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Abstract

In this paper, we present a new formulation of one-stop capacitated hub-and-spoke

model as a natural extension of the uncapacitated one-stop model. The model involves

arc capacity constraints as well as hub capacity constraints, which enables us to in-

corporate some practical factors into the model. We also present a branch-and-bound

based exact solution method with Lagrangian relaxation bounding strategy, and report

some results of numerical experiments using real aviation data. Computational results

show the practical signi�cance of the proposed capacitated model.
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1 Introduction

The hub location problem has attracted much attention since O'Kelly [17] formulated

the single allocation hub-and-spoke model as a quadratic integer program. Campbell [4]

classi�es the p-hub location problem into four classes, and presented basic formulations and

formulations with 
ow thresholds for spokes for each of them. The four classes are the p-hub

median problem, the p-hub center problem, the uncapacitated hub location problem and the

hub covering problem. Besides the basic single allocation and multiple allocation models,

Campbell [4] presents models involving 
ow thresholds for spokes, and points out that the p-

hub median problem and the uncapacitated hub location problem have mainly been studied

and other classes of problems have not been considered seriously. Skorin-Kapov, Skorin-

Kapov and O'Kelly [23] considered the uncapacitated p-hub median problem and developed

linear programming formulations of both single and multiple allocation models that yield

tight relaxations to the original problem. For the same class of problems, O'Kelly et al. [18]

introduced a more compact formulation and discussed sensitivity analysis of the model with

respect to various parameters. On the other hand, Aykin [1] formulated the capacitated

hub-and-spoke model as a 0-1 integer programming problem and proposed two heuristics to

solve the problem. Ebery et al. [11] also addressed the capacitated multiple allocation hub

location problem that arises in a postal delivery system.

The above mentioned models are of two-stop type in the sense that a trip between each

origin-destination (OD) pair uses at most two hubs. Therefore, the number of variables and

constraints in the problem rapidly grows with the size of the model and hence we may expect

to solve problems of practical size only approximately. Sasaki, Suzuki and Drezner [21, 22]

considered the uncapacitated one-stop model, in which a trip between any OD pair uses only

one hub. The one-stop model appears to be useful in certain situations and is simple enough

to be solved exactly. In this paper, we propose a capacitated one-stop model as a natural

extension of the uncapacitated one-stop model of [21, 22] and present a branch-and-bound

based exact solution method with Lagrangian relaxation bounding strategy. Speci�cally,

we introduce capacity constraints on both arcs and hubs. Similar arc capacitated network

design problem have been considered in [13, 14]. However, studies on arc capacitated hub

location problems are scarce. Hub capacity may be regarded as the maximum number of

passengers a node can deal with when it is selected as a hub. For example, the number of

runways and the number of slots assigned to the airline company may constitute the hub

capacity. On the other hand, arc capacity may represent the number of available aircrafts

for the airline company on that arc. By introducing arc capacity constraints as well as hub

capacity constraints, we can enrich the model so as to take into account more practical

situations. Bryan [2] �rst incorporated arc capacities into a hub location model. The model
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is an extension of the model proposed by O'Kelly et al. [19], which uses a piecewise linear

cost function. Assuming hub locations were given, they only focused on the allocation phase

and examined how the arc capacity levels a�ect the total network cost.

This paper is organized as follows. In Section 2, we formulate the capacitated one-stop

hub-and-spoke model. In Section 3, we present a branch-and-bound method for solving the

proposed model and particularly describe Lagrangian relaxation strategy for �nding good

lower bounds for partial problems. In Section 4, we report some numerical experience. In

Section 5, we give concluding remarks and brie
y mention some future work.

2 Capacitated One-Stop Model

2.1 Model Description

Jaillet et al. [15] propose an airline network design problem. They examined the resultant

network structure and �gured out that the one-stop policy could bring results as good as

those of two-stop policy, especially in the situation with relatively high level of demands.

In some countries like Japan, a majority of domestic routes are provided by one-stop ser-

vices via a hub. Even in the United States, a large number of trips seem to use one-stop

routes. Motivated by these observations, an uncapacitated one-stop model has been pro-

posed in [21, 22]. In this paper, we generalize this model to construct a capacitated one-stop

model. We formulate the problem as a 0-1 mixed integer programming problem and propose

a branch-and-bound method with Lagrangian relaxation bounding strategy.

Aykin [1] formulated the capacitated two-stop hub-and-spoke model and proposed two

heuristics for the problem. In the model, capacity constraints on hubs are primarily con-

sidered. However, since airline companies may sometimes fail to provide 
ight service to all

passengers who want to use some arc, it is also practically signi�cant to consider capacity

constraints on arcs as well as on hubs. Concerning route patterns, we suppose that nonstop

services between non-hub nodes are not available, while passengers whose origin or destina-

tion is a hub are permitted to travel via another hub. Possible seven route patterns according

to this rule are shown in Figure 1.

One of the major factors that characterize a hub location model is its allocation rule.

