.

(9) if 0A,0B € Sub(l' — A), then 0A < OB,0A4A < OB e TUA.

Lemma 2.3. IfT — A ¢ GRy, then there exists a sequent I" — A’ satisfying the following four
conditions:

(1) I"— A" ¢ GRy,

(2) IV — A’ is saturated,

(3) T C IV C Sub™(I' — A),
(4) A C A’ CSub™(I' — A).

3
4
Proof. Since Sub™(T' — A) is finite, there exist formulas Ag, A1, ---, A,_1 such that
Sub™(I' — A) = {Ap, Az, ---, A1}
We define a sequence of sequents
FO_)AO,Fl _)Ala"';rk_)Ak;"'

inductively as follows.
Step 1: (FQ — AQ) = (F — A)



Step k + 1: (Fk+1 — Ak+1)

(B,C, Ty — Ag) if A(k+1)1nodn =BANC el — Ay
(Tx — Ay, B) if A(k+1)1110dn =BAC €A, —Tyand (Tx — Ay, B) € GRT
( Kk — Ak,C) if A(k+1)1nodn =BANC e A, —T, (Fk — Ak,B) € GR] and (Fk — Ak,C) ¢ GRT
(B 'y — Ak) if A(k+1)1110dn =BVvVCeTly — Ak and (B,Fk — Ak) ¢ GRT
(C 'y — Ak) if A(k+1)1nodn =BvVCeTly— Ak(B,Fk — Ak) € GR] and (C, 'y — Ak) ¢ GRT
(Tx — Ak, B,C) if A(k+1)1nodn =BVvVCeA,—-Ty

= (Fk — Ak,B) if A(k+1)1nodn =BD>CeTly—Ar and (Fk — Ak,B) Q GRI_
(C 'y — Ak) if A(k+1)1110dn =BD>CeTlL— Ak(l“k — Ak,B) (S GRI_ and (C, Iy — Ak) Q GRI_
(B 'y — Ak,C) if A(k+1)1nodn =BDOCeA,—-T%
(Ty, — A, 0B 2 0C) if Agt1ymoan = OB <X 0C,(Ty — A, 0B =0C) ¢ GR; and B# C
(Cx — Ay, 0B 2 0B,0B)  if A(x11)modn = OB X OB and (I'x — Ag, 0B < 0B) ¢ GRy
(OB,0B =% 0OC, Ty — Ag)  if Agt1ymoan = OB X 0OC, (T — A, 0B = 0C) € GR; and (0B <X 0C, Ty — Ax) € GRy
(Tr — Ag) otherwise.

By an induction on k, it is not hard to show that I'y, — Ay satisfies the conditions (1), (3) and (4).
Also in the usual way, we can prove that

(o) oo
U F,L' — U A’L'
i=1 i=1
is a sequnt and satisfies the conditions (1),(2),(3) and (4). .

ForI' — A ¢ GR], we fix a sequent satisfying the four conditions in the above lemma and call it a
saturation of T — A, write sat(I' — A).! For I' = A € GRy, we put sat(I' — A) = (' — A).

Definition 2.4. A sequence of formulas is defined as follows:
(1) [] is a sequence of formulas,
(2) if [A4, -+, 4,)] is a sequence of formulas, then so is [A41, -+, A,, B].

We call the sequence [ ] the empty sequence and use A to express the empty sequence. A binary
operator o is defined by

[Ala"'aAm,]o[Bla"'aBn]:[Ala"'aAm,;Bla"';Bn]

We use 7 and o, possibly with suffixes, for sequences of formulas.

Definition 2.5. Let Sy be a sequent, which is not provable in GR;. We define the set W(Sp) of
pairs of a sequent and a sequence of formulas as follows:

(1) (sat(So); A) € W(So),

(2) if a pair (I' — A, 0A4; 7) belongs to W(.Sp), then so does the pair

(sat(ODA,{D |OD eT},{D| D €T, D is a Sigma-formula} — A); 7o [OA4]).

