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Abstract

A new type of neighborhood (called (¢,7)-neighborhood) is defined by a certain special
capacity. As special cases, the neighborhood includes e-contamination, total variation and
Rieder’s neighborhoods. A characterization theorem of the neighborhood and a fundamental
theorem of the stochastically smallest distribution of the absolute difference of two i.i.d ran-
dom variables are proved. It is shown that the median has minimax-bias among all location
equivariant estimates with respect to (¢,7y)-neighborhoods. The implosion biases of five scale
estimates including MAD, S and Q over (¢, v)-neighborhoods are derived to be compared. A
lower bound on the maximum asymptotic bias of an estimate of @ over (¢, y)-neighborhoods in
a general parametric family {Fp} is derived. The lower bound, which is an extension of He and
Simpson’s lower bound, depends on a parametric family {(Fy—W )y} of improper distributions
with some measure W < Fj. In the location parametric case, the accuracy of the lower bound
is investigated by using the median and the best W is proposed. Some tables and figures of
the implosion bias and the lower bound are also given in the case that the model distribution
is normal.
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1. Introduction

In robust statistical inference, the degree of departure from an assumed model distribution of
a sample is usually expressed by some suitably chosen neighborhood of the model distribution.
In order to describe the departure, various types of neighborhoods have been used to date.
Among them, the neighborhoods in terms of e-contamination and total variation have been
most frequently employed in the literatures. As a generalization of such e-contamination and
total variation neighborhoods, Rieder (1977) introduced a neighborhood defined by a special
capacity to use it in his works (1978,1981a, 1981b etc) of robust estimation and testing. This
special capacity has all properties of 2-alternating Choquet-capacity except the continuity
property of Huber and Strasen (1973). A comprehensive study of special capacities is given
by Bednarski (1981).

In robust estimation theory there have been proposed various measures of robustness of
an estimate such as influence function, gross error sensitivity, breakdown point and maximum
asymptotic bias and so on. In particular, the maximum asymptotic bias is the most informative
global robustness measure of an estimate, which shows the whole performance of the estimate



between the model distribution and the breakdown point. Huber (1964,1981) established that
in robust estimation of location the median minimizes the maximum bias among all location
equivariant estimates (i.e., the median has minimax bias.) with respect to s-contamination
and Lévy neighborhoods. Chen (1998) showed that the minimax bias property of the median
also holds for the neighborhoods in terms of Kolmogorov distance, Kuiper distance and total
variation distance. In robust estimation of scale the median absolute deviation (MAD) has
been commonly used. However, MAD strongly depends on the symmetry of distributions and
it has low Caussian efficiency. As alternatives to MAD, Rousseeuw and Croux (1993) proposed
two new scale estimates S and () whose efficiencies are higher than that of MAD, obtaining
their implosion and explosion biases over c-contamination neighborhoods. On the other hands,
He and Simpson (1993) gave a lower bound on the maximum asymptotic bias of an estimate
of a general parameter over ¢- contamination neighborhoods and considered the accuracy of
the lower bound in the case of location.

The purpose of this paper is (1) to introduce a certain type of neighborhood (called (¢,)-
neighborhood) which generalizes Rieder’s neighborhood, (2) to prove a characterization theo-
rem of (¢,y)-neighborhoods and a fundamental theorem of the stochastically minimum distribu-
tion of the absolute difference of two independent and identically distributed random variables
over (c¢,y)-neighborhoods, (3) to derive the maximum asymptotic bias of the median and the
implosion bias of five scale estimates including MAD, S and Q) over (¢,y)-neighborhoods, (4) to
obtain a lower bound on the maximum asymptotic bias of an estimate of the general parameter
as well as the location parameter over (c,y)-neighborhoods, and (5) to give some tables and
figures of the implosion bias and the lower bound in the case that the model distribution is
normal.

In Section 2 we define a (c,y)-neighborhood Pp,(c,7) of the model distribution F by a
certain special capacity, which is a superposition ¢g(Fy) of Fy and a concave function g(x) =
min{cz + 7,1}, where ¢ and v are some real numbers such that ¢ > 1—~ and 0 <~ < 1. The
neighborhood Py, (¢,v) reduces to Rieder’s neighborhood in the case of 1 — v < ¢ < 1. We
prove a characterization theorem of Py, (¢, y). This characterization theorem is very interesting
in its own right as well as for its broad application, and it makes the structure of Py, (c,7)
clear. A characterization of Rieder’s neighborhoods immediately follows from this theorem as
a special case. We also verify a useful fundamental theorem that gives us the stochastically
smallest one among all distributions of the absolute difference of two independant random
variables with common F € Pg, (¢, 7).

Let {Fy} be a parametric family of distributions where the parameter 6 is to be estimated.
For an estimate 7" of §, the maximum asymptotic bias of 17" over Pg, (¢, 7) is defined by

Byle,vi Fyp) = sup{|T(G)—0| : G € Pylc,7)},

where T is assumed to be Fisher consistent, T'(Fy) = 6. In Section 3 we consider the case
that # is the location parameter. We derive the maximum asymptotic bias of the median and
show that the median has minimax bias among all location equivariant estimates. This is an
important result which should be added to the well known minimax-bias results of the median
due to the Huber (1964,1981) and Chen (1998). In Section 4 we treat the case that 6 is the
scale parameter, and derive the implosion bias of five robust scale estimates including MAD,
S and Q. In the case of s-contamination neighborhoods, the implosion bias reduces to that in
Rousseeuw and Croux (1993).

In Section 5 we derive a lower bound on the maximum asymptotic bias br(c,v; Fy) in the
general parametric family. To this end, using some suitable real valued function p(e,v) we
define a discrepancy d, (G, F) of G from F based on (¢, 7)- neighborhoods. This discrepancy
d, is a generalization of the Huber discrepancy based on e-contamination neighborhoods. We
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define the neighborhood Pp,(a) of Fy with discrepancy a, and we derive a lower bound on the
maximum asymptotic bias of 1" over P (a) by making use of a parametric family {(Fo— W)y}
of improper distributions, where W is some measure with mass (¢4 —1)/c¢ such as W < Fy.
The obtained lower bound is an extension of He and Simpson’s (1993) lower bound. The
neighborhood Pj. (a) reduces to some Pp,(c,7) under a special ¢, and hence we can obtain
a lower bound on br(c,v; Fy) as a special case of this lower bound. Since the lower bound
depends on W, we need to choose a suitable W such that the lower bound is as tight as
possible.

In Section 6 we are concerned with a lower bound on by(c,~; Fy) in the location parametric
family. We propose W (= W;) which yields the best lower bound among all W such that
(Fy — W) have even and unimodal densities. In Section 7, we consider the case of Fy = @,
the standard normal distribution. We give some tables and figures of the implosion bias of
MAD, S and Q. We also present a table of the lower bound with respect to W; for a location
estimate 7" and by using the median we investigate how the accuracy of the lower bound is.
In last Section 8 we collect the proofs of lemmas and theorems.

2. The neighborhoods and their characterization

Let X be a polish space (i.e., a complete, separable and metrizable space), B the Borel
o-algebra of subsets of X and M the set of all probability measures on B. For some specified
Fy € M we consider the following type of neighborhood of Fjy:

(2.1) Pry(c.7) = {F € M : ¢Fy(B)—(c+7—1) < F(B) < cFy(B) +~."B € B},

where 0 <~y < 1and 11—+ < ¢ < oo. This neighborhood is a generalization of that introduced
by Rieder (1977). In fact, when ¢ < 1, letting ¢ = 1 — ¢ and v = ¢ + , we have Rieder
neighborhood Py (1—2,6+46), where e > 0,6 > 0 and £+ 6 < 1. We also have s-contamination
neighborhood Pp, (1 —¢,¢) for ¢ = 1 — ¢ and v = ¢, and total variation neighborhood P, (1, 6)
for ¢ = 1 and v = 6. We note that Py, (c,7) is increasing in ¢ and .