Basically, there are two possible choices of allocation rules; the single allocation rule and

the multiple allocation rule [3]. Allocating each demand node to more than one hubs is

prohibited in the former rule and allowed in the latter rule. The �rst hub-and-spoke model

presented by O'Kelly [17] adopts the single allocation rule. Recent papers often adopt the

multiple allocation rule because it allows more 
exible routing between OD pairs [5, 8, 18],

while some others adopt single allocation rule [7, 10]. Skorin-Kapov et al. [23] and Ernst et
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hub node non-hub node

Figure 1: Route Patterns

al. [9] employ both rules in the uncapacitated p-hub median problem. These models are all

two-stop models. The choice of the allocation rule makes a sensible di�erence in a two-stop

model. However, in a one-stop model like the presented model, it is necessary to adopt the

multiple allocation rule. Because, if we adopt the single allocation rule in a one-stop model,

then any two demand nodes allocated to di�erent hubs are not reachable.

The routing rule is another important factor in the model. There are also two possible

choices of routing rules; the single routing rule and the multiple routing rule. Only one route

service provided for each OD pair in the former rule and more than one route services are

allowed in the latter rule. In other words, all passengers whose origin and destination are

the same have to travel using the same route in the single routing rule. We note that the

multiple routing rule is meaningful only in a capacitated problem, because in an uncapaci-

tated problem, all passengers for each OD pair will use the least cost route even if multiple

routes are available.

In this paper, we adopt the multiple routing rule. The objective of the model is to �nd

hub locations and passenger routing for each OD pair that minimize the total transportation

and location costs subject to the constraints derived from the assumed rules.

2.2 Model Formulation

We now present a mathematical formulation of the hub location problem with the multiple

allocation and multiple routing rules. The following notation is employed:

N : the set of demand nodes, jN j = n.

A : the set of arcs.
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H � N : the set of hub candidates, jHj = h � n:

� : the set of OD pairs � = hi; ji; i 2 N; j 2 N; i 6= j. j�j = n(n� 1).

Ai � � : the set of OD pairs whose origin is i 2 N .

Bj � � : the set of OD pairs whose destination is j 2 N .

p : the number of hubs to be selected.

d� : the trip demand (the number of passengers) for OD pair � 2 �.

c�k : the travel cost per passenger between OD pair � 2 � via hub k 2 H .

fk : the �xed cost incurred by selecting hub k.

w : weight parameter for the �xed cost.

ak : capacity of hub k 2 H .

bij: capacity of arc (i; j) 2 A.

Decision variables in the model are as follows:

x�k : the number of passengers who travel between OD pair � 2 � via hub k 2 H .

yk : binary variable such that yk = 1 if node k is selected as a hub, and 0 otherwise.

We note that hi; ji denotes the OD pair whose origin is node i and destination is node j, while

(i; j) denotes the arc connecting node i and node j. For an OD pair � = hi; ji, if i 2 H , then

x�i is the number of passengers traveling directly from hub i to node j. Similarly, if j 2 H ,

then x�j is the number of passengers traveling directly from node i to hub j. Moreover, if

i 2 H and j 2 H hold simultaneously, then both x�i and x�j are the number of passengers

from i to j. In this case, the total number of passengers on the route consisting of the single

arc (i; j) is given by x�i + x�j .

Now we are ready to formulate the model as the following mixed 0{1 integer programming

problem.

P0: minimize
X
�2�

X
k2H

c�kx�k +
X
k2H

fkyk (1)

subject to
X
k2H

x�k = d�; � 2 �; (2)

X
�2Ai

x�j +
X
�2Bj

x�i � bij ; i; j 2 H; i 6= j; (3)

X
�2Ai

x�j � bij ; i 62 H; j 2 H; i 6= j; (4)

X
�2Bj

x�i � bij ; i 2 H; j 62 H; i 6= j; (5)

X
k2H

yk = p; (6)
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X
�2�

x�k � akyk; k 2 H; (7)

x�k � 0; � 2 �; k 2 H;

yk 2 f0; 1g; k 2 H:

The objective function (1) is the sum of the total travel costs and �xed costs. Constraints

(2) imply that each passenger between OD pair � travels via one of the hubs. Constraints

(3){(5) represent arc capacity constraints; (3) applies to the case where both end points of

arc (i; j) belong to the hub candidate set, while (4) and (5) apply to the case where one

of the end points belongs to the hub candidate set. Constraint (6) requires that exactly p

hubs have to be selected. Constraints (7) represent capacity constraints for hubs, implying

that, when hub k is selected, the number of passengers who use hub k cannot exceed the

hub capacity ak. Constraints (7) also assure that any node cannot be connected to non-hub

nodes. Namely, x�k for all � 2 � are forced to vanish unless yk = 1.

3 Branch-and-Bound Method

3.1 Lagrangian Relaxation

We note that P0 can naturally be decomposed into two problems by �xing an arbitrary

yk at 0 or 1. We call such variable yk and the generated problems a branching variable

and partial problems, respectively. A partial problem P� may have one of the following two

properties:

1. An optimal solution of P� is obtained.

2. It is detected that P� cannot produce an optimal solution of P0.

In either case, we can fathom P� , because it is not necessary to decompose P� further. To

check whether or not P� has property 2, a lower bound test is applied to P� . The branch-and-

bound method repeatedly applies decomposition and lower bound tests until there remain

no partial problems that are active, i.e., generated but neither fathomed nor decomposed.

To describe a partial problem P� , we partition the hub candidate set H as H = HF
� [H

1
� [

H0
� , where H

F
� ; H

1
� and H0

� are speci�ed as follows.

HF
� : the set of indices k such that yk is a free variable.

H1
� : the set of indices k such that yk is �xed as yk = 1.

H0
� : the set of indices k such that yk is �xed as yk = 0.

