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Abstract. Provability logic GL is one of the normal modal logics, which is obtained from the smallest
normal modal logic K by adding Löb’s axiom. The name “provability logic” derives from Solovay’s
theorem in Solovay [4]. He proved that GL is complete for the formal provability interpretation in Peano
arithmetic PA. By his theorem, we might as well say a formula �A asserts that A∗ is provable in PA,
where A∗ is an arithmetic sentence corresponding to A.

Smoryński [3] considered bimodal provability logics by extending GL with another modal operator
�. An arithmetic interpretation of �A is a provability of another arithmetic theory. After that, bi-
modal provability logics for other arithmetic theories have been considered in several papers, especially
Beklemishev [2] gives a detailed survey of this topic.

Here we treat two bimodal provability logics MOS and PRL1 among the logics in [3] and give cut-free
sequent systems for these two logics.

1. MOS and PRL1

In this section, we introduce bimodal provability logics MOS and PRL1 and their Kripke seman-
tics(cf. [3]). The language of the bimodal provability logics consists of propositional variables, ⊥, ∧, ∨,
⊃, � and �. Formulas are defined as usual. We use upper case Latin letters A,B, C, · · ·, possibly with
suffixes, for formulas.

Definition 1.1. The modal logic MOS is the smallest set of formulas containing
all tautologies,
K: �(A ⊃ B) ⊃ (�A ⊃ �B),
L: �(�A ⊃ A) ⊃ �A,
A1: �A ⊃ ��A,
A2: �A ⊃ �A and
A3: �(A ⊃ B) ⊃ (�A ⊃ �B)

and closed under modus ponens and necessitation.

Definition 1.2. The modal logic PRL1 is the smallest set of formulas containing all tautologies, K,
L, A1, A2 and

A4: �(A ⊃ B) ⊃ (�A ⊃ �B)
and closed under modus ponens and necessitation.

The following lemmas are useful for our investigations.

Lemma 1.3.([3])
(1) MOS ⊆ PRL1

(2) �A ⊃ ��A ∈ MOS
(3) (�A ∧ �B) ⊃ �(A ∧ B) ∈ MOS
(4) �(�A ⊃ A) ⊃ �A ∈ MOS

Lemma 1.4.

(C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A ∈ MOS

implies
(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ MOS.

Proof. By the assumption and necessitation,

�((C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A) ∈ MOS
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Using K,
�(C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ MOS

Using Lemma 1.3(3),

(�C1 ∧ · · · ∧ �Cn ∧ ��C1 ∧ · · · ∧ ��Cn ∧ ��D1 ∧ · · · ∧ ��Dm) ⊃ �A ∈ MOS

Using Lemma 1.3(2) and A1, we obtain the lemma.

Definition 1.5. A Kripke model for MOS is a tuple K = 〈W, <, F, |=〉, where
(1) W is a non-empty finite set,
(2) < is an irreflexive and transitive binary relation on W,
(3) F is a mapping from W to P(P(W)) satisfying

(3.1) X ∈ F (α) implies X ⊆ {γ | α < γ},
(3.2) {γ | α < γ} ∈ F (α) and
(3.3) α < β and X ∈ F (α) imply X ∩ {γ | β < γ} ∈ F (β),

(4) |= is a valuation satisfying, in addition to the usual boolean laws,
(4.1) α |= �A iff for any β ∈ {γ | α < γ}, β |= A and
(4.2) α |= �A iff there exists X ∈ F (α) such that for any β ∈ X , β |= A.

Definition 1.6. A Kripke model for PRL1 is a tuple K = 〈W, <, R, |=〉, where
(1) 〈W, <〉 is as in the above definition,
(2) R is a binary relation on W satisfying

(2.1) αRβ implies α < β and
(2.2) α < βRγ implies αRγ

(3) |= is a valuation satisfying, in addition to the usual boolean laws,
(3.1) α |= �A iff for any β ∈ {γ | α < γ}, β |= A and
(3.2) α |= �A iff for any β ∈ {γ | αRγ}, β |= A.