The neighborhood Py, (¢,v) can be also defined by a special capacity as follows: Let

g(x) =min(cx 4+, 1), 0<a <1,
and let

_ g<F0(B>)* f()T B 7£ (/)7 B € B*,
u(B) = { 0, for B = ¢.

Then, by Lemma 3.1 of Bednarski(1981), v is a special capacity, which satisfies all the condi-
tions of Choquet’s 2-alternating capacity except the condition (4) in Huber and Strassen (1973).
As easily seen, we have

(2.2) Pr(c, v) = {FeM]|F(B)<vB), "BeB}.

The following theorem which gives a characterization of Py (¢, 7) is essential and impor-
tant.

Theorem 2.1 For 0 <y <1 and1l—v <c<oo it holds that
(2.3) Prc, v) = {AF=c(Fo-W)+~7K : WeWg.,,K e M},

where Wr,  is the set of all measures W on B such that W(B) < Fy(B) for VB € B and
WX)=A=(c+y-1)/c.



Proof. First we show that for any F' € Pp(c, ) and for v # 0 F is expressed in the form
of (2.3). Let fp and f be the densities of Fy and F with respect to a o-finite measure p (e.g.,
p=Fy+ F), respectively, and let

A={oeX | f(x) < chol)).

Then, by (2.1) we have

0 < '/A (fo(l’) - f(:‘)) dp = Fy(A) - lF(A)
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Hence, as easily seen, we can take two functions v; and v defined on A and A¢, respectively,
J— i ah / -
such that fo — < <y < fo, 0 < ¢hy < fo and

-1 -1

(2.4) / Ui (@)dp = L, Ve =0, of Fo(A) 2 L
A C C

, : : c+v—1 . , c+y—1

b= fo, /A Ua(a)dp = T = Fy(A),if FyfA) < .

+

By using ¥ and 1, we define a function ¢» on X’ by

(x), x€ A,
o(x), =€ A

Then it is clear that 0 < ¥ < f, and

/ P(x)dp = #
Letting
(25) o) = ~{fle) = cliole) = vla)}. we .

we can see k > (0 and
/kr(:{:)du =1.
From (2.5) it follows that
Fla) = clfola) - v(@) +1k(2), TeX.
This implies
F=cdFy—W)+7K,

where W € Wy, y and K € M are the measures with the densities v and &k with respect to p,
respectively.

Secondly, we consider the case of v = 0. In this case, for any F' € Pg, (¢, 0) we have A = X,
Hence, letting ¢ = fy — ; on X, we obtain

, c—1
[ vty ==,

C
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and
flo) =c(folx) —(x)), x€X.

This implies
F=c(Fy—-W),

where W' € Wy, \ is the measure with the density b with respect to p.
Conversely, let F be any probability measure expressed in the form (2.3). Then it is easy
to see

cFy(B) = (c+7-1) < F(B)<cF(B)+v,  'BeB

This implies F' € Pg, (¢, 7). O

As an important special case of Theorem 2.1, we obtain the following characterization of

Rieder neighborhood.

Corollary 2.1 Fore >0, 6 >0 and ¢+ 6 <1, it holds that
(26) Prp(l—c, c4+06) = {F=(1—-e)(Fy—-W)+(c+ 6K : W e Wpg.,, K e M},

where Wr, \ is the set of all measures W on B such that W(B) < Fy(B) for "B € B and
W(X)=A=06/(1—¢).

Remark 2.1

(i) The role of W in the characterization (2.3) and (2.6) is essentially important. When
W = AFy, wesee ¢(Fo —W)4+~vyK = (1 —7)Fy+ 7K.

(ii) The first inequality in the definition (2.1) of Pg,(c,7) is not necessary, i.e.,

Pu(c,v)={F e M : F(B) < cFy(B)+, VBeB},

Hereafter, we consider the case of X = R, the real line. Let X and Y be independent
and identically distributed random variables with a common F. We are interested in finding
F € Pg(c, 7) such that the distribution of |X — Y| under F is stochastically smallest in
Pr,(c, 7). To this end, we need a fundamental result.

Let f be a nonnegative real valued measurable function such that

0< / fle)de = M < o,
where M is a constant. For some positive constant m(0 < m < M) let a be the positive

number satisfying

and let

. { fla), —a < ua<a,

0, otherwise.
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Furthermore let
Foo= {9eF|0<g<f 0< [ glaydr <m),

G(x) = /m g(t)dt and G(z) = / g(t)dt,

— 00

where F is the set of all measurable functions defined on R. Note that g € F. We obtain the
following result which is used to derive Theorem 2.2 below

Lemma 2.1 Let f be even and unimodal. Then

Q) sup [ {Glz+1)— Ga)}g(x)de = | / Z{G(x 1) — Gl gla)de,  0<Yt < oo,

gEFo J —o¢ -

(ii) sup /OO G(x +t)g(x)dx = /OO G(x +t)g(x)dr, 0 <t < oo,

gEFo J/— —o0

Let Fyy be a probability measure on (R, B) with a density f, which is even and unimodal.

100(c+y-=1) ¢
2¢

Let a be the upper 0 percent point of Fjy and let W be the measure defined by

W(B) = Fy(Bn[-a, a°), YBeB.
Further let

(2.7) F = ¢(Fy—W)+7A,.

where A( denotes the probability measure which puts mass 1 at the origin 0. We note Fe
Pr,(c, 7). The following fundamental result is obtained.

Theorem 2.2 Let X and Y be independent and identically distributed random variables with
a common F € Pg, (¢, 7). Then the distribution of | X —=Y| is stochastically smallest under F,
1.€.,

sup  Peup(|X = Y[ <t)=Pp (X = Y| <t), 0<% <.
Fe/pl-'()(cv ’\/)

Proof. By Theorem 2.1 we have
Pre,v) = {F=c(Fo—-W)+~yK : WeWg K e M}
Hence for YF € Pr, (¢, ) and for 0 < ¥t < o0,

X-Y|<t) = A(Fy=W)x (Fy=W)(X =Y|<1t)
+2cy((Fy = W) x K)(|X = Y| < t)
+2(K x K)(|X =Y| <),

(2.8) Pryp(




where for two measures Hy and Hy the notation (Hy x Hy)(|X — Y| < t) denotes the measure
of the set {(x, y) : |2 — y| < t} under the product measure Hy; X Hy. From Lemma 2.1 and
the fact that the distribution of X' — Y is symmetric about the origin, it follows that

((Fo— W) x (Fy = W)X — Y| <1)
(2.9) = 2(Fy—W)x (Fo—W)0 <X —Y <t)
= 2 [T (R =Wy <X <y+ (R - W)(dy)
= 2 [ (R = W)(y+1) - (Fo = W)(y) H(Fo — W)(dy)
< 2 [ {(B= W)y +1) = (Fo— W) H(E = W)(dy)
= ((Fy—W) x (Fy—W))(

X-Y[<t),

where the notation H(r < X < s) denotes the measure of the interval [r, s] under H. Also, it
follows that

(210) (Fo—W)x K)(|X —Y|<t) = /'OO (Fo—W)(y—t <X <y+t)K(dy)

< (F-W)—t<X<0)
= (Fy—W)x A))(|X =Y < 1),

and that
(2.11) (KxK)(|X-Y|<t) <1=(Agx Ay)(|X =Y| <),
Substituting (2.9), (2.10) and (2.11) into (2.8), we obtain

Prcr(X =] 1) < Py 41X — V] < 1)

