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Abstract

A new type of neighborhood (called (c; 
)-neighborhood) is de�ned by a certain special
capacity. As special cases, the neighborhood includes "-contamination, total variation and
Rieder's neighborhoods. A characterization theorem of the neighborhood and a fundamental
theorem of the stochastically smallest distribution of the absolute di�erence of two i.i.d ran-
dom variables are proved. It is shown that the median has minimax-bias among all location
equivariant estimates with respect to (c; 
)-neighborhoods. The implosion biases of �ve scale
estimates including MAD, S and Q over (c; 
)-neighborhoods are derived to be compared. A
lower bound on the maximum asymptotic bias of an estimate of � over (c; 
)-neighborhoods in
a general parametric family fF�g is derived. The lower bound, which is an extension of He and
Simpson's lower bound, depends on a parametric family f(F0�W )�g of improper distributions
with some measure W � F0. In the location parametric case, the accuracy of the lower bound
is investigated by using the median and the best W is proposed. Some tables and �gures of
the implosion bias and the lower bound are also given in the case that the model distribution
is normal.
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1. Introduction

In robust statistical inference, the degree of departure from an assumed model distribution of
a sample is usually expressed by some suitably chosen neighborhood of the model distribution.
In order to describe the departure, various types of neighborhoods have been used to date.
Among them, the neighborhoods in terms of "-contamination and total variation have been
most frequently employed in the literatures. As a generalization of such "-contamination and
total variation neighborhoods, Rieder (1977) introduced a neighborhood de�ned by a special
capacity to use it in his works (1978,1981a, 1981b etc) of robust estimation and testing. This
special capacity has all properties of 2-alternating Choquet-capacity except the continuity
property of Huber and Strasen (1973). A comprehensive study of special capacities is given
by Bednarski (1981).

In robust estimation theory there have been proposed various measures of robustness of
an estimate such as in
uence function, gross error sensitivity, breakdown point and maximum
asymptotic bias and so on. In particular, the maximum asymptotic bias is the most informative
global robustness measure of an estimate, which shows the whole performance of the estimate
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between the model distribution and the breakdown point. Huber (1964,1981) established that
in robust estimation of location the median minimizes the maximum bias among all location
equivariant estimates (i.e., the median has minimax bias.) with respect to "-contamination
and L�evy neighborhoods. Chen (1998) showed that the minimax bias property of the median
also holds for the neighborhoods in terms of Kolmogorov distance, Kuiper distance and total
variation distance. In robust estimation of scale the median absolute deviation (MAD) has
been commonly used. However, MAD strongly depends on the symmetry of distributions and
it has low Caussian e�ciency. As alternatives to MAD, Rousseeuw and Croux (1993) proposed
two new scale estimates S and Q whose e�ciencies are higher than that of MAD, obtaining
their implosion and explosion biases over "-contamination neighborhoods. On the other hands,
He and Simpson (1993) gave a lower bound on the maximum asymptotic bias of an estimate
of a general parameter over "- contamination neighborhoods and considered the accuracy of
the lower bound in the case of location.

The purpose of this paper is (1) to introduce a certain type of neighborhood (called (c,
)-
neighborhood) which generalizes Rieder's neighborhood, (2) to prove a characterization theo-
rem of (c,
)-neighborhoods and a fundamental theorem of the stochastically minimum distribu-
tion of the absolute di�erence of two independent and identically distributed random variables
over (c,
)-neighborhoods, (3) to derive the maximum asymptotic bias of the median and the
implosion bias of �ve scale estimates including MAD, S and Q over (c,
)-neighborhoods, (4) to
obtain a lower bound on the maximum asymptotic bias of an estimate of the general parameter
as well as the location parameter over (c,
)-neighborhoods, and (5) to give some tables and
�gures of the implosion bias and the lower bound in the case that the model distribution is
normal.

In Section 2 we de�ne a (c,
)-neighborhood PF0(c; 
) of the model distribution F0 by a
certain special capacity, which is a superposition g(F0) of F0 and a concave function g(x) =
minfcx+ 
; 1g, where c and 
 are some real numbers such that c � 1� 
 and 0 � 
 < 1. The
neighborhood PF0(c; 
) reduces to Rieder's neighborhood in the case of 1 � 
 � c � 1. We
prove a characterization theorem of PF0(c; 
). This characterization theorem is very interesting
in its own right as well as for its broad application, and it makes the structure of PF0(c; 
)
clear. A characterization of Rieder's neighborhoods immediately follows from this theorem as
a special case. We also verify a useful fundamental theorem that gives us the stochastically
smallest one among all distributions of the absolute di�erence of two independant random
variables with common F 2 PF0(c; 
).