Let K = 〈W, <, X, |=〉 be a Kripke model for MOS or PRL1. We say that a formula A is valid in K
if α |= A for any α ∈ W.

Lemma 1.7([3]).
(1) A ∈ MOS iff A is valid for any Kripke model for MOS.
(2) A ∈ PRL1 iff A is valid for any Kripke model for PRL1.

2. Sequent systems

In this section, we introduce sequent systems for MOS and PRL1 and prove their soundness. We
use Greek letters Γ, ∆,Σ, · · ·, possibly with suffixes, for finite sets of formulas. The expressions �Γ and
�Γ denote the set {�A | A ∈ Γ} and {�A | A ∈ Γ}, respectively. By a sequent, we mean an expression
Γ → ∆. For brevity’s sake, we write

A1, · · · , Ak, Γ1, · · · , Γl → ∆1, · · · , ∆m, B1, · · · , Bn

instead of
{A1, · · · , Ak} ∪ Γ1 ∪ · · · ∪ Γl → ∆1 ∪ · · · ∪ ∆m ∪ {B1, · · · , Bn}.

The sequent system GMOS is the system obtained from the sequent system LK for the classical
propositional logic by adding the following three inference rules.

�A,Γ, �Γ, �Σ → A

�Γ, �Σ → �A
(�)

�A,B, �B, Γ, �Γ, �Σ → A

�B, �Γ, �Σ → �A
(�1)
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�A,Γ, �Γ, �Σ → A

�Γ, �Σ → �A
(�2)

The sequent system GPRL1 is the system obtained from LK by adding the above inference rule (�)
and the following inference rule.

�A,Γ, �Γ, Σ, �Σ → A

�Γ, �Σ → �A
(�3)

Theorem 2.1.
(1) If a sequent A1, · · · , Am → B1, · · · , Bn is provable in GMOS, then (A1∧· · ·∧Am) ⊃ (B1∨· · ·∨Bn)

is valid for any Kripke model for MOS.
(2) If a sequent A1, · · · , Am → B1, · · · , Bn is provable in GPRL1, then (A1∧· · ·∧Am) ⊃ (B1∨· · ·∨Bn)

is valid for any Kripke model for PRL1.

Proof. (1) By Lemma 1.7, it is sufficient to show that three additional inference rules hold in MOS.
For (�): Suppose that

(�A ∧ C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A ∈ MOS.

Hence
(C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ (�A ⊃ A) ∈ MOS.

Using Lemma 1.4,

(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �(�A ⊃ A) ∈ MOS.

Using L,
(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ MOS.

For (�1): Suppose that

(�A ∧ B ∧ �B ∧ C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A ∈ MOS.

Hence

(�B ∧ C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ (B ⊃ (�A ⊃ A)) ∈ MOS.

Using Lemma 1.4,

(�B ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �(B ⊃ (�A ⊃ A)) ∈ MOS.

Using A3,

(�B ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ (�B ⊃ �(�A ⊃ A)) ∈ MOS.

Hence
(�B ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �(�A ⊃ A) ∈ MOS.

Using Lemma 1.3(4),

(�B ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ MOS.

For (�2): Suppose that

(�A ∧ C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A ∈ MOS.

Hence
(C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ (�A ⊃ A) ∈ MOS.

Using Lemma 1.4,

(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �(�A ⊃ A) ∈ MOS.
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Using A2,
(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �(�A ⊃ A) ∈ MOS.

Using Lemma 1.3(4),

(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ MOS.

(2) By (1) and Lemma 1.3(1), (�) holds in PRL1. So, it is sufficient to show that (�3) holds in PRL1.
Suppose that

(�A ∧ C1 ∧ · · · ∧ Cn ∧ �C1 ∧ · · · ∧ �Cn ∧ D1 ∧ · · · ∧ Dm ∧ �D1 ∧ · · · ∧ �Dm) ⊃ A ∈ PRL1.

Hence
C1 ⊃ (· · · (�Dm ⊃ (�A ⊃ A)) · · ·) ∈ PRL1.

Using necessitation and A2,

�(C1 ⊃ (· · · (�Dm ⊃ (�A ⊃ A)) · · ·)) ∈ PRL1.