This completes the proof of the theorem. O

3. The minimax bias property of the median

Let Fy be a symmetric distribution about the origin and let Fy(x) = Fy(x — 6), where the
location parameter 6 is to be estimated. Let Xi,..., X, be independent random variables
distributed with a common F. We assume that I’ belongs to the neighborhood

(3.1) Prle,v) = {F:Fla)=c(Fy—W)(a—0)+~vK(x),r € RLW € Wg ,, K € M},

where Wy, » and M are given in (2.3). Let T" be an estimating functional (estimate) defined on
M. We assume that T is Fisher consistent. Since we consider only location equivariant esti-
mates, we can assume 6 = 0 without loss of generality. In this case, the maximum asymptotic
bias of T" over Py, (c,7) is defined by

(3.2) Brle. 7) = sup{|T(F)|: F € Pp(c. 7)}.
Let Ty, be the sample median of Xy,.... X, i.e.,

Ty, = medXj;,
J
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which is the middle order statistic when n is odd, and the average of the order statistics with

ranks 2 and 2 + 1 when n is even. The asymptotic version of Ty is the median of F', i.c.
D) 9 My ; )

Ty(F) = F (1) :
2
where F~!(u) = inf{x | F(x) > u},0 < u < 1. Huber (1964,1981) shows that when Fy has an
even and unimodal density, Ty is a minimax-bias functional among all location equivariant
functionals with respect to s-contamination and Lévy neighborhoods. By using the results of
Donoho and Liu (1988) and He and Simpson (1993), Chen (1998) obtained the same result
as Huber’s mentioned above with respect to the Kolmogorov, the Kuiper and total variation
neighborhoods.
The following theorem states that the Huber’s result of the minimax-bias property of T),
also holds with respect to our neighborhood Pg,(c, 7).

Theorem 3.1 Let Iy have an even and unimodal density fo. Then, for 0 < v < é the median
Ty has minimax-bias in the class T of all location equivariant estimates, i.¢.,

inf{Br(c, v): T €T} = Br,(c, 7).

where
2c+2v — 1)

BTM(Cary,) = F(]l( 2

Proof. First we note that the maximum absolute bias of the median over Pg, (¢, ) is attained
when F = ¢(Fy — W) +~vA,,,, where

A ) c+v—1
Wi(z) = min {FO(I% %}7 —00 < x < 00,
c
and A,,, denotes the probability measure with mass 1 at ), (sufficiently large). Hence, letting

xg be the solution of

, - 1 ‘ 1 (2c+ 2y -1
c(Fo —Wp)(zg) = 2 i.e., g = F, ! (T) ,
we have
(3.3) sup{|Tu (F)| + F € Prle, v)} = v

Let Dy and Ds be the regions enclosed by y = fo(x) and the x-axis, and by y = fo(x —2x¢)
and the x-axis, respectively, and let D = Dy — D,. Then the area of D is <=L, By making
use of this fact, we construct two distributions Fy, F_ € Py, (¢, v) which are symmetric about
9 and —xg, respectively, and which are translates of cach other. We define the densities f
and f_ of Fy and F_, respectively, as follows (see Figure 3.1):

{ c {f0(1) — (cf;):l) (fo(l) — f()(:l; — 2:’1’0))] , for o < g,
¢ [fo(i: — 2m) — (ccj;y:ll) (folr — 2wg) — folw )] , for x> wxg,

f(x) = fi(a+2x).

frlx) =




—Io To

Figure 3.1: The deunsity functions f., f_, fo

It is easy to check that F and F_ belong to Pg(c, 7). Since F_(x) = Fy(x + 2x¢), it
follows that for any T' € 7
T(Fy)—T(F ) = 2x.

This implies
max(|T(Fy)|, [T(F-)]) = .

and hence
(3.4) sup{|T'(F)| : F € Prlc, v)} > .

Therefore the theorem follows from (3.3) and (3.4). O

4. The implosion bias of scale estimates

Let Fy be a specified distribution function with an even and unimodal density fy. Let
Xq,..., X, be independent and identically distributed with F'. We assume that I’ belongs to
the neighborhood

T — [

(4.1) Pp, . (c.,v) = {F : F(z)=c(Fy—W) ( ; ) + K (x),
r€R, WeWp,,KeM},

where ¢ is the unknown location parameter and s > 0 is the unknown scale parameter to
be estimated. Among robust estimates of scale proposed to date, we especially consider the
following five estimates:

MAD, = a med{|X; — med X
i J

2
2

S, = as med{med|X; — X
i j

9



Qn = ([3{|X,’ —X7| 1 <7}(’~)’
@

2

L, = a; min{med|X; — Xj
i j

where a;, i = 1,--+,5 are some constants, k = (}) and h = [4] + 1. The MAD,, (the median
absolute deviation about the median) with a; = 1.4826 is well known and used commonly. The
S, and Q,, which were proposed as alternatives to the MAD,, and investigated by Rousseeuw
and Croux (1993), have 50 % breakdown points and higher efficiency than MAD,,. The LMS,,,
which was first used in Rousseeuw (1984), has a 50% breakdown point and the same influence
function as that of the MAD (Rousseeow and Leroy, 1987). Its efficiency equals that of the
MAD (Griibel,1988). The L, which is obtained from the p-subst algorithm of Rousseecuw and
Leroy (1987), is asymptotically equivalent to LMS,,, and also has a 50% breakdown point.

The above five estimates are location invariant and scale equivariant. We derive the im-
plosion bias of these estimates over Pp,(c,v) (the case of F, ; = Fy with = 0 and s = 1).
The implosion bias of a scale estimate T" over Pg,(c,7v) is defined by

(4.2) Br(e, v) = wf{T(F) : F € Pglc, 7)}.

In what follows, we let X and Y be independent random variables.

The asymptotic version of MAD,, is given by

MAD(F) = a; mgd{|X — mFedY|}.

Theorem 4.1 Let Fy have an even and unimodal density fy. Then

| . m Fy' (2 if 0<y <,
4.3 AplC, = 4 2
(4.3) vanl(e 7) { 0, if o> é
The asymptotic version of S, is given by
S(F) = as m;}d gr(X),
where
gr(z) = mﬁ@d |z =Y.
We note that if F,, is the empirical distribution, then S(F,) = S,,.
Theorem 4.2 Let Fy have an even and unimodal density fo. Then
o= (el (2e=2941 ” 1
(4.4) Bi(c. v) = ¢ ™Y (R (=) i 0y <3
where g~ is defined implicitly by
_ _ 1 =2y
(4.5) Folx + g () — Folx — g™ (2)) = 5

10



The asymptotic version of Q, is given by

/71 /5
e () =i (3)

where Hp and Kp denote the distributions of | X — Y| and X —Y under F', respectively. We

note that K is symmetric about the origin.

Theorem 4.3 Let Fy have an even and unimodal density fy. Then

0 Boler ) = { 0. if v>4

and Q(F) satisfies the equation
A7) A~ W QU + 269 (B~ a5 QUE) +7 = 2.
where F is given by (2.7) and (Fy — ﬁf)*z denotes the convolution (Fy — W) * (Fo — ﬁf).
The asymptotic version of LMS,, is given by
LMS(F) =ay inf ‘Fl (t + —) — (t)‘.

tefo, 1

Theorem 4.4 Let Fy have an even and unimodal density fo. Then

2c—2v+1 1

2a4FU_1 <(4Fy—|_) ’ 7f 0 S Y 57
(4.8) Bius(e, 7). = ¢ ‘ 1
0 if 7> 5

The asymptotic version of L,, is
L(F) = asinf gp(x),

where
gr(x) = 1nF(td lx =Y.

Theorem 4.5 Let Fy have an even and unimodal density fy. Then

2¢— 2y +1

—1 e L g /
(4.9) Bi(e, v) = { a5ty ( e ) ]f V=as
0, if v=5

5°

?