For the partial problem P�, either jH1
� j = p or jH1

� j < p holds. If jH1
� j = p, then P� becomes

a linear programming problem by �xing all free variables to be zero. We can then obtain an
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upper bound of P0 by solving this problem, since its optimal solution is feasible to P0. If this

upper bound is smaller than an incumbent value, we let it be a new incumbent value of P0.

If jH1
� j < p, then we attempt to obtain a good lower bound for the optimal value of P�.

Let us denote H+
� = HF

� [ H1
� . Note that we eliminate variables x�k; yk; k 2 H0

� from P�

because it immediately implies that x�k = 0 for all � 2 � if k 2 H0
� . Then partial problem

P� can be written as follows.

P� : minimize
X
�2�

X

k2H+
�

c�kx�k +
X
k2H1

�

fk +
X
k2HF

�

fkyk

subject to
X

k2H+
�

x�k = d� ; � 2 �;

X
�2Ai

x�j +
X
�2Bj

x�i � bij ; i; j 2 H+
� ; i 6= j; (8)

X
�2Ai

x�j � bij ; i 62 H+
� ; j 2 H+

� ; (9)

X
�2Bj

x�i � bij ; i 2 H+
� ; j 62 H+

� ; (10)

X
k2HF

�

yk = p � jH1
� j;

X
�2�

x�k � akyk � 0; k 2 HF
� ; (11)

X
�2�

x�k � ak; k 2 H1
� ;

x�k � 0; � 2 �; k 2 H+
� ;

yk 2 f0; 1g; k 2 HF
� :

We consider relaxing all the arc capacity constraints and the hub capacity constraints

(11) by bringing them into the objective function. To achieve this, we introduce Lagrange

multipliers � = (�ij) and � = (�k) corresponding to the arc capacity constraints (8){(10) and

the hub capacity constraints (11), respectively. Then we obtain the following Lagrangian

relaxation problem RP�[�; �] for partial problem P�.

RP� [�; �] :

minimize
X
�2�

X

k2H+
�

c�kx�k +
X
k2HF

�

fkyk

+
X

i2H+
�

X

j2H+
� ;j 6=i

�ij(
X
�2Ai

x�j +
X
�2Bj

x�i)

+
X

i62H+
�

X

j2H+
�

�ij
X
�2Ai

x�j +
X

i2H+
�

X

j 62H+
�

�ij
X
�2Bj

x�i

+
X
k2HF

�

�k(
X
�2�

x�k � akyk) + L�0(�)
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subject to
X

k2H+
�

x�k = d� ; � 2 �;

X
k2HF

�

yk = p � jH1
� j;

X
�2�

x�k � ak; k 2 H1
� ;

x�k � 0; � 2 �; k 2 H+
� ;

yk 2 f0; 1g; k 2 HF
� ;

where

L�0(�) =
X
k2H1

�

fk �
X
i62H0

�

X
j 62H0

� ;j 6=i

�ijbij :

It is well-known that the optimal value of RP�[�; �] provides a lower bound of the optimal

value of P� for arbitrary � � 0 and � � 0. We can obtain an optimal solution of RP�[�; �]

easily by decomposing it into some simple problems. First, note that the objective function

of RP� [�; �] can be rewritten as

X
�2�

X

k2H+
�

c�kx�k +
X
�2�

X
k2HF

�

�kx�k +
X
i2H

X

j2H+
� ;j 6=i

�ij
X
�2Ai

x�j +
X

i2H+
�

X
j2H;j 6=i

�ij
X
�2Bj

x�i

+
X
k2HF

�

(fk � �kak)yk + L�0(�): (12)

Let �� and �� denote the origin and the destination of OD pair �, respectively. Then the

third term of (12) can be rewritten as

X
�2�

X

j2H+
� ;j 6=��

���jx�j : (13)

Similarly, the fourth term of (12) can be rewritten as

X
�2�

X

i2H+
� ;i 6=��

�i��x�i: (14)

By substituting (13) and (14) into (12), we may rewrite RP�[�; �] as follows.

RP� [�; �] :

minimize
X
�2�

0
@ X

k2H+
�

c�kx�k +
X

k2H+
� ;k 6=��

���kx�k +
X

k2H+
� ;k 6=��

�k��x�k +
X
k2HF

�

�kx�k

1
A

+
X
k2HF

�

(fk � �kak)yk + L�0(�)

subject to
X

k2H+
�

x�k = d�; � 2 �;

X
�2�

x�k � ak; k 2 H1
� ;
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X
k2HF

�

yk = p � jH1
� j;

x�k � 0; � 2 �; k 2 H+
� ;

yk 2 f0; 1g; k 2 HF
� :

Let us de�ne C�k to represent the aggregate coe�cient of x�k:

C�k =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

c�k + ���k + �k�� + �k, if k 2 HF
� ; k 6= �� ; k 6= ��

c�k + ���k + �k, if k 2 HF
� ; k = ��

c�k + �k�� + �k, if k 2 HF
� ; k = ��

c�k + ���k, if k 2 H1
� ; k = ��

c�k + �k�� , if k 2 H1
� ; k = ��.