Let fF�g be a parametric family of distributions where the parameter � is to be estimated.
For an estimate T of �, the maximum asymptotic bias of T over PF�(c; 
) is de�ned by

BT (c; 
;F�) = supfjT (G)� �j : G 2 PF�(c; 
)g;

where T is assumed to be Fisher consistent, T (F�) = �. In Section 3 we consider the case
that � is the location parameter. We derive the maximum asymptotic bias of the median and
show that the median has minimax bias among all location equivariant estimates. This is an
important result which should be added to the well known minimax-bias results of the median
due to the Huber (1964,1981) and Chen (1998). In Section 4 we treat the case that � is the
scale parameter, and derive the implosion bias of �ve robust scale estimates including MAD,
S and Q. In the case of "-contamination neighborhoods, the implosion bias reduces to that in
Rousseeuw and Croux (1993).

In Section 5 we derive a lower bound on the maximum asymptotic bias bT (c; 
;F�) in the
general parametric family. To this end, using some suitable real valued function '(c; 
) we
de�ne a discrepancy d'(G;F ) of G from F based on (c; 
)- neighborhoods. This discrepancy
d' is a generalization of the Huber discrepancy based on "-contamination neighborhoods. We
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de�ne the neighborhood PF�(a) of F� with discrepancy a, and we derive a lower bound on the
maximum asymptotic bias of T over P '

F�
(a) by making use of a parametric family f(F0�W )�g

of improper distributions, where W is some measure with mass (c+ 
 � 1)=c such as W � F0.
The obtained lower bound is an extension of He and Simpson's (1993) lower bound. The
neighborhood P'

F�
(a) reduces to some PF�(c; 
) under a special ', and hence we can obtain

a lower bound on bT (c; 
;F�) as a special case of this lower bound. Since the lower bound
depends on W , we need to choose a suitable W such that the lower bound is as tight as
possible.

In Section 6 we are concerned with a lower bound on bT (c; 
;F0) in the location parametric
family. We propose W (= W1) which yields the best lower bound among all W such that
(F0 �W ) have even and unimodal densities. In Section 7, we consider the case of F0 � �,
the standard normal distribution. We give some tables and �gures of the implosion bias of
MAD, S and Q. We also present a table of the lower bound with respect to W1 for a location
estimate T and by using the median we investigate how the accuracy of the lower bound is.
In last Section 8 we collect the proofs of lemmas and theorems.

2. The neighborhoods and their characterization

Let X be a polish space (i.e., a complete, separable and metrizable space), B the Borel
�-algebra of subsets of X and M the set of all probability measures on B. For some speci�ed
F0 2M we consider the following type of neighborhood of F0:

PF0(c; 
) = fF 2 M : c F0(B)� (c+ 
 � 1) � F (B) � c F0(B) + 
; 8B 2 Bg;(2.1)

where 0 � 
 < 1 and 1�
 � c <1. This neighborhood is a generalization of that introduced
by Rieder (1977). In fact, when c � 1, letting c = 1 � " and 
 = " + �, we have Rieder
neighborhood PF0(1�"; "+�), where " � 0, � � 0 and "+� < 1. We also have "-contamination
neighborhood PF0(1� "; ") for c = 1� " and 
 = ", and total variation neighborhood PF0(1; �)
for c = 1 and 
 = �. We note that PF0(c; 
) is increasing in c and 
.

The neighborhood PF0(c; 
) can be also de�ned by a special capacity as follows: Let

g(x) = min(c x+ 
; 1); 0 � x � 1;

and let

v(B) =

(
g(F0(B)); for B 6= �; B 2 B;

0; for B = �:

Then, by Lemma 3.1 of Bednarski(1981), v is a special capacity, which satis�es all the condi-
tions of Choquet's 2-alternating capacity except the condition (4) in Huber and Strassen (1973).

As easily seen, we have

PF0(c; 
) = fF 2M j F (B) � v(B); 8B 2 Bg:(2.2)

The following theorem which gives a characterization of PF0(c; 
) is essential and impor-
tant.