DO [—

Remark 4.1 When ¢ = 1—cand 7 = ¢, By(c,7) and By (c,7) in Theorem 4.2 and 4.3 reduce
to those in Theorems 4 and 7 of Rousseeuw and Croux (1993).

11



5. The derivation of lower bounds on the maximum bias

Let X be a polish space and let {Fp} be a parametric family indexed by a real-valued
parameter 6 € © where 0 is to be estimated. Let

, 1
(5.1) Q = {((t, 7)) l=—v<e< o0, 0§7’<§},
and let (¢, ) be a nonnegative continuous real valued function defined on Q with ¢(1, 0) = 0.
We assume that ¢ is nondecreasing in ¢ and 7. For any two probability measures F, G € M
we define a discrepancy d (G, F) as follows:

(5.2) do(G, F) = f{p(c, 7) : (¢, 7) € Qar},
where
(5.3) Qacr = {(c, 1) €Q 1 G(B)<cF(B)+~, "BeB}.
When ¢ = 1 — v, the discrepancy d, reduces to the Huber discrepancy based on e-

contamination neighborhoods. We can see that (1 p is convex and closed, and hence there
exists a point (cp, ) € Qg such that d (G, F) = ¢(cy, 7). By using d, we define a
neighborhood of F with discrepancy a as

(5.4) Pi(a) = {GeM|d,(G,F)<a}.
Note that Pj(a) is nondecreasing in a. As easily seen, we have

(3.9) Pila) = U Prle, 7),

where Pr(c, 7) is given by (2.3). For any Fisher consistent estimate 7', the maximum asymp-
totic bias of T" over PF, (a) is defined as

(5.6) bp(a, Fy) = sup{p(T(G), 0) : G € Py (a)},

where p is a distance defined on ©. By Theorem 2.1, for any (¢, 7) and any W € Wg, »
we consider a parametric family {Fyy } of irglprNoper Eiistributions (FN’07;47(X ) =1- 7)., where
Fow = (Fy — W)y. The variation distance d,(Fyw, F,w) between Fyy and F, y is defined
as

(5.7) du(Foa Fyw) = sup{|Fow(B) = Fyw(B)| : B e B},

Let fow and f, w be the densities of Fy y and F, i with respect to a o-finite measure g. Then
it is clear that

| . | L i D
(5.8)  do(Fpw,Fyw) = 5 / | for — fow|dp = /(fe,w — fow)+dp = /(fo,w — fow)—dp,

~ ) 1_7

where fi = max(0, f) and f_ = max(0, —f). Note that 0 < CZ;,(F&W,F,?W) < =~ Asin

?

Donoho and Liu (1988), we define a variation gauge b,y (depending on W) by
(5.9) lN),vW(a,., Fy) = sup{p(#, n) : nsuchthat CZL(FO,W,Fn,W) < a}l.

We establish the following result which generalizes Theorem 2.1 of He and Simpson (1993).

12



Theorem 5.1 Suppose that {Fy} is dominated by a o-finite measure 1 and let (co, 7o) be a

given point in ). If T'is an estimating functional of 8, then for ecach W € Wr, it holds that
, « 1~ a
(5.10) sup bip(Jn(a), F,) > =bow ((1 —A)—, Fg) . a>0,
0:p(0.0)<buw (1=X) 1z Fp) 2 l+a
where
* * co+ Y — 1
Jla) = @(c(a), 77(a), A= e
y l1+a y a
a = / =
= Gonarze YT

Proof. We fix # € ©. For each 1 € © we set

d;)(ﬁ‘ﬁ,l/‘/'a ﬁﬂ,‘V)

(5.11) £ = R
(1 — )\) — (.II,,b.(f71,9J/pf7 FII,VV)

where d, is given in (5.7). This implies

(1-N¢

5.12 d,(Fow ., Fow
(5.12) (Fow. Fyw) 1+¢

Notethat(]gczvg1—Aand0§§<oo. Let

1 B B 1 ~ ~
e )

Then, by (5.8) and (5.12) we have

/g(],u, = /h dp=1.

Thus ¢ and h are probability density functions. Since
(fow = fow)s = (fow — fow) + (fow — fow)-
it follows that

(5.13) L+ fow +(1=NEg=(1+E) fow + (1= N

Hence, letting

¥ HeY = L+¢ and ~*(€) = 3
(5.14) O =g-yarg M TO=35
we have
(5.15) ) fow +77(Eg = () fyw +77(Eh

K ~F , ~ _
Note that (¢*,7*) € Q and © +(f* L _ % +(:)00 L — A, We can also see that c*(&) and
7*(&) are decreasing and increasing in &, respectively. Let

(5.16) F* = ¢Fyw+7G,
13



where G is the probability measure with the density g. Then it follows from (5.2), (5.15) and
Theorem 2.1 that

d(F7, Fy) < p(c", v") and d (F", F,)) < o(c", v7).

Hence
p(0. ) < p(0, T(F"))+ p(n, T(F))
< sup p(6, T(F))+ sup p(n. T(F))
do(F.Fg)<ep(c* ") de (F,Fy ) <ep(e*7*)
= b(p(c"77), Fo) +07(e(c", "), Fy)
= 0p(Na(&), Fy) + 0p(A (&), Fy),
where
(5.17) N = (&), 7€)
We assume that Jy(€) is increasing in €. Since
P - 1—MNa
do(Fow, Fyw) < ( Ja if and only if ¢ < a,
’ 1+a

it follows that

sup p(G,/ 77)
n:do(Fo )< (11__:‘”)“

__}l
—
-
TN
—
|
_|_|
=~ | >
| s—
=
S
N~
|

< sup p(0, n)
n:6(n)<a

S sup {b#(}/\(&), F9)+b?('])\<€)7 Fr;)}
n:6(n)<a

< 2 sup bi(Ji(a), Fy).
n:é(n)<a

The last inequality follows from the facts that Jy() is increasing in £ and that £(0) = 0.
This completes the proof of the theorem. O

Let us consider the case of ¢+~ =1, that is, the e-contamination case. In this case we see
A=0,W=0,d,=d, and b, = b,, where
(5.18) d.(Fy, F,) = sup{|Fs(B)— F,(B)| : B € B},
by(s;Fy) = sup{p(6,n) : nsuch that d,(Fy, F,) < c}.

By taking ¢(c,7) = 7 and a = =5 we also have Jy(a) = g — I S and b% = by,
where

br(e; Fy) = sup{p(T(G),0) : G € Pp,(1—¢,2)}.

Therefore as a special case of Theorem 5.1 we obtain the following result.

Corollary 5.1 (Theorem 2.1 of He and Simpson, 1993) Suppose {Fp} is dominated by
a o-finite measure. If T 1s a functional mapping distributions to parameter values, then its
contamination bias satisfies

1 €
sup br(e; F,) > =b, (—; Fo> )
0:p(0.1)<bu(/(1=2): Fp) 2 \l-¢

14



(J’U(F(97 Fr/)

1+ d,(Fy, F,)
in (7.1) of He and Simpson (1993), both of the definitions yield the same results.