Lemma 2.6. Let Sy be a sequent, which is not provable in GR] and let (S;7) be a pair in W(Sp).
Then

(1) S ¢ GRy,

(2) S consists of only formulas in Sub™(Sp),

(3) 7 consists of only O-formulas in Sub(Sp).

Proof. We use an induction on (S;7) as an element in W(Sp). If (S;7) = (sat(Sp); A), then the
lemma is clear. Suppose that (S;7) # (sat(Sp); A). Then by Definition 2.5, there exists a pair (I' —
A,0A4;0) € W(S)) such that S is the saturation of

OA,{D| 0D eT},{D|DeT, D is a Sigma-formula} — A.

! Note that a sequence Ag, A1, - -+ Ay is not unique, and neither is [Ji2; I'; — J$2; A; in the proof of Lemma 2.3.




and 7 is the sequence o o [JA]. By the induction hypothesis, we have the following three:

4T — A 0A¢ GR;,

(5) T — A, DA consists only formulas in Sub™(Sp)

(6) o consists of only O-formulas in Sub(Sp).
From (5) and (6), we obtain (3). By Lemma 2.3 and (5), we have (2). Also we consider the following
figure.

g OA,{D| 0D eT},{D| D €T, D is a Sigma-formula} — A(D)
{OD |0D eT},{D|D €T, Dis a Sigma-formula} — 0OA
using weakening rules, possibly several times
I - AO4

The figure says that if the sequent at the top of the figure is provable in GR], then so is the sequent
I' - A,0A, and so, we have a contradiction. Hence the sequent at the top of the figure is not provable
in GR7, and using Lemma 2.3, neither is S. We have (1). -

Lemma 2.7. Let Sy be a sequent, which is not provable in GR] . Then

(1) S1 =5, fOT any (Sl, ) (SQ, ) S W(SQ)

(2) if Ty — Aq;7), (T2 — Ag;700) € W(Sy), then each Sigma-formula in T is a member of Ta,
(3) if (T — A;700) € W(Sp), then (T'1 — Aq;7) € W(Sp) for some Ty — Ay,

(4) if (T — A;70[0A]0o0) € W(Sy), then DA €T,
(5)
(6)

. >,

(S;7 0 [DA} oTrpo[0A]oTs) & W(Sp), for any A and S,
W(Sy) is finite.

Proof. For (1). We use an induction on 7. If 7 = A, then by Definition 2.5, we have S; = sat(Sp).
Similarly, we also have Sy = sat(Sp).

Suppose that 7 = o o [A]. Then by Definition 2.5, there exists (I'; — Ay, 0A4;0) € W(Sp) such that
S1 = sat(OA,{D | 0D €T1},{D| D €Ty, D is a Sigma-formula} — A). Similarly, there exists (I'y —
Ay, 04;0) € W(Sy) such that Sy = sat(0A,{D | OD €T's},{D | D €'y, D is a Sigma-formula} — A).
By the induction hypothesis, (I'y — Ay, 0A4) = (T's — A, 0A), and so, we have S; = Ss.

For (2). We use an induction on o. If ¢ = A, then by (1), we have 'y = T'5. Suppose that
o = o’ o [OA]. Then by Definition 2.5, there exists (I's — Az, 0A;700’) € W(Sp) such that (T'y —
Ay) =sat(0A,{D | 0D e€T3},{D| D €T, D is a Sigma-formula} — A). By the induction hypothesis,
each Sigma-formula in I'; is also a member of I's. On the other hand, by Lemma 2.3(3), {D | D €
I's, D is a Sigma-formula} C I's. Hence each Sigma-formula in I’y is also a member of T's.

For (3). We use an induction on 0. If o = A, then the lemma is clear. Suppose that o = ¢’ o [A]. Then
by Definition 2.5, there exists (I'y — Aq,0A4;700’) € W(Sp) such that (I' = A) = sat(0A,{D | OD €
I'1},{D | D €Ty, Dis a Sigma-formula} — A). By the induction hypothesis, (I's — Ag;7) € W(Sp)
for some I'y — As.