Then, problem RP� [�; �] can be decomposed into the linear programming problem:

minimize
X
�2�

X

k2H+
�

C�kx�k

subject to
X

k2H+
�

x�k = d�; � 2 �;

P
�2� x�k � ak; k 2 H1

� ;

x�k � 0; k 2 H+
� ;

(15)

and the 0{1 integer programming problem:

minimize
X
k2HF

�

(fk � �kak)yk

subject to
X
k2HF

�

yk = p� jH1
� j;

yk 2 f0; 1g; k 2 HF
� :

(16)

Note that the linear programming problem (15) reduces to a transportation problem, if we

regard the nodes k 2 H+
� as source nodes and OD pairs � 2 � as sink nodes. Moreover, an

optimal solution �yk; k 2 HF
� , of the 0{1 integer programming problem (16) is obtained in the

following simple way: Order the indices k 2 HF
� as k1; k2; � � � ; kjHF

� j in the increasing order

of the coe�cients fk � �kak, and let

�yk =

8><
>:

1; if k 2 K;

0; if k 62 K;
(17)

where K = fk1; k2; � � � ; kp�jH1
� j
g.
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3.2 Subgradient Method

It is practically important to use appropriate values of Lagrange multipliers so as to obtain

a good lower bound for the optimal value of the partial problem P� . The optimal Lagrange

multipliers can be obtained by solving the following Lagrangian dual problem for P� .

LD� : maximize G�(�; �)

subject to �; � � 0;

where G�(�; �) denotes the optimal value of RP� [�; �]. This is a problem of maximizing a

nondi�erentiable concave function. Since it is expensive to obtain an optimal solution of

LD� exactly, we use the subgradient method, which is practically useful because it can �nd

an approximate solution of LD� conveniently.

The subgradient method for solving LD� consists of the following iterative process: Choose

initial Lagrange multipliers �(0) � 0; �(0) � 0, and then successively update (�(l); �(l)) by

�(l+1) = maxf0; �(l) + �(l)g
(l)
� g;

�(l+1) = maxf0; �(l) + �(l)g(l)� g;
(18)

where �(l) > 0 is a stepsize and (g
(l)
� ; g(l)� ) is a subgradient of G� at (�(l); �(l)). Using an

optimal solution (�x(l); �y(l)) of RP� [�(l); �(l)], where �x(l) is an optimal solution of the linear

programming problem (15) with (�; �) = (�(l); �(l)) and y(l) is determined by (17), we may

compute each element of the subgradient (g
(l)
� ; g(l)� ) as

h
g
(l)
�

i
ij
=

8>>>>>>>>><
>>>>>>>>>:

X
�2Ai

�x(l)�j +
X
�2Bj

�x(l)�i � bij ; if i 2 H+
� and j 2 H+

� ;

X
�2Ai

�x(l)�j � bij ; if i 62 H+
� and j 2 H+

� ;

X
�2Bj

�x
(l)
�i � bij ; if i 2 H+

� and j 62 H+
� ;

h
g(l)�
i
k
=

X
�2�

�x(l)�k � ak�y
(l)
k ; k 2 HF

� :

(19)

Stepsize �(l) is determined according to the rule

�(l) =
�(Ĝ� �G�(�(l); �(l)))

k(g(l)� ; g(l)� )k2
; (20)

where Ĝ� is an estimate of the optimal value of LD�, and � is a parameter satisfying � �

� � 2� � for some � > 0 [20]. If we use the exact optimal value G�
� of LD� instead of Ĝ� , the
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sequence generated by (18) converges to an optimal solution of LD� . However, the optimal

value of LD� is usually unknown. So we iterate (18) with (20) using an appropriate estimate

Ĝ� of the optimal value G
�
� . By using an appropriate adjusting strategy, we may expect that

Ĝ� approaches G
�
� and (�(l); �(l)) converges to an optimal solution of LD�.

As a matter of fact, the convergence rate of subgradient method signi�cantly depends on

the strategy for updating an estimate of the optimal value. For simplicity, we take � = 1 in

the following discussion. Let Ĝ� > G�
� and 0 < � < 1. Then it can be shown that there is a

positive integer S such that

l � S =) Gmax
� � (2G�

� � Ĝ�) � �
h
G�(�

(l+1); �(l+1))� (2G�
� � Ĝ�)

i
; (21)

where Gmax
� is the maximum value of LD� obtained up to the l-th iteration with the initial

point (�(0); �(0)) [16]. Based on this fact, we propose to update the estimated value Ĝ� at

every S iterations. With this strategy, Ĝ� is expected to decrease steadily and converge to

G�
� . A procedure to update the estimated value Ĝ� is described as follows:

[Updating Ĝ� ]

Input: � 2 (0; 1); S 2 f1; 2; � � �g.

Step 0: Let Ĝ� be an arbitrary upper bound of G�
� . Select an initial point (�(0); �(0))．Set

l := 0.

Step 1: Set Gmax
� := �1.

Step 2: If mod(l + 1; S) 6= 0 then go to Step 3. Otherwise, go to Step 4.

Step 3: If G�(�
(l); �(l)) > Gmax

� , then update Gmax
� as Gmax

� := G�(�
(l); �(l)), and let �max :=

�(l) and �max := �(l). Compute �(l+1); �(l+1) according to (18){(20). Set l := l + 1 and

go to Step 2.

Step 4: Update the estimated value Ĝ� as Ĝ� :=
Gmax
� + (1 � �)Ĝ� � �G�(�

(0); �(0))

2 � 2�
. Set

�(l+1) := �max, �(l+1) := �max, l := l + 1 and go to Step 1.