Remark 5.1 Although the definition of ¢ in (5.11) is different from that of 6 =

We are now interested in deriving a lower bound on the maximum bias By (¢, v; F) of T
over Pp(e,7). To do this we consider two cases of % < ¢ <1 and ¢ > 1 separately. First we
treat the case % < ¢ <1 and restrict £) to its subset ) defined as

1
Q]:{(c,y) ; 1_7/§C§1=0§7’<§}.

In this case, we note that Pr(c,~) reduces to the neighborhood introduced by Rieder (1977)
(Take c =1 — < and v = ¢+ §). Let

(5.19) p1(e,7) = gid(e,y) = max(1 — ¢, k(c+7 - 1)),

where k is a given positive real number. Then we have
JE) = J6) = G (©),77(€)) = max(l = (), h('(€) +77(6) — 1),

where ¢*(£) and v*({) are given in (5.14). We assume ¢*(§) < 1, 1l.e., A < >§+1 Since 1 — (&)
and ¢*(§) +v*(&£) — 1 are increasing and decreasing in &, it follows that .J;(¢) is increasing at

/

¢ if and only if 1 — ¢*(&) > k(" (&) +v7(&) — 1), L.e.,

(k+1)A 1—2A ci+7—1
———, 0<k< , A= —
T 1 (kx2n CSMSTT o

(5.20) 13

Noting

Pila)= | Prley) = PF(l—aM>,

pi(e,y)<a k

we have

b7 (h(an5) = By (1= 5o, () e )

Hence, by Theorem 5.1 we obtain the following important result which gives a lower bound on

Bj(c,,% F) for 1 5 <c<L

Theorem 5.2 Let (¢1,71) be a given point in Qy. If T is an estimating functional of 6, then
for each Wy € W, » it holds that

sup By <1 — Ji(a), (k 2_ 1) Ji(a); Fn) >
) :

1:p(0,7) by wy (1=X) 72, Fo

1~ , a
_bi) ]- - >\ bl )
5 W (( ) 1 +a ) )

where a and k satisfy (5.20) with & replaced by a.

15



Next, in order to obtain a lower bound on By(c,v; F') for ¢ > 1 we treat the case ¢ > 1 and
restrict © to its subset €25 defined as

1
QZI{(C,V) 1 <e< oo, ()§7<—}.

P

Let
(5.21) wa(c,y) = pgz/)\(c,y) =max(c—1,ky — 1),
where k is a given positive real number. Then we have

(5.22) To(€) = J(€) = GNE(€),77(€)) = max(e*(€) — 1,ky7(€) — 1),

We assume ¢*(£) > 1, ie., A > Zfi]. Since ¢*(£) and v*(&) are decreasing and increasing in &,

respectively, it follows that J5(€) is increasing in € if and only if ¢*(§) — 1 < k(&) — 1, i.e.,

1 co+72—1
> E<——, A= —"————
S2aTanor YRSy e

(5.23)

We also see

+ 1
PR = U Prle)=Pr(a+1, S5).

p2(ey)<a k

Hence, from the condition (5.23) with & replaced by a it follows that

o , 1
(5.24) b2 (Jo(a), F,) = By (Jg(a)—l—l, —(Jola) +1); F,,).

Thus, by Theorem 5.1 we obtain a lower bound on Br(¢,v; F) for ¢ > 1.

Theorem 5.3 Let (¢9,72) be a given point in Qs. If T is an estimating functional of 6, then
for each W € Wg, » it holds that

1 1- 1
(5.25) sup Br (Jz(a,) + 1, ;(Jg(a) +1); Fn) > §bv,lh ((1 — /\)1 i ; Fo) ;

n: p(evn)gl;v,VV)\((1_)‘)11“7 Fo) v a

where a and k satisfies the inequality (5.23) with & replaced by a.

6. Lower bounds on the maximum bias in the location parameter
case

6.1 Lower bounds

Let X' be the real line R and let Fy(x) = Fy(x—6), where Fj is a distribution with a density
fo symmetric about the origin. We consider the following neighborhood of Fy given in (3.1).

(6.1) Pplc,y) = {G : Gx)=c(Fo—W)(x—-0)+vK(x),z € X. W € Wg \, K € M}.
We let p(6,n) = |0 —n|. An estimate T is said to be location equivariant if it satisfies
T(Gy) =T(G)+6, "0€0, "G e M,
16



where Gy(x) = G(x — 6). For a location equivariant estimate T, we have

b’}e(’])\(a% F9) = b;(,h\(a}, FO)v VG € (;)a
bow(a, Fy) = bowla, Fy), "0 € 0.

Therefore, in this case, Theorems 5.1, 5.2 and 5.3 are expressed as follows.

Corollary 6.1 Suppose that {Fyp(x) = Fy(x — 0)} is a location parametric family and let
(co, 70) be a given point in Q. If T is an estimating functional of 0, then for each W € Wi, .\,

, ; 1 a
(62) l)}/(L])\((l)1 F()) 2 51?1,,]/[7)‘ ((1 — /\)1 n a, F()) s

where X is given in (5.10).

Corollary 6.2 Suppose that {Fy(x) = Fo(x—0)} is a location parametric family and let (¢y, 1)
be a given point in . If T is an estimating functional of 6, then for each Wy € Wg, x it holds
that

k+1 1- a
(63) BT (1 - ,]l((1,>, ( ) Jl((L);Fo) Z 5]),07147/\ ((1 — A)H—([7F0> s

P

where a and k satisfy (5.20) with & replaced by a.

Corollary 6.3 Suppose that {Fy(x) = Fo(x—0)} is a location parametric family and let (co,72)
be a given point in s, If T is an estimating functional of 0, then for each Wy € Wy, \ it holds
that

1 1- , a
(64) BT (Jg(a) + 1, Z(]z(a) + 1), Fo) Z §bv7W>‘ ((1 — A)l T (1,’ F0> .

where a and k satisfies (5.23) with & replaced by a.

6.2 The choice of W and A

Let us investigate b, yp, in the lower bounds in (6.3) and (6.4). Since by, depends on W),
we need to use W, which makes the lower bounds as large as possible. To this end, we propose
the following Fiy w,, = Fy — Wi:

(6.5) Wix(B) = Fo(BN[=zx, 2\]) = folz)(BN[=2x,2]), BeBRB,
. Fo(x), < —zy
Fow,(x) = § Fol=20)+ (@ +20)folzr),  —an<a <z,
Fo(x) — A, x>z,

where z) is the constant satisfying

1+ A c+vy—1
(6.6) Fo(zn) — axfolzn) = 5 \ = +

Let ) be the set of all ELW& that have even and unimodal densities. The following theorem
shows that W7, is the best in F).



Theorem 6.1 Let (¢o,70) be a given point in Q. Then

(67) b?),VV.)\(ta F(,) = sup meV/\ (t F(J), A S Vt S 1-— )\7

FO,W’)\G}:)\
where

t «
T)’ OStSQF(;(ZA)_(l‘i‘/\)a
N ‘ - ; ;
(6.8) Do, (t. Fo) = Mt
; : ; i )
2F, <2>, 2Fp(zn) — (14N <t <1-=A.

As easily seen from (5.21) and (5.25), we have

a 1
6.9 A< o <ex<l
(6.9) ~ k+14+(k+2)a for o SCS 4
E—1)a—1
A< (k=Da-1 for ¢>1.
ka

Hence the following lemma implies that \(= \*) satistying the equality in (6.9) is the best for
the lower bound with respect to Wy).

Lemma 6.1 For given a it holds that
- a o L
by, <(1 — /\)m; FO) is increasing in .

In order to investigate the accuracy of the lower bounds in (6.3) and (6.4) we consider the
median Ty, By Theorem 3.1 we see

k41 B ]{:—|—2J1
6.10 Br, (1—1J b ) = B\ geq— 0
( ) T ( L ( L ) b 0> 0 (2k(1 — J])) ’

1 2R+ D)+ 1) =k
Br, (Jo+1, ~(h+1):F) = F' :
TM( 2+ 1, J( 2+ )’ 0) 0 ( 2k(,]2+1)

Since J; and J are increasing in a, we have

, = M2a+ 1) A+ (1 =\,
611) J, = Ja)=1-c(a)= — 2 0= :
(6.11) rala) c(a) 1-N2a+1) " T 1-2x—201- N/
@) . (k—2)a—1 Jo+1
,]. = J. ) = ]1’7"’»’ ) — 1 - T a L= T 5T
2 eala) = ky7(a) 1 +2a R T ANy

Therefore from Corollaries 6.2, 6.3, Lemma 6.1, (6.9) and (6.11) we obtain the following
results.