For (4). By (3), (T1 — Ay;70[0A]) € W(Sy) for some I'y — A;. Using Definition 2.5 and Lemma
2.3, we have OA € T';. Using (2), we have OA € T.

For (5). Suppose that (S; 710[0AJomao[dA]oTs) € W(Sp). Then by (3), (I' — A; mo[0AJomo[0A]) €
W(Sp) for some I' — A. By Definition 2.5, there exists (I'y — Ay, 0A4;7; 0 [OA] o 73) € W(Sp). Using
(4),0A €Ty. So, 'y — Ay,04 € GRy. This is contradictory to Lemma 2.6.

For (6). By (5), {7 | (S;7) € W(Sp)} contains only sequences of O-formulas in Sub(Sp), in which no
formulas occurs twice. So, {7 | (S;7) € W(Sp)} is finite, and by (1), so is W(Sp). !

Definition 2.8. Let Sy be a sequent, which is not provable in GR; . We define a structure K(Sp) =
(W(Sp), <, ) as follows:

(1) (Ty — Aq;711) < (T2 — Ag; 1) if and only if 75 = 71 0 o for some non-empty sequence o,

(2) = is a valuation, in addition to the conditions in Definition 1.5(3), satisfying,



(2.1) p € T if and only if (I' — A;7) | p, for any propositional variable p,
(2.2) 0A < OB €T if and only if (' — A;7) = OA < OB, for any OA, 0B € Sub(Sy),
(2.3) 0A < OB €T if and only if (' = A;7) = 0OA < OB, for any OA, OB € Sub(Sy).

Lemma 2.9. Let Sy be a sequent, which is not provable in GR] . Then for any A € Sub™(Sp) and
for any (T — A;7) € W(Sp),

(1) A €T implies (T — A;7) | A,

(2) A € A implies (T — A;7) £ A.

Proof. We use an induction on A.

If A= 1, then by Lemma 2.6(1), A ¢ I'. So we have (1). On the other hand, (I' — A;7) £ A, and
so, we have (2).

If A is a propositional variable, then (1) is clear. Suppose that p € A. By Lemma 2.6(1), p ¢ T, and
so, we have (2).

Suppose that A is not a propositional variable. If A is a <-formula or a <-formula, then the lemma
can be shown similarly to the case that A is a propositional variable. Other cases can be shown in the
usual way (cf. Avron [Avr84]). Here we show only the case that A = OB.

For (1). Suppose that OB € T and (I' — A;7) < (T'1 — Ay;71). Then 75 = 71 0 0 0 [OC] for some o
and C. Hence there exists (I's — Ay, 0C; 1 00) € W(Sp) such that (I'y — Ay) = sat(OC,{D | OD €
I';},{D | D € Ty, D is a Sigma-formula} — C). By Lemma 2.7(2), we have OB € I';. Using Lemma
2.3, B € T'1. By the induction hypothesis, we have (I'y — Ay;71) = B. Hence (I' — A;7) E OB.

For (2). Suppose that OB € A. Then

(T — A;7) < (sat(OB,{D | 0D €T},{D | D €T, D is a Sigma-formula} — B);7 o [OB]) € W(Sp).

By Lemma 2.3, B belongs to the succeedent of the above saturation. By the induction hypothesis, B is
false at the new pair above. Hence (I' — A;7) £ OB. .

Corollary 2.10. Let Ay,---, A, — B1,---, By, be a sequent, which is not provable in GR .
Then in K(Ay, -+, Ap — B1,- -+, By),

(sat(Ay, -+ Apm — Bi, -, Bp); ) EALN - NAp, DB V-V By,

Lemma 2.11. Let Sy be a sequent, which is not provable in GRY . Then K(Sy) is a Kripke pseudo-
model for R~ satisfying the seven conditions in Definition 1.6 for any OA, OB, 0C € Sub(Sp).