Using A4, possibly several times,

�C1 ⊃ (· · · (��Dm ⊃ �(�A ⊃ A)) · · ·) ∈ PRL1.

Using Lemma 1.3(4),
�C1 ⊃ (· · · (��Dm ⊃ �A) · · ·) ∈ PRL1.

Hence,

(�C1 ∧ · · · ∧ �Cn ∧ ��C1 ∧ · · · ∧ ��Cn ∧ �D1 ∧ · · · ∧ �Dm ∧ ��D1 ∧ · · · ∧ ��Dm) ⊃ �A ∈ PRL1.

Using A2,

(�C1 ∧ · · · ∧ �Cn ∧ ��C1 ∧ · · · ∧ ��Cn ∧ �D1 ∧ · · · ∧ �Dm ∧ ��D1 ∧ · · · ∧ ��Dm) ⊃ �A ∈ PRL1.

Using Lemma 1.3(2) and A1,

(�C1 ∧ · · · ∧ �Cn ∧ �D1 ∧ · · · ∧ �Dm) ⊃ �A ∈ PRL1.

3. Cut-elimination for GMOS

Here we prove the following theorem.

Theorem 3.1. If there exists no cut-free proof figure for Γ → ∆ in GMOS, then there exist Kripke
model K = 〈W, <, F, |=〉 for MOS and α ∈ W such that α |= A for A ∈ Γ and α �|= B for B ∈ ∆.

For a proof of the above theorem, we extend the method in Avron [1], which gives a cut-free sequent
system for GL(see also Valentini [5]).

Definition 3.2. A sequent Γ → ∆ is said to be saturated if the following conditions hold:
(1) if A ∧ B ∈ Γ, then A,B ∈ Γ,
(2) if A ∨ B ∈ Γ, then A ∈ Γ or B ∈ Γ,
(3) if A ⊃ B ∈ Γ, then A ∈ ∆ or B ∈ Γ,
(4) if A ∧ B ∈ ∆, then A ∈ ∆ or B ∈ ∆,
(5) if A ∨ B ∈ ∆, then A,B ∈ ∆,
(6) if A ⊃ B ∈ ∆, then A ∈ Γ and B ∈ ∆.
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By Sub(A), we mean the set of subformulas of A. We put Sub(Γ) =
⋃

A∈Γ Sub(A) and Sub(Γ → ∆) =
Sub(Γ) ∪ Sub(∆).

Lemma 3.3(cf. [1]) If Γ → ∆ has no cut-free proof figure in GMOS, then there exists a saturated
sequent Γ′ → ∆′ having no cut-free proof figure in GMOS such that Γ ⊆ Γ′ ⊆ Sub(Γ → ∆) and
∆ ⊆ ∆′ ⊆ Sub(Γ → ∆).

In this section, we call a saturated sequent in the above lemma a saturation of Γ → ∆.

Definition 3.4. Let S0 be a sequent having no cut-free proof figure in GMOS. We define a set
W(S0) as follows:

(1) S0 ∈ W(S0),
(2) if a sequent Γ → ∆,�A belongs to W(S0), then so does a saturation of

�A, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {�D | �D ∈ Γ} → A,

(3) if a sequent Γ → ∆,�A belongs to W(S0), then so does a saturation of

�A, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {�D | �D ∈ Γ} → A,

(4) if a sequent �B, Γ → ∆,�A belongs to W(S0), then so does a saturation of

�A,B, �B, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {�D | �D ∈ Γ} → A.

Lemma 3.5. Let S0 be a sequent having no cut-free proof figure in GMOS and let S be a sequent
in W(S0). Then S has no cut-free proof figure in GMOS and contains only formulas in Sub(S0).

Proof. We use an induction on S as an element in W(S0). If S = S0, then the lemma is clear.
Suppose that S �= S0. Then S ∈ W(S0) is known using (2),(3) or (4) in Definition 3.4. We only show
the case that (2) is used. So, there exists a sequent Γ → ∆,�A ∈ W(S) and S is a saturation of

�A, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {�D | �D ∈ Γ} → A.