If Gmax
� � Ĝ� becomes smaller than a predetermined tolerance, then we stop the iterations.

In general, it is impossible to obtain the exact values of � and S. However, it is seen that S

gets smaller as � gets larger because of (21). From some preliminary computations, we have

decided to set � = 0:5 and S = 5 in our computational experiments.

Although we may use an arbitrary upper bound of G�
� as an initial estimate of the optimal

value of LD� in Step 0, it is not always easy to obtain it. In the above procedure, we use

an arbitrary upper bound for P� rather than G�
� , because any upper bound for P� is greater
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than or equal to G�
� . We note that the uncapacitated one-stop hub location problem can be

regarded as a shortest path problem if any p hubs are �xed. Therefore, for an uncapacitated

problem, we can easily obtain an upper bound by solving the shortest path problem. For a

hub capacitated problem, we can also �nd a feasible 
ow by solving a shortest path problem,

if we select p hubs so that the total hub capacity is greater than the total demand. Thus, we

can obtain an upper bound of a hub capacitated problem by allocating 
ows appropriately

to each arc. However, it is not necessarily easy to obtain an upper bound for P� in the case

where both hubs and arcs are capacitated. The reason is that an arc capacitated problem

often becomes infeasible even if we select p hubs so as to satisfy the above-mentioned total

capacity condition. In general, any feasible solution of P� is also feasible to P0, though the

converse does not always hold. However, if a feasible solution of P0 is still feasible to P� , its

objective value also provides an upper bound of P� . Therefore we keep a list of any feasible

solutions to P0 obtained during the branch-and-bound computation, and try to �nd a feasible

solution of P� from the list so as to use it as an initial estimated value of LD�. If there are

more than one feasible solutions to P�, then we may choose the one with smallest objective

value. On the other hand, if the list contains no such feasible solution for P� , then we try to

obtain a new upper bound by solving a new shortest path problem that is constructed from

P� by adding p � jH1
� j hubs arbitrarily chosen form HF

� . If the new shortest path problem

is feasible, we use its objective value as an initial estimated value and keep the solution for

the subsequent computation. Otherwise, we let Ĝ� be a tentative estimated value, which is

chosen to be greater than the current incumbent value z� of P0. We note that there is no

guarantee that such a tentative estimated value is an upper bound of G�
� . If Ĝ� < G�

� , then

G�(�
(l); �(l)) will converge to a smaller value than G�

� [16]. Nevertheless, we may fathom

the partial problem P� if we can �nd a (�(l); �(l)) such that G�(�
(l); �(l)) is greater than the

incumbent value z�. After fathoming a partial problem and backtracking to another partial

problem, some feasible solutions of P0 in the list may become invalid in the sense that they

can never be feasible to any partial problem generated in the subsequent computation. By

removing such invalid data, we can reduce the area of searching for feasible solutions of a

partial problem.

3.3 Upper Bound

Upper bounds for the optimal value of problem P0 play an important role in developing a

branch-and-boundmethod. An upper bound can be obtained by �nding any feasible solution

of P0, which is not always easy as described in the previous subsection. However, since we

cannot expect to fathom any partial problem without knowing an upper bound for P0, we

need to obtain it before getting into a lower bound computation. In addition, whether we

12



can obtain a good upper bound in the early stage of iterations has a signi�cant e�ect on the

performance of the branch-and-bound method.

First we note that any partial problem P� as well as P0 reduces to an arc capacitated

network 
ow problem if we select p hubs. In general, it is more likely to be able to �nd a

feasible 
ow of the arc capacitated network 
ow problem by selecting hub candidates with

larger capacities. However, selecting such hubs is generally costly because hubs with large

capacities usually incur a high �xed cost. On the other hand, to obtain a good lower bound,

it seems e�ective to select those hub candidates which are expected to be selected at optimal

solutions. Consequently, we use the following strategy to obtain an upper bound. First we

select p hubs according to an appropriate criterion, then solve the resultant arc capacitated

network 
ow problem. If this problem is feasible, the obtained objective value is an upper

bound. Here we introduce the following criterion as a likelihood of each hub candidate to be

selected as a hub at an optimal solution:

h(k) = 

fk
ak

+
X
�2�

c�k; k 2 H;

where 
 > 0 is a parameter. The �rst term represents the �xed cost per unit capacity

multiplied by a positive parameter 
 and the second term represents the total travel cost

when all passengers use the hub k. Note that we do not consider capacity constraints here.

By introducing this criterion, a hub candidate associated with small h(k) is likely to be

selected as a hub at an optimal solution. We sort h(k) in increasing order and express the

ordered indices of h(k) as �1; �2; � � � ; �jHj. If the arc capacitated network 
ow problem in

which hubs f�1; �2; � � � ; �pg are selected is feasible, we use the objective value as an initial

upper bound. Otherwise, we select p hubs with p largest ak's and solve the resultant network


ow problem. If this problem is also infeasible, we proceed to branch-and-bound iterations

without knowing any upper bound at this stage.

3.4 Branching Strategies

The computational e�ciency of branch-and-bound method signi�cantly depends on a

branching strategy to select a branching variable in each stage to decompose the current

partial problem into new partial problems. Selecting a variable whose value is likely to be

1 at an optimal solution is one of the practical strategies. However, when we proceed to

branch-and-bound iterations without �nding an upper bound for P0, we need to obtain at

least one feasible solution of P0 as fast as possible. In such a case, we therefore employ a

di�erent strategy.