Theorem 6.2 Suppose that {Fy(x) = Fo(x — 0)} is the location parametric family and let
(c1,71) be a given point in ;. Then

k+1 1, (k+1)J, T
Bry (1= Ji, [ —— | i, Fo) 2 Sbow,o (i By |, N =
TM( “( k ) " °>—2 i <A~:(1—Jl) 0) k(11— )
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Theorem 6.3 Suppose that {Fy(x) = Folax — 8)} is the location parametric family and let
(co,7v2) be a given point in Qs. Then

1 1. | (k1) R+l
By (1.2t 1):Fy) > =bou . (=2 F,), A= )T 0
1M( 9+ A( 9+ 1) 0) Z Shew, (k U) EASY

Remark 6.1 As an example of ¢ different from (5.19) and (5.24) we can consider ¢(c,v) =

21 corresponding to the maximum bias of the median T)y,. In this case, we have

2c

Pf(ﬂ) = U ,PF(Cv’V) and brva((l) = BTM(17 a)v 0<a<y.

r==(baje+}

7. The normal distribution model case

In this section we consider the case that the central model distribution Fj is the standard
normal distribution ® and present some tables and figures of the implosion bias of scale esti-
mates and the lower bounds in Theorem 6.2 and 6.3 for the median together with comments.

First we consider the scale estimates discussed in Section 4. In order to make their estimates
consistent at the model ® we take a1 = 2a4 = a5 = 1.4826, ay, = 1.1926 and a3 = 2.22109.
Then we can see Byap(c,v) = Brys(¢,v) = B (¢,7). Therefore we are concerned with MAD,
S and Q. Tables 7.1, 7.2 and 7.3 exhibit Byp(c, ), Bg (¢,7), Bg(c,7) for selected ¢ and 7.
For clarity we denote the maximum and the minimum among the three values for the same
(¢,7) by the boldface and the italics, respectively. Roughly speaking, from these tables we can
observe the following features:

(i) Bq(c,v) > Byaplce,v) > Bg(c,y) for ¢ <0.90.
(ii) Byap(e,v) > Bgle,v) > Bg(c,v) for ¢>1and~y > 0.03.

(iii) Byap(e,v) > Bole,v)=Bg(c,v) for ¢>1and vy < 0.03.

Figure 7.1 shows the graphs of the implosion biase for v = 0, 0.2 and 0.3 when ¢ varies,
and Figure 7.2 for ¢ = 0.9, 1.0, 1.5 and 3.0 when ~ varies. We can observe that the implosion
biase curves are convex in ¢ and nearly linear in 7.

: : . 1- v

Next we consider the lower bounds in Theorem 6.2 and 6.3. Table 7.4 gives 5’%.%’] - (; CID)

’ c

for selected ¢ and v. We denote c =1—J;, v = (A%]) Jifore<lande= Jo+1,v= ]E(Jg-i‘ 1)
E+1)J : 1 /

for ¢ > 1. Note that @ . for ¢ < 1 and — = il for ¢ > 1. Table 7.6 exhibits
k(1—Jy) c ke

Br,, (¢, 7; ®@) for the same ¢ and . We can observe that the larger ~ is, the better the lower
1- ,
bound is, and that §[’v~/Wu* (27 CI>> = Br,,(¢,7;®) holds for ¢ +~ = 1.

or comparison let us consider Wo, = ) ;o= (1— 1.e., £-contamination
F let ler Waoy = AFy, Fow,, 1—MNFye F, , t t
case). In this case, since

(ZU(FH,WM’ F’LM/ZA) = (1 - /\)dv<F97 FU)a



Table 7.1 Implosion bias By, , (¢, 7)
c\ v 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.70 - - 0.543 0.403 0.267
0.80 - - - - - - - 0.725 0.596 0.472 0.352 0.233
0.85 - - - - - - 0.803 0.679 0.560 0.444 0.331 0.219
0.90 - - - - - 0.874 0.754 0.639 0.527 0.418 0.312 0.207
0.95 - - - 0.939 0.892 0.823 | 0.711 | 0.603 | 0.498 | 0.396 0.295 0.196
0.99 - 0.988 | 0.942 | 0.896 | 0.852 | 0.786 | 0.680 | 0.577 | 0.477 | 0.379 | 0.283 0.188

1.00 1.000 | 0.977 | 0.931 | 0.886 | 0.842 | 0.777 | 0.673 | 0.571 | 0.472 | 0.376 0.280 0.186
2.00 | 0.472 | 0.463 | 0.443 | 0.424 | 0.404 | 0.376 | 0.328 | 0.280 | 0.233 | 0.186 | 0.140 | 0.093
5.00 | 0.186 | 0.183 | 0.175 | 0.168 | 0.160 | 0.149 | 0.130 | 0.112 | 0.093 | 0.074 | 0.056 | 0.037
10.00 | 0.093 | 0.091 | 0.087 | 0.084 | 0.080 | 0.074 | 0.065 | 0.056 | 0.046 | 0.037 | 0.028 | 0.019
100.00 | 0.009 | 0.009 | 0.009 | 0.008 | 0.008 | 0.007 | 0.007 | 0.006 | 0.005 | 0.004 | 0.003 | 0.002

Table 7.2 Implosion bias B¢ (¢, 7)

c\ v 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.467 | 0.336 | 0.218
0.80 - - - - - - - 0.656 | 0.520 | 0.400 | 0.291 0.190
0.85 - - - - - - 0.746 | 0.606 | 0.483 | 0.373 | 0.273 | 0.178
0.90 - - - - - 0.833 | 0.689 | 0.563 | 0.452 | 0.350 | 0.257 | 0.168
0.95 - - - 0.918 | 0.856 | 0.770 | 0.641 0.527 | 0.424 0.530 | 0.242 | 0.159
0.99 0.984 0.921 0.861 0.805 | 0.726 | 0.607 | 0.501 0.404 0.515 | 0.232 | 0.153

1.00 | 1.000 0.968 | 0.907 | 0.848 | 0.793 | 0.716 | 0.599 | 0.495 | 0.400 | 0.312 | 0.250 | 0.151
2.00 | 0.400 0.391 0.373 | 0.83556 | 0.338 | 0.512 | 0.270 | 0.250 | 0.190 | 0.151 0.113 | 0.075
5.00 | 0.151 0.148 0.142 | 0.156 | 0.130 | 0.120 | 0.105 | 0.090 | 0.075 | 0.060 | 0.045 | 0.050
10.00 | 0.075 0.073 | 0.070 | 0.067 | 0.064 0.060 | 0.052 | 0.045 | 0.037 | 0.030 | 0.022 | 0.015
100.00 | 0.007 | 0.007 | 0.007 | 0.007 | 0.006 | 0.006 | 0.005 | 0.004 0.004 0.003 | 0.002 | 0.001

Table 7.3 Implosion bias B, (¢, )

c\ v 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.587 | 0.429 | 0.282
0.80 - - - - - - - 0.768 | 0.622 | 0.489 | 0.363 | 0.241
0.85 - - - - - - 0.840 | 0.700 | 0.573 | 0.454 | 0.338 | 0.225
0.90 - - - - - 0.903 | 0.767 | 0.646 | 0.533 | 0.423 | 0.317 | 0.211
0.95 - - - 0.957 | 0.901 | 0.824 | 0.708 0.601 0.498 | 0.397 | 0.298 | 0.199
0.99 0.993 0.938 0.888 0.841 0.773 0.669 0.570 0.474 0.379 | 0.285 | 0.190