By the induction hypothesis, Γ → ∆,�A has no cut-free proof figure in GMOS and contains only
formulas in Sub(S0), hence so does a sequent

{�D | �D ∈ Γ}, {�D | �D ∈ Γ} → �A.

Using the inference rule (�) and Lemma 3.3, we obtain the lemma.

Corollary 3.6. Let S0 be a sequent having no cut-free proof figure in GMOS. Then W(S0) is
finite.

Definition 3.7. Let S0 be a sequent having no cut-free proof figure in GMOS. We define a structure
K(S0) = 〈W(S0), <, F, |=〉 as follows:

(1) Γ1 → ∆1 < Γ2 → ∆2 iff {D | �D ∈ Γ1} ∪ {�D | �D ∈ Γ1} ∪ {�D | �D ∈ Γ1} ⊆ Γ2 and there
exits a formula B ∈ ∆1 ∩ Γ2 such that B = �D or B = �D for some D,

(2) F (Γ → ∆) = {{Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′, D ∈ Γ′} | �D ∈ Γ} ∪ {{Γ′ → ∆′ | Γ → ∆ < Γ′ →
∆′}}.

(3) |= is a valuation satisfying, in addition to the laws in Definition 1.5,

p ∈ Γ iff Γ → ∆ |= p

for any propositional variable p.

Lemma 3.8. Let S0 be a sequent having no cut-free proof figure in GMOS. Then K(S0) is a Kripke
model for MOS.
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Proof. By Corollary 3.6, it is sufficient to show the following five:
(1) < is irreflexive,
(2) < is transitive,
(3) X ∈ F (Γ → ∆) implies X ⊆ {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′},
(4) {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′} ∈ F (Γ → ∆),
(5) Γ1 → ∆1 < Γ2 → ∆2 and X ∈ F (Γ1 → ∆1) imply X ∩ {Γ′ → ∆′ | Γ2 → ∆2 < Γ′ → ∆′} ∈

F (Γ2 → ∆2).
For (1): Suppose that Γ → ∆ < Γ → ∆. Then there exits a formula B ∈ ∆ ∩ Γ. So, there exists a

cut-free proof figure Γ → ∆ in GMOS. This is contradictory to Lemma 3.5.
For (2): Suppose that Γ1 → ∆1 < Γ2 → ∆2 < Γ3 → ∆3. Then for any �D ∈ Γ1, we have �D ∈ Γ2,

and so, D, �D ∈ Γ3. Similarly, for any �D ∈ Γ1, we have �D ∈ Γ2, and so, �D ∈ Γ3. Hence

{D | �D ∈ Γ1} ∪ {�D | �D ∈ Γ1} ∪ {�D | �D ∈ Γ1} ⊆ Γ3.

By Γ1 → ∆1 < Γ2 → ∆2, there exits a formula B ∈ ∆1 ∩ Γ2 such that B = �D or B = �D for some D.
Using Γ2 → ∆2 < Γ3 → ∆3, we have B ∈ ∆1 ∩ Γ3.

For (3): From Definition 3.7(2).
For (4): From Definition 3.7(2).
For (5): Suppose that Γ1 → ∆1 < Γ2 → ∆2 and X ∈ F (Γ1 → ∆1). If X = {Γ′ → ∆′ | Γ1 → ∆1 <

Γ′ → ∆′}, then by (2), X ∩ {Γ′ → ∆′ | Γ2 → ∆2 < Γ′ → ∆′} = {Γ′ → ∆′ | Γ2 → ∆2 < Γ′ → ∆′} ∈
F (Γ2 → ∆2). So, we assume that X = {Γ′ → ∆′ | Γ1 → ∆1 < Γ′ → ∆′, D ∈ Γ′} for some �D ∈ Γ1. By
Γ1 → ∆1 < Γ2 → ∆2, we have �D ∈ Γ2. Using (2), X ∩ {Γ′ → ∆′ | Γ2 → ∆2 < Γ′ → ∆′} = {Γ′ → ∆′ |
Γ2 → ∆2 < Γ′ → ∆′, D ∈ Γ′} ∈ F (Γ2 → ∆2).