Proof. By Lemma 2.7(6), W(Sy) is finite. The irreflexivity and the transitivity of < can be shown
easily. We show

a < v and (B < v imply either one of a = 3, a < B or 8 < a.

Suppose that (S1;71) < (S3;73) and (S2;72) < (S3;73). Then 73 = 71 0 01 = T3 0 09 for some non-empty
sequences o1 and oy. Hence either 71 = 73 0 0}, or 71 0 0) = 72 holds. Hence we have either one of
(S1;71) = (S2;72), (S1;71) < (S2;72) or (S2;72) < (S1;71).

We show the seven conditions in Definition 1.6 for any O-formulas. Let be that OA, OB, 0C € Sub(Sp).

For (1). Suppose that (T — Ay;7) = OA < OB and (T'1 — A7) < (T2 — Ag;7e). Then
0A <0OB €. By Lemma 2.7(2), DA < OB € T's. Hence (I'ys — Ag; 7o) = DA < OB.

For (2). (2) can be shown similarly to (1).

(3) Suppose that (I' = A;7) = 0OA < OB. Then OA < OB € T'. Since I' — A is a saturation, we
have OA € T'. Using Lemma 2.9, we obtain (3).

(4) Suppose that (T' = A;7) = 0A < 0B and (I' — A;7) = OB < 0OC. Then 0OA < 0OB,0B <
OC € T. Since I' — A is a saturation, we have 0A < OC € T UA. By Lemma 2.6, 0A < 0OC € A and
so, JA <X 0C €T. Hence (' = A;7) =04 < 0C.



(5) Suppose that (I' — A;7) £ (O0A < OB) VvV (OB < 0A4). Then (I' — A;7) £ OA < OB and
(T - A;7) £ OB < OA, and so, OA < OB ¢ " and OB < OA ¢ T'. Since I' — A is a saturation,
0OA<0OB,0B <0A4¢cA.

AlsoOA < OA€eTUA. If 0A X 0A €T, then OA € T" since I' — A is a saturation. Using OA <
OB,0B < 0A € A, we have I' — A € GR[, which is contradictory to Lemma 2.6. If 0A < OA € A,
then OA € A since I' — A is a saturation. Using Lemma 2.9, (I' — A;7) £ OA.

Similarly, we also have (I' = A; 7) & OB.

(6) Suppose that (I' — A;7) = OA < OB. Then OA < OB € I'. Since I' — A is a saturation,
OA < OB eT'UA. If it belongs to A, then we have I' — A € GRY, which is contradictory to Lemma
2.6. Hence it belongs to T', and so, (I' = A;7) =04 < OB.

(7) Suppose that (T' = A;7) = 0A < OB and (I' — A;7) | OB < OA. Then OA < OB,0B <
OA €T, and so, I' - A € GR], which is contradictory to Lemma 2.6. -

Theorem 2.12. Let Ay,---,Am — B1,---, By be a sequent, which is not provable in GRy . Then
there exists a Kripke model K for R™, in which the formula Ay A---NA,y, D B1V---V By, is not valid.
Proof. Let S be a set of formulas satisfying

A € S implies Sub™(A4) C S

and Let £* be a Kripke pseudo-model for R~ satisfying the seven conditions in Definition 1.6 for any
0A,0B,0C € S. [GS79] showed that there exists a Kripke model K for R~ such that for any A € S,

A is valid in £* if and only if A is valid in K

So, by Corollary 2.10 and Lemma 2.11, we obtain the theorem. —

Corollary 2.13. If a sequent Ay A---NApy D By V-V By, is valid in any Kripke model for R~
then Ay, -+, Ay — B, -+, B, € GRY .

From the above corollary, we obtain the proof of “(4) implies (1)” in Theorem 2.1, and hence, we
obtain Theorem 2.1.

Corollary 2.14. If a sequent S is provable in GR™, then there exists a proof figure P for S such
that each formula occurring in P belongs to Sub™(S).
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