1.00 | 1.000 | 0.973 0.921 0.873 0.827 0.762 0.660 0.563 0.468 0.374 | 0.282 | 0.188
2.00 | 0.393 | 0.388 | 0.376 0.364 0.352 0.332 0.297 0.259 0.219 0.178 0.135 0.091
5.00 | 0.150 | 0.148 | 0.144 0.140 0.135 0.128 0.115 0.101 0.086 0.070 0.054 0.036
10.00 | 0.074 0.074 0.072 0.070 0.068 0.064 0.058 0.051 0.043 0.035 0.027 0.018
100.00 | 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.005 0.004 0.004 0.003 0.002

the definition (5.11) of & becomes

dv(F()a FT])

(7.1) 0 (R Fy)

where d, is the total variation distance given in (5.18). That is to say, the use of Wy,
corresponds to that of d,. Since Wo, SNa‘tisﬁes Lemma 6.1, Theorem 6.1 states that W5, is
inferior to Wi,. These facts show that d, based improper distributions Fyy, is useful. Table

1~ / 1 ,
7.5 presents 5bv,W“ (1, ‘I’) = 51)7, % , which depends on only ~.
: p —

P
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Implosion bias curves B, (¢,0.0), B_ (¢,0.2),
B, (¢,0.3)(x = MAD, S, Q)

Figure7.2

Implosion bias curves B (0.9,v), B (1,7v),

B. (1.5.7). B (3.7) (= MAD,S.Q)

Table 7.4 i’v,Wu* (v/e;®)/2, &=N(0,1)

c\ v 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.566 | 0.792 | 1.068
0.80 - - - - - - 0.319 | 0.482 | 0.664 | 0.883 | 1.150
0.85 - - - - - 0.223 | 0.359 | 0.513 | 0.696 | 0.918 | 1.187
0.90 - - - - 0.140 | 0.253 | 0.382 | 0.537 | 0.723 | 0.947 | 1.220
0.95 - - - 0.066 | 0.102 | 0.158 | 0.268 | 0.400 | 0.557 | 0.746 | 0.973 | 1.250
0.99 - 0.013 | 0.042 | 0.074 | 0.108 | 0.166 | 0.278 | 0.412 | 0.571 | 0.762 | 0.992 | 1.271
1.00 | 0.000 | 0.013 | 0.043 | 0.075 | 0.110 | 0.168 | 0.280 | 0.414 | 0.575 | 0.766 | 0.997 | 1.276
2.00 | 0.000 | 0.021 | 0.064 | 0.109 | 0.158 | 0.235 | 0.379 | 0.547 | 0.742 | 0.971 1.242 | 1.566
5.00 | 0.000 | 0.026 | 0.079 | 0.136 | 0.195 | 0.289 | 0.464 | 0.664 | 0.895 | 1.163 | 1.478 | 1.853

10.00 | 0.000 | 0.029 | 0.089 | 0.151 | 0.217 | 0.322 | 0.515 | 0.736 | 0.989 | 1.283 | 1.627 | 2.035

100.00 | 0.000 | 0.037 | 0.113 | 0.193 | 0.276 | 0.408 | 0.652 | 0.927 | 1.243 | 1.607 | 2.030 | 2.528
Table 7.5 by w,,. (v/(1 —7):®)/2, &= N(0,1)
¥ 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bias | 0.000 | 0.013 | 0.039 | 0.066 | 0.094 | 0.140 | 0.223 | 0.319 | 0.431 | 0.566 | 0.736 | 0.967
Table 7.6 By, (c,7;®), &= N(0,1)

c\ v 0.00 0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.70 - - - - - - - - - 0.566 | 0.792 | 1.068
0.80 - - - - - - 0.319 | 0.489 | 0.674 | 0.887 | 1.150
0.85 - - - - - - 0.223 | 0.377 | 0.541 | 0.722 | 0.929 | 1.187
0.90 - - - - - 0.140 | 0.282 | 0.431 | 0.589 | 0.765 | 0.967 | 1.221
095 | - - - | 0.066 | 0.119 | 0.199 | 0.336 | 0.480 | 0.634 | 0.805 | 1.003 | 1.252
0.99 - 0.013 | 0.063 | 0.114 | 0.165 | 0.243 | 0.376 | 0.516 | 0.667 | 0.834 | 1.030 | 1.276
1.00 | 0.000 | 0.025 | 0.075 | 0.126 | 0.176 | 0.253 | 0.385 | 0.524 | 0.674 | 0.842 | 1.036 | 1.282
2.00 | 0.674 | 0.690 | 0.722 | 0.755 | 0.789 | 0.842 | 0.935 | 1.036 | 1.150 | 1.282 | 1.440 | 1.645
5.00 | 1.282 | 1.293 | 1.317 | 1.341 | 1.366 | 1.405 | 1.476 | 1.555 | 1.645 | 1.751 | 1.881 | 2.054

10.00 | 1.645 | 1.655 | 1.675 | 1.695 | 1.717 | 1.751 | 1.812 | 1.881 | 1.960 | 2.054 | 2.170 | 2.326

100.00 | 2.576 | 2.583 | 2.597 | 2.612 | 2.628 | 2.652 | 2.697 | 2.748 | 2.807 | 2.878 | 2.968 3.09




8. Proofs
Proof of Lemma 2.1. The assertion (ii) follows from the assertion (i) and the fact that

00 SN 1 .
/ G(x)g(x)dx < / G’(:I;)f}(;r)d;r:577127 Vg € Fo.

=00

P

We prove the assertion (i). Let g € Fy. First assume [ g(2)dx < m. Then it is clear that
there exists g1 € Fy such that ¢ < ¢y and [ g¢i(x)dxr = m. In this case, it readily follows
that

/ {G(x+1) — G(a)}g(a)de < / {Gi(x+1) — Gy(x)}gi(x)dr, for "t >0,
because of Gi(x +1t) — Gi(x) > 0 for “x € R. Hence, we assume [ g(x)dw = m. Let
hg+(z) = G(z+1t)—G(x).

For simplicity we hereafter omit the subscript £ of hg,. Since
[ nwgtarde = [T G u, o)),
NS 0 7

the inequality

(8.1) G(h:

1 A —1 . \4
g, 00)) < G(hy [u, o)), for 0<%u< oo,

is sufficient for proving the assertion (i). To show (8.1) we consider three cases (1) 0 <t < a,
(2) a <t<2a and (3)t> 2a.

The proofs in (2) and (3) are similar to that in (1). Hence we give only the proof in the
case of (1). Let

L,(t) = /OO hgi(x)dz.

Differentiating L,(t) with respect to ¢, we have
L(t) = m.
Since L,(0) = 0, it follows that
Ly(t) =mt.
Thus the area enclosed by the graph of y = h,(x) and the z-axis does not depend on g. In order

to observe the graph of y = hy(x) in more detail, we differentiate y = hy(x) and y = hy(x)
with respect to x, and obtain

d ; d ‘
L —_— X < x = —h:lx —a—t<x<-—qa
(8.2) amhg(I) < flx+1) axhg(l’), a—t<z<-—aq,
9, o)

%h,g(x) > —f(x)= 8—hq(x) a—t<uz<a.

From (8.2) it follows that the set {a | hy(x) > h,(2)} is an interval, which is given by one of
the forms (—o00.b], [a, b] and [a, c0), where —oo < a < b < co. Figure 1 shows the graphs of

y = hg(x), y = hg(x) and hy(z), where hp(x) = F(x +t) — F(z) and F(z) = /x | f(t)dt.

J =00
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Figure 8.1: The graphs of y = hy(x), y = hy(x), y= h(x)

For 0 < u < oo we define

vy = inf{a | hy(2)

Then it is easy to see

G(hg_l([u, 00))) < G([xg0, w41]) = G(xgy1) — G(g),
G(hg'([u, 00))) = Gllago, wq]) = Glag) = Glag).