Lemma 3.9. Let S0 be a sequent having no cut-free proof figure in GMOS. Then in K(S0),
(1) A ∈ Γ implies Γ → ∆ |= A and
(2) A ∈ ∆ implies Γ → ∆ �|= A.

Proof. We use an induction on A.
If A is a propositional variable or ⊥, then we obtain (1) and (2) by the definition of |= and Lemma

3.5.
Suppose that A is not variable or ⊥ and the lemma holds for any proper subformula of A. We only

show the following two cases.
The case that A = �B: Suppose that �B ∈ Γ. Then for any Γ′ → ∆′ ∈ {Γ′ → ∆′ | Γ → ∆ < Γ′ →

∆′}, we have B ∈ Γ′, and by the induction hypothesis, Γ′ → ∆′ |= B. Hence Γ → ∆ |= �B.
Suppose that �B ∈ ∆. Then a saturation S of a sequent �B, {C | �C ∈ Γ}, {�C | �C ∈ Γ}, {�C |

�C ∈ Γ} → B belongs to W(S0). We note that B belongs to the succeedent of S and Γ → ∆ < S. So,
by the induction hypothesis, S �|= B, and hence, Γ → ∆ �|= �B.

The case that A = �B: Suppose that �B ∈ Γ. Then {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′, B ∈ Γ′} ∈
F (Γ → ∆). By the induction hypothesis, S |= B for any S ∈ {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′, B ∈ Γ′}.
Hence Γ → ∆ |= �B.

Suppose that �B ∈ ∆. We will show that for any X ∈ F (Γ → ∆), there exists S ∈ X such that
S �|= B. If X = {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′}, then a saturation S1 of a sequent �B, {C | �C ∈
Γ}, {�C | �C ∈ Γ}, {�C | �C ∈ Γ} → B belongs to X , and by the induction hypothesis, S1 �|= B. So,
we assume that X = {Γ′ → ∆′ | Γ → ∆ < Γ′ → ∆′, D ∈ Γ′} for some �D ∈ Γ. Then a saturation S2 of a
sequent D, �B, {C | �C ∈ Γ}, {�C | �C ∈ Γ}, {�C | �C ∈ Γ} → B belongs to X , and by the induction
hypothesis, S2 �|= B.

By Lemma 3.8 and Lemma 3.9, we obtain Theorem 3.1.

Corollary 3.10. The following four conditions are equivalent:
(1) A1, · · · , Am → B1, · · · , Bn ∈ GMOS,
(2) (A1 ∧ · · · ∧ Am) ⊃ (B1 ∨ · · · ∨ Bn) is valid for any Kripke model for MOS,
(3) there exists a cut-free proof figure for A1, · · · , Am → B1, · · · , Bn in GMOS,
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(4) (A1 ∧ · · · ∧ Am) ⊃ (B1 ∨ · · · ∨ Bn) ∈ MOS.

Proof. Theorem 2.1 shows that (1) implies (2). By Theorem 3.1, we have that (2) implies (3). It is
clear that (3) implies (1). The equivalence between (2) and (4) is shown in Lemma 1.7.

4. Cut-elimination for GPRL1

Here we prove the following theorem.

Theorem 4.1. If there exists no cut-free proof figure for Γ → ∆ in GPRL1, then there exist Kripke
model K = 〈W, <, R, |=〉 for PRL1 and α ∈ W such that α |= A for A ∈ Γ and α �|= B for B ∈ ∆.

To prove the theorem above, we show some lemmas.

Lemma 4.2(cf. [1]). If Γ → ∆ has no cut-free proof figure in GPRL1, then there exists a saturated
sequent Γ′ → ∆′ having no cut-free proof figure in GPRL1 such that Γ ⊆ Γ′ ⊆ Sub(Γ → ∆) and
∆ ⊆ ∆′ ⊆ Sub(Γ → ∆).

In this section, we call a saturated sequent in the above lemma a saturation of Γ → ∆.