Theorem 2.1 For 0 � 
 < 1 and 1� 
 � c <1 it holds that

PF0(c; 
) = fF = c (F0 �W ) + 
 K : W 2 WF0;� ;K 2Mg;(2.3)

where WF0;� is the set of all measures W on B such that W (B) � F0(B) for 8B 2 B and
W (X ) = � = (c+ 
 � 1)=c.
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Proof. First we show that for any F 2 PF0(c; 
) and for 
 6= 0 F is expressed in the form
of (2.3). Let f0 and f be the densities of F0 and F with respect to a �-�nite measure � (e.g.,
� = F0 + F ), respectively, and let

A = fx 2 X j f(x) � c f0(x)g:

Then, by (2.1) we have

0 �
Z
A

 
f0(x)�

f(x)

c

!
d� = F0(A)�

1

c
F (A)

� F0(A)�
1

c
(c F0(A)� (c+ 
 � 1))

=
c+ 
 � 1

c
:

Hence, as easily seen, we can take two functions  1 and  2 de�ned on A and Ac, respectively,
such that f0 �

f
c
�  1 � f0, 0 �  2 � f0 and

Z
A
 1(x)d� =

c+ 
 � 1

c
;  2 � 0; if F0(A) �

c+ 
 � 1

c
;(2.4)

 1 � f0;
Z
Ac
 2(x)d� =

c+ 
 � 1

c
� F0(A); if F0(A) <

c+ 
 � 1

c
:

By using  1 and  2, we de�ne a function  on X by

 (x) =

(
 1(x); x 2 A;
 2(x); x 2 Ac:

Then it is clear that 0 �  � f0 and

Z
 (x)d� =

c+ 
 � 1

c
:

Letting

k(x) =
1



ff(x)� c(f0(x)�  (x))g; x 2 X ;(2.5)

we can see k � 0 and Z
k(x)d� = 1:

From (2.5) it follows that

f(x) = c(f0(x)�  (x)) + 
 k(x); x 2 X :

This implies
F = c(F0 �W ) + 
 K;

where W 2 WF0;� and K 2M are the measures with the densities  and k with respect to �,
respectively.

Secondly, we consider the case of 
 = 0. In this case, for any F 2 PF0(c; 0) we have A = X .
Hence, letting  = f0 �

f
c
on X , we obtain

Z
 (x)d� =

c� 1

c
;
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and
f(x) = c (f0(x)�  (x)); x 2 X :

This implies
F = c (F0 �W );

where W 2 WF0;� is the measure with the density  with respect to �.
Conversely, let F be any probability measure expressed in the form (2.3). Then it is easy

to see

c F0(B)� (c+ 
 � 1) � F (B) � c F0(B) + 
; 8B 2 B:

This implies F 2 PF0(c; 
). 2

As an important special case of Theorem 2.1, we obtain the following characterization of
Rieder neighborhood.

Corollary 2.1 For " � 0; � � 0 and "+ � < 1, it holds that

PF0(1� "; "+ �) = fF = (1� ")(F0 �W ) + ("+ �)K : W 2 WF0;�;K 2 Mg;(2.6)

where WF0;� is the set of all measures W on B such that W (B) � F0(B) for 8B 2 B and
W (X ) = � = �=(1� ").

Remark 2.1

(i) The role of W in the characterization (2.3) and (2.6) is essentially important. When
W = �F0, we see c (F0 �W ) + 
K = (1� 
)F0 + 
K.

(ii) The �rst inequality in the de�nition (2.1) of PF0(c; 
) is not necessary, i.e.,

PF0(c; 
) = fF 2 M : F (B) � cF0(B) + 
; 8B 2 Bg:

Hereafter, we consider the case of X = R, the real line. Let X and Y be independent
and identically distributed random variables with a common F . We are interested in �nding
F 2 PF0(c; 
) such that the distribution of jX � Y j under F is stochastically smallest in
PF0(c; 
). To this end, we need a fundamental result.

Let f be a nonnegative real valued measurable function such that

0 <
Z 1

�1
f(x)dx =M <1;

where M is a constant. For some positive constant m(0 < m < M) let a be the positive
number satisfying Z a

�a
f (x)dx = m;

and let

ĝ(x) =

(
f(x); �a � x � a;
0; otherwise:
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Furthermore let

F0 = fg 2 F j 0 � g � f; 0 �
Z 1

�1
g(x)dx � mg;

G(x) =
Z x

�1
g(t)dt and Ĝ(x) =

Z x

�1
ĝ(t)dt;

where F is the set of all measurable functions de�ned on R. Note that ĝ 2 F . We obtain the
following result which is used to derive Theorem 2.2 below

Lemma 2.1 Let f be even and unimodal. Then

(i) sup
g2F0

Z 1

�1
fG(x+ t)�G(x)gg(x)dx =

Z 1

�1
fĜ(x+ t)� Ĝ(x)gĝ(x)dx, 0 � 8t <1,

(ii) sup
g2F0

Z 1

�1
G(x+ t)g(x)dx =

Z 1

�1
Ĝ(x+ t)ĝ(x)dx, 0 � 8t <1.

Let F0 be a probability measure on (R;B) with a density f0 which is even and unimodal.