We consider the following three cases:

(a) For u > hg(—3), we have

G(hy ([u, ) = G(¢) = 0= G(¢) = G(h, ' ([u, ).
(b) For hy(—a) < u < hy(—1%), we have
[=a, a] O [rgo, xa] D [rg0, wql;

and hence

G(h;'([u, %)) = Gllrge, vq1]) = Gllwgo, wg1])
> G([rg0, vp1]) > G(h ' ([u, o0))).

(c) For 0 <u < hy(—a), we have

hg(ag) = hylzg) = u,
and hence R R
Glry +1) — Glag) =G(rg +1) — G(agy),
Since x4 +t > a, it follows that

Glxgp +1t) =m > G(rgy +1).
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Hence we have

G(rg) < G(:I;!}l).
Since 14 < —a, we also have G(x;9) = 0. Therefore
Ghy*(lu. o)) = Glag) = Glag) = Glag)
G(wg) > G(gr) — Glay)
G(h;l([u, o0))).

vV

The results of (a), (b) and (c¢) imply that the proposition holds for 0 <t < a. O

Proof of Theorem 4.1 Let F be given by (2.7), ie.,

F o= c(Fy—W)+7A.

Then, from the symmetry and unimodality of f it follows that for VF € Pg, (¢, ) and for
v
t>0

Pr(|X — mﬁng| <t) < supPp(|X —y| <t)
y

< Pu(|X| <t)=Pu(|]X —medY| <1). (medY = 0)
P P

This implies the distribution Gp of | X — medp Y| under F is stochastically smallest under
F = F. Hence we have

_ N . 1
Byap(c, 7) = MAD(F) = a; G (§> .
Noting
7 if +=0,
Gﬁ'(f) = QCFO(t) —c+ , 1f O <t S Fofl(c—zzj-l),
3 if > Fyl(eat,

we have

1 /1 2 —2v+4+1
1ty ~1
GF (2) = ko ( 4e ) '

It is obvious that G;l(%) = 0 holds for v > % This completes the proof. O

Proof of Theorem 4.2. Suppose that 0 < v < 5. We first show that Bg(c, 7) = S(F),
where F' is given by (2.7). For each x let a, be the positive number such that
1—x

Fo(a+a.) = Folv —a,) = ~—,

and let
(83) F; o= c(Fy—W))+9A,,
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where
W*B) = Fy(BN[r—a., ©+a]), "BeEB,
and A, is the probability measure with mass 1 at x. Then it is clear that
gr:(x) = inf{gr(z) : F € Prlc, 7)}, "z €R.

Since 0 < v < ]Z” we can see

Ppe(lo = Y| < gr(2)) = .

Hence, by gp:(2) < a, we have
N N 1—2v
Fo(x + grz(0)) = Folw = grz () = ——
From the symmetry and unimodality of fy, it follows that gp:(2) and gp(a) are strictly in-

creasing in |x| and symmetric about the origin. Hence, for any F' € Pg, (¢, 7)

(med | X])

S(F) = ay m]gd gr(X) > as mng gry (X)=as IE e x

> ay gp (med | X|) = as gp(med | X|) = S(F).
P P

medF | X|

This implies Bg (¢, 7) = S(F).
Secondly, we show that S(F) = ay g~ (FO_1 (W)) We note that g;(x) is the smallest
positive solution of

{(Fy = W)(a + gp() = (Fy = W)(a = gp(2))}

Bl + () = Sl = gpl))} + 71 = gple) = 0) 2

DN | —

For 0 <t < a, we have
Pelle Yl <) < 3,
and hence gp(x) > 2. We also have
v =gplr) iff x> F! ((_2214_1> /2.
Next, for < g;(x) we can see
Fylw+ gpl0) = e = gple)) = ~50,

2¢

which implies gz(2z) = ¢~ (x). From the symmetry of F it follows that

() ()
4 0 4¢ '
Therefore we obtain

g 2c— 2y +1
S(F) = asgp(med|X|) =asg™ (Fu—l ((47%-)) .
r c

4 [2c—2v+1 L f{c—2v+1
F01< 4¢ ) < Fol( 2¢ )/27

(4.4) and (4.5) provide an implicit determination of Bg (¢, 7).
When ~ > %, it immediately follows from S(F') = 0 that Bg(¢, v) =0. O

X

med
i

Because



Proof of Theorem 4.3. When 0 < v < %, we can easily see Q(F) = ag K;l(%) > 0, and
hence

P p(X =Y <a3'Q(F) = =
This equation is written as
A(Fy = W) x (Fy =W)X =Y < a3'Q(F))

+2ey((Fy = W) X A)(X =Y < a3 " Q(F)) +77(Ag x A)(X =Y < az'Q(F)) =

ool Ot

which reduces to (4.7).
On the other hand, when v > % we see

P p(X =Y <0) <

oo | Ot

<Pp (X —Y <0),

This implies Q(F) =0. O
. 1 .
Proof of Theorem 4.4. When 0 < v < 2 we can see for any F' € Pr,(c, 7)

F“l(t+-;)——F‘lﬁJ’Zlﬁ_1<i)_'p_l(i>L

.

1 (3 2 w> . w(l>_ 1(M)
F ()—Fo ( 1 and F 1 = F, - ’

. . S 2
Ft (3) — gl (1)‘ = 2ay Fj* (Q“H'l) _
4 4 4c

When v > 3, we can easily see LMS(F) = 0 and hence Byys(c,7) = 0. O

inf
€0, 3]

Bius(e.y) = LMS(F) = a4

Since

we have

B;MS(@ 7) = Q4

Proof of Theorem 4.5. Suppose that 0 <y < %D Then, for any x € R,
grz(v) = if{gp(z) : F € Pgle, )},
where F is given by (8.3). Hence
By(c, v) = as inf{infgp(z) | F' € Prlc, )}
= a5 f{inf gr(r) | F € Prle, 7))

= a5 fgp(x) = a5 gr;(0) = a5 med Y]
z 7 I3

3 2c—2v+1
= a,5Fl(—):alFl(7( /+ )
4 4¢

When v > %, we can easily see that B (¢, v) = 0. O



Proof of Lemma 6.1 We first note that z, is strictly increasing in A\. By (6.6) and (6.8)
we have for 0 < (1 — \) e < (za) — (14 X)

. _ 20 (1= Fy(2) +afl)
Do (( )\)1 +a’ 0> C1+4a ( fo(2x) ) '

Then it follows from the unimodality and symmetry of f, that

] __2 ]_—F0<Z)
'FU)_ (I+a)f (;)

; ad - a
8.4 —b, w 1—AN)—— 0.
(8.4) 92, s (( )1 g ) s

Also, by (6.6) and (6.8) we have for 2Fy(z)) — (1 +A) < (1= A, <1 —A,

a 'F) _ gl 1+2a+ A
1+a ") = 70 201 +a) )

Therefore the lemma follows from (8.4) and (8.5). O

(8.5) bt ((1 Y

Proof of Theorem 6.1. Since FO,WM has an even and unimodal density, we have as in (3.2)
of He and Simpson (1993),

(8.6) d(Fyg Foaw,) = 2Fow, (@) —(1=A).

It is easy to see that by, (f, Fy) is the solution || of the equation

— a T T
(8() ZFO,WU\ <|2]|> — (1 — A) = {.

Hence, by solving (8.7) in || we obtain (6.8).
B Let FO.,VU be any element of .7—"0 Then, by the unimodality and symmetry of FO w,, and
Foyw, we have

(8.8) Fow (@) < Fow,(2), 0<a< 0.
Since (8.6) also holds for Fyy,, it follows from (8.7) and (8.8) that
boiv,, (t, Fo) > buw, (t, Fy).

This implies that the theorem holds. O
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