When we do not have any feasible solution of P0, we select the index

~k = arg max
k2HF

�

ak (22)
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as the next branching variable with the hope to obtain a feasible solution. In this case, we

just decompose the current partial problem P� by �xing y~k to 0 and 1, and generate two new

partial problems. We do not compute a lower bound because an upper bound is unknown.

If jH1
� j = p, this partial problem P� becomes an arc capacitated network 
ow problem and

we solve it exactly.

Once we �nd a feasible solution of P0, we select the index

~k = argmax
k 62K

X
�2�

�x�k (23)

as the next branching variable. Note that when we solve a Lagrangian relaxation problem

RR� [�; �] of P� , we obtain as a byproduct an exact solution �yk as shown in (17). If some

k 62 K violate the capacity constraints (11) of P� , selecting yk that corresponds to one of

such hubs k as a branching variable may yield a good feasible solution to P� . By (23), we

actually select yk such that hub k 62 K violates the capacity constraints (11) of P0 most

seriously.

Now we summarize the branch-and-bound method for solving P0, which uses the depth-

�rst search rule. We let A denote the set of active partial problems, i.e., partial problems

that have been generated but not tested yet.

[Branch-and-Bound Method ]

Step 0: (Initialize) Find an optimal solution (x�; y�) of the arc capacitated network 
ow

problem, in which candidates �1; �2; � � � ; �p are selected as hubs. Let the optimal value

of this problem be the incumbent value z�. If this problem is infeasible, then �nd an

optimal solution (x�; y�) of another arc capacitated network 
ow problem, in which

candidates with p largest ak's are selected as hubs. Let the optimal value of this

problem be the incumbent value z�. If this problem is infeasible, set z� = 1. Set

� := 0; HF
� := H;H1

� := ;; H0
� := ; and A := fP0g. Select an integer parameter S，

and real parameters 0 < � < 1; � > 0 and � > 0.

Step 1: (Search) If A = ;, then go to Step 7. Otherwise, select an active partial problem

P�+1 2 A according to the depth-�rst search strategy. Set � := � + 1. If H1
� = p or

H0
� = n� p, then go to Step 2. If a feasible solution of P0 is unknown, then go to Step

5. If H1
� < p, then go to Step 3.

Step 2: (Compute upper bound) Find an optimal solution (x�� ; y
�
�) of P� with the objective

value z�� . If z
�
� < z�, then let z� := z�� ; x

� := x�� ; y
� := y�� and go to Step 5.
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Step 3: (Subgradient method)

(a) Set �(0) := 0, �(0) := 0, and l := 0. Let Ĝ� be upper bound of P� . If an upper

bound is not known, set Ĝ� := �z�.

(b) Set Gmax
� := �1.

(c) Solve RP� [�
(l); �(l)] to obtain an optimal solution (�x; �y), and optimal value G�

� . If

G�
� > Gmax

� , then update Gmax
� := G�

� , �
max := �(l) and �max := �(l). If G�

� > z�,

then go to Step 6.

(d) If mod(l + 1; S) = 0, then go to Step 3(e). Otherwise, compute Lagrange mul-

tipliers �(l+1) and �(l+1) according to (18){(20). Set l := l + 1 and go to Step

3(c).

(e) Update Ĝ� as Ĝ� :=
Gmax
� + (1� �)Ĝ� � �G�(�

(l�S+1); �(l�S+1))

2 � 2�
. If Ĝ� < z�

or j(Ĝ� � Gmax
� )=Ĝ�j < �, then go to Step 5. Otherwise, set �(l+1) := �max,

�(l+1) := �max; l := l + 1 and go to Step 3(b).

Step 5: (Branching) If a feasible solution of P0 is unknown, select the next branching vari-

able ~k according to (22). Otherwise, select the next branching variable ~k according to

(23).

Set A := A[ f(H1
� [ f~kg; H

0
� ; H

F
� nf~kg); (H

1
� ; H

0
� [ f~kg; H

F
� nf~kg)g and go to Step 1.

Step 6: (Backtrack) Set A := AnfP�g and go to Step 1.

Step 7: (Terminate) x� and y� are optimal solution of P0, and z� is the optimal value. If

z� =1, then P0 is infeasible.

4 Numerical Experiments

In this section, we report some computational results. All programs were coded in MAT-

LAB R12.1 (version6.1) with optimization toolbox [6]. They were run on a DELL DI-

MENSION 4400 computer with Pentium4 2.0AGHz processor operated under Windows XP

professional with 512 Mb DDR-SDRAM memory. We used the function linprog included

in the optimization toolbox, which solves a linear programming problem using the interior

point method.