Definition 4.3. Let S0 be a sequent having no cut-free proof figure in GPRL1. We define a set
W∗(S0) as follows:

(1) S0 ∈ W∗(S0),
(2) if a sequent Γ → ∆,�A belongs to W∗(S0), then so does a saturation of

�A, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {�D | �D ∈ Γ} → A,

(3) if a sequent Γ → ∆,�A belongs to W∗(S0), then so does a saturation of

�A, {D | �D ∈ Γ}, {�D | �D ∈ Γ}, {D | �D ∈ Γ}{�D | �D ∈ Γ} → A.

Lemma 4.4. Let S0 be a sequent having no cut-free proof figure in GPRL1 and let S be a sequent
in W∗(S0). Then S has no cut-free proof figure in GPRL1 and contains only formulas in Sub(S0).

Proof. Similarly to Lemma 3.5.

Corollary 4.5. Let S0 be a sequent having no cut-free proof figure in GPRL1. Then W∗(S0) is
finite.

Definition 4.6. Let S0 be a sequent having no cut-free proof figure in GPRL1. We define a structure
K∗(S0) = 〈W∗(S0), <, R, |=〉 as follows:

(1) < is as in Definition 3.5,
(2) Γ1 → ∆1RΓ2 → ∆2 iff {D | �D ∈ Γ1}∪{�D | �D ∈ Γ1}∪{D | �D ∈ Γ1}∪{�D | �D ∈ Γ1} ⊆ Γ2

and there exits a formula B ∈ ∆1 ∩ Γ2 such that B = �D or B = �D for some D.
(3) |= is a valuation satisfying, in addition to the laws in Definition 1.6,

p ∈ Γ iff Γ → ∆ |= p

for any propositional variable p.

Lemma 4.7. Let S0 be a sequent having no cut-free proof figure in GPRL1. Then K∗(S0) is a
Kripke model for PRL1.

Proof. The proof of Lemma 3.6 shows the irreflexivity and transitivity of <. We only show the
condition for R. By the definition, we have that S1RS2 implies S1 < S2. Suppose that Γ1 → ∆1 <
Γ2 → ∆2RΓ3 → ∆3. Then for �D ∈ Γ1, we have �D ∈ Γ2, and so, D ∈ Γ3. On the other hand, by the
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transitivity of <, we have Γ1 → ∆1 < Γ3 → ∆3. Hence we obtain Γ1 → ∆1RΓ3 → ∆3.

Lemma 4.8. Let S0 be a sequent having no cut-free proof figure in GPRL1. Then in K(S0),
(1) A ∈ Γ implies Γ → ∆ |= A and
(2) A ∈ ∆ implies Γ → ∆ �|= A.

Proof. We use an induction on A. We show only the case that A = �B. The other cases can be
shown similarly to Lemma 3.9.

Suppose that �B ∈ Γ. Then for any Γ′ → ∆′ ∈ {Γ′ → ∆′ | Γ → ∆RΓ′ → ∆′}, we have B ∈ Γ′, and
by the induction hypothesis. Γ′ → ∆′ |= B. Hence Γ → ∆ |= �B.

Suppose that �B ∈ ∆. Then a saturation Γ′ → ∆′ of a sequent �B, {C | �C ∈ Γ}, {�C | �C ∈
Γ}, {C | �C ∈ Γ}, {�C | �C ∈ Γ} → B belongs to W(S0). We note that B ∈ ∆′ and Γ → ∆RΓ′ → ∆′.
Using the induction hypothesis, Γ′ → ∆′ �|= B, and hence, Γ → ∆ �|= �B.

By Lemma 4.7 and Lemma 4.8, we obtain Theorem 4.1.

Corollary 4.9. The following four conditions are equivalent:
(1) A1, · · · , Am → B1, · · · , Bn ∈ GPRL1,
(2) (A1 ∧ · · · ∧ Am) ⊃ (B1 ∨ · · · ∨ Bn) is valid for any Kripke model for PRL1,
(3) there exists a cut-free proof figure for A1, · · · , Am → B1, · · · , Bn in GPRL1,
(4) (A1 ∧ · · · ∧ Am) ⊃ (B1 ∨ · · · ∨ Bn) ∈ PRL1.
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