We prepared the demand data based on the well-known U.S. 25 cities data evaluated

in 1970 by CAB (Civil Aeronautics Board). The data set, however, does not contain node

capacities and �xed costs, so we generated them based on the data reported by FAA (Federal

Aviation Administration) [12]. They report the passenger enplanements in the �scal year of
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Table 1: Scaled �xed cost ~fk and capacity ~ak
hub# City (a)FY2000 (b)FY2012 (b)�(a) Fixed Cost Capacity

Enplanements Forecast ~fk ~ak
�103 �103 �103

1 Atlanta 39,375 59,353 19,978 11.69 8.98
2 Baltimore 10,618 16,497 5,879 3.44 2.50
3 Boston 13,816 18,695 4,879 2.86 2.83
4 Chicago 34,153 46,178 12,025 7.04 6.99
5 Cincinnati 9,186 18,749 9,563 5.60 2.84
6 Cleveland 6,746 10,935 4,189 2.45 1.65
7 Dallas-FW 28,066 41,759 13,693 8.01 6.32
8 Denver 18,884 27,541 8,657 5.07 4.17
9 Detroit 17,874 28,287 10,413 6.09 4.28
10 Houston 16,564 26,510 9,944 5.82 4.01
11 Kansas City 5,889 7,978 2,089 1.22 1.21
12 Los Angeles 32,332 47,294 14,962 8.76 7.16
13 Memphis 6,234 8,488 2,254 1.32 1.28
14 Miami 16,716 24,156 7,440 4.35 3.65
15 Minneapolis 17,203 25,914 8,711 5.10 3.92
16 New Orleans 4,900 6,609 1,709 1.00 1.00
17 New York 16,081 22,991 6,910 4.04 3.48
18 Philadelphia 13,023 20,748 7,725 4.52 3.14
19 Phoenix 18,652 31,252 12,600 7.37 4.73
20 Pittsburgh 10,521 14,319 3,798 2.22 2.17
21 St. Louis 1,4553 21,631 7,078 4.14 3.27
22 San Francisco 18,499 25,634 7,135 4.18 3.88
23 Seattle 14,225 20,854 6,629 3.88 3.16
24 Tampa 8,200 11,384 3,184 1.86 1.72
25 WashingtonDC 8,502 15,146 6,644 3.89 2.29

2000 and the passenger forecast in the �scal year of 2012. In Table 1, these data are shown

in the column labeled \(a) FY2000 Enplanements" and the column labeled \(b) FY2012

Forecast", respectively, and the growth forecast of passenger enplanements from 2000 to

2012 is shown in the column labeled \(b)�(a)". Moreover, ~fk denotes a scaled �xed cost

obtained by setting the �xed cost of New Orleans to be 1.0. Similarly, ~ak denotes a scaled

capacity obtained by setting the capacity of New Orleans to be 1.0.

Since the data of node capacities are not available in the published documents, we deter-

mined the node capacity ak for each candidate by

ak =

P
�2�

~d�
p �mink2H ak

~ak; 8k 2 H; (24)

where ~d� is a scaled trip demand between OD pair �, that is ~d� = d�=min�2� d� . In a similar
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way, we determined arc capacities as follows. First we calculate the scaled arc capacities

by assigning node capacities ak equally to all arcs connected to it. In the computational

experiments, we assume that H = N , i.e., all nodes are candidate hubs. So the number of

arcs connected to each hub candidate is 2(n� 1). Consequently, ~bij are calculated as

~bij =
ai + aj
2(n� 1)

; (i; j) 2 A;

from which we determined arc capacities bij as

bij = �~bij ; (i; j) 2 A;

where � � 1 is a parameter. It is clear that a problem with small � has tight arc capacity

constraints. Similarly, we determined fk, the �xed cost of hub candidate k, as

fk = � ~fk; k 2 H;

where � > 0 is a parameter. To see how the arc capacity constraints and �xed costs a�ect

the total optimal cost and hub locations, we solved the problem with di�erent values of �

and �.

The computational results are given in Tables 2 and 3. Table 2 shows the results with

� = 1000, where the ratio of �xed cost to the total cost is slightly less than 5%. Table 3 shows

the results with � = 10000, where the ratio of �xed cost to the total cost is approximately

10%. The column labeled \optimal hubs" and \optimal cost" show the set of optimal hubs

and the optimal total cost, respectively. The column labeled \# problems solved" shows the

number of partial problems P� solved exactly, i.e., the partial problems with jH�j = p. The

column labeled \B&B CPU time" shows the total CPU time required to solve the problem

by the branch-and-bound method. The column labeled \% cost reduced" shows how the

optimal cost reduces as � is increased from � = 1.

A problemwith small � often contains many infeasible partial problems because of its tight

arc capacity constraints. In such a case, it is generally di�cult to obtain a good upper bound

in the early stage of branch-and-bound iterations, and hence it takes much computation

time. In fact, Tables 2 and 3 indicate that the computational time and the number of

partial problems solved increase as � decreases. The optimal cost decreases monotonically

as � increases, because arc capacity constraints become loose as � increases. However, when

� = 1000, the decrease of the optimal cost is less signi�cant. We can observe that the

di�erence of the optimal cost between problems with � = 1 and � = 3 is less than 2%

regardless of the value of p. In particular, when p = 4, the di�erence is much smaller than

that in the cases of p = 2 and p = 3. The reason for this phenomenon may be resorted to

the fact that p is relatively large and the ratio of �xed cost to total cost is relatively small.
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Regardless of the value of �, Kansas City(#11) is always selected as a hub when p = 2,

and St. Louis(#21) and San Francisco(#22) are always selected when p = 3. Another

selected hub changes in the order of New York(#17), Philadelphia(#18), Baltimore(#2) as

� increases. Note that these three cities are located closely to each other. These results

indicate that the optimal hub location does not change substantially when � = 1000.

On the other hand, when � = 10000, hub locations are signi�cantly a�ected by the value

of �. Table 3 shows that the maximum di�erence of the optimal cost between the two cases

� = 1 and � = 4 is nearly 5%. Although the di�erence of 5% seems small, it brings a

considerable amount of cost reduction when we deal with a large network. Figures 2～ 4

display the results for problems with n = 25 and p = 2; 3; 4. The thickness of each arc

represents 
ow congestion on that arc. These �gures show that the optimal hub location

varies with the value of �. In particular, since the ratio of �xed costs to the total cost

is relatively large compared with the case of � = 1000, a candidate with lower �xed cost

is likely to be selected. As � increases, the hub location changes from New York(#17) to

Pittsburgh(#20), from Memphis(#13) to New Orleans(#16) and from New York(#17) to

Boston(#3). These changes occur in such a way that a candidate is replaced by another

candidate with lower �xed cost. However, when p = 4, the selected hub location is drastically

changed from Boston(#3) to San Francisco(#22) in spite of the expensive �xed cost of San

Francisco. Note that, when p � 3, no candidate located in the western area is selected. It

becomes possible to select such a candidate when � = 4, because of capacity relaxation. By

selecting a candidate located in the western area, we can reduce the cost of travel which

originates from and destines for the western area. This travel cost reduction is large enough

to compensate for the increase of �xed cost; thereby it induces the total cost reduction.

Figure 4 shows that, when p � 3, the trips originating from Seattle, San Francisco and Los

Angeles are long and the links emanating from these cities are congested.

From the above observation, we see that the total cost is a�ected by arc capacities,

especially for problems in which the ratio of the �xed cost to the total cost is large, i.e.,

� is large. Taking into account the fact that the arc capacities are likely to be changed

frequently by various surroundings, it is important to select a robust or stable candidate.

To select such hubs, airlines may expect to have a constant revenue. When � = 10000,

Kansas City is always selected regardless of the values of p and �. Its good location in the

central area and the cheap �xed cost may be the main reason why it is selected constantly.

On the other hand, when � = 1000, there is no such stable hub candidate which is chosen

independently of the value of p and �. In this case, almost all candidates except for some

very expensive ones are likely to become hubs, because the ratio of the �xed cost to the total

cost is small. When p = 2, Kansas City(#11) is always selected regardless of the value of �.
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Similarly, when p = 3, St. Louis(#21) is always selected. Moreover, when p = 4, selected

hubs remain the same completely. We may regard such hubs as stable for each p.
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Figure 2: Results for n = 25; p = 2; � = 10000

5 Conclusion

In this paper, we have considered a one-stop capacitated hub location problem in which

both hubs and arcs have capacity constraints. We formulated the problem as a mixed 0{1

integer programming problem and solve the problem using branch-and-bound method with

Lagrangian relaxation bounding strategy. We also made some computational experiments

using actual aviation data based on the well-known CAB data set and the future enplane-

ments forecast reported by FAA. From our computational results, we see that the total cost

is a�ected by arc capacities, especially for problems in which the ratio of the �xed cost to the

total cost is large. We also observe that the maximum di�erence in the optimal cost between

the case of loose capacity constraints and that of tight capacity constraints is nearly 5 %.

These results indicate that it is important to incorporate arc capacities into the model when

we deal with a large network. Taking into account the fact that the arc capacities are likely

to be changed frequently by various surroundings, it is also important to select hubs that

are insensitive to those changes. In our computational experiments, some hub candidates

are always chosen independently of the number of selected hubs and arc capacities. It is an

interesting future research to develop an e�ective method of selecting such a stable hub set

by using sensitivity analysis.
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Table 2: Computational Results for � = 1000

n p � Optimal Optimal #Problems B & B % Cost

hubs cost(�105) solved CPU time reduced

25 2 1 11,17 3.3289 171 102.31 {

2 11,18 3.3044 174 62.59 0.74

3 2,11 3.2746 172 61.28 1.63

25 3 1 17,21,22 2.9741 890 848.16 {

2 17,21,22 2.9541 904 573.50 0.67

3 18,21,22 2.9448 890 574.88 0.98

25 4 1 6,12,13,17 2.8762 3287 4433.56 {

2 6,12,13,17 2.8571 3463 3400.27 0.66

3 6,12,13,17 2.8566 3272 3248.89 0.68

Table 3: Computational Results for � = 10000

n p � Optimal Optimal #Problems B & B % Cost

hubs cost(�105) solved CPU time reduced

25 2 1 11,17 3.8023 174 108.64 {

2 11,20 3.6991 166 59.86 2.72

3 11,20 3.6374 160 57.88 4.34

4 11,20 3.6373 157 57.45 4.34

25 3 1 11,13,17 3.8237 1047 1041.38 {

2 11,16,17 3.7882 867 550.58 0.93

3 11,16,20 3.6916 796 501.55 3.45

4 11,16,20 3.6535 772 489.38 4.45

25 4 1 11,16,17,20 3.8790 2272 3630.61 {

2 3,11,16,20 3.8569 2027 2148.84 0.57

3 3,11,16,20 3.8286 1630 1714.69 1.30

4 11,16,20,22 3.7695 1593 1648.42 2.82
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(b) � = 2, hubs = (11,16,17)
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(c) � = 3, hubs = (11,16,20)

Figure 3: Results for n = 25; p = 3; � = 10000
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(b) � = 2, hubs=(3,11,16,20)
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(c) � = 3, hubs =(3,11,16,20)
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Figure 4: Results for n = 25; p = 4; � = 10000
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