Let a be the upper 100(c+
�1)
2c

% percent point of F0 and let Ŵ be the measure de�ned by

Ŵ (B) = F0(B \ [�a; a]c); 8B 2 B:

Further let

F̂ = c (F0 � Ŵ ) + 
�0:(2.7)

where �0 denotes the probability measure which puts mass 1 at the origin 0. We note F̂ 2
PF0(c; 
). The following fundamental result is obtained.

Theorem 2.2 Let X and Y be independent and identically distributed random variables with
a common F 2 PF0(c; 
). Then the distribution of jX�Y j is stochastically smallest under F̂ ,
i.e.,

sup
F2PF0 (c; 
)

PF�F (jX � Y j � t) = PF̂�F̂ (jX � Y j � t); 0 � 8t <1:

Proof. By Theorem 2.1 we have

PF0(c; 
) = fF = c (F0 �W ) + 
 K : W 2 WF0;�;K 2Mg:

Hence for 8F 2 PF0(c; 
) and for 0 � 8t <1,

PF�F (jX � Y j � t) = c2((F0 �W )� (F0 �W ))(jX � Y j � t)(2.8)

+2 c 
((F0 �W )�K)(jX � Y j � t)

+
2(K �K)(jX � Y j � t);

6



where for two measures H1 and H2 the notation (H1�H2)(jX � Y j � t) denotes the measure
of the set f(x; y) : jx � yj � tg under the product measure H1 �H2. From Lemma 2.1 and
the fact that the distribution of X � Y is symmetric about the origin, it follows that

((F0 �W )� (F0 �W ))(jX � Y j � t)

= 2((F0 �W )� (F0 �W ))(0 � X � Y � t)(2.9)

= 2
Z 1

�1
(F0 �W )(y � X � y + t)(F0 �W )(dy)

= 2
Z 1

�1
f(F0 �W )(y + t)� (F0 �W )(y)g(F0 �W )(dy)

� 2
Z 1

�1
f(F0 � Ŵ )(y + t)� (F0 � Ŵ )(y)g(F0 � Ŵ )(dy)

= ((F0 � Ŵ )� (F0 � Ŵ ))(jX � Y j � t);

where the notation H(r � X � s) denotes the measure of the interval [r; s] under H. Also, it
follows that

((F0 �W )�K)(jX � Y j � t) =
Z 1

�1
(F0 �W )(y � t � X � y + t)K(dy)(2.10)

� (F0 � Ŵ )(�t � X � t)

= ((F0 � Ŵ )��0)(jX � Y j � t);

and that

(K �K)(jX � Y j � t) � 1 = (�0 ��0)(jX � Y j � t):(2.11)

Substituting (2.9), (2.10) and (2.11) into (2.8), we obtain

PF�F (jX � Y j � t) � PF̂�F̂ (jX � Y j � t):

This completes the proof of the theorem. 2

3. The minimax bias property of the median

Let F0 be a symmetric distribution about the origin and let F�(x) = F0(x� �), where the
location parameter � is to be estimated. Let X1; : : : ; Xn be independent random variables
distributed with a common F . We assume that F belongs to the neighborhood

PF�(c; 
) = fF : F (x) = c (F0 �W )(x� �) + 
 K(x); x 2 R;W 2 WF0;�;K 2Mg;(3.1)

whereWF0;� andM are given in (2.3). Let T be an estimating functional (estimate) de�ned on
M. We assume that T is Fisher consistent. Since we consider only location equivariant esti-
mates, we can assume � = 0 without loss of generality. In this case, the maximum asymptotic
bias of T over PF0(c; 
) is de�ned by

BT (c; 
) = supfjT (F )j : F 2 PF0(c; 
)g:(3.2)

Let TMn
be the sample median of X1; : : : ; Xn, i.e.,

TMn
= med

j
Xj;
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which is the middle order statistic when n is odd, and the average of the order statistics with
ranks n

2
and n

2
+ 1 when n is even. The asymptotic version of TMn

is the median of F , i.e.,

TM(F ) = F�1
�
1

2

�
:

where F�1(u) = inffx j F (x) � ug; 0 � u � 1. Huber (1964,1981) shows that when F0 has an
even and unimodal density, TM is a minimax-bias functional among all location equivariant
functionals with respect to "-contamination and L�evy neighborhoods. By using the results of
Donoho and Liu (1988) and He and Simpson (1993), Chen (1998) obtained the same result
as Huber's mentioned above with respect to the Kolmogorov, the Kuiper and total variation
neighborhoods.

The following theorem states that the Huber's result of the minimax-bias property of TM
also holds with respect to our neighborhood PF0(c; 
).

Theorem 3.1 Let F0 have an even and unimodal density f0. Then, for 0 � 
 < 1
2
the median

TM has minimax-bias in the class T of all location equivariant estimates, i.e.,

inffBT (c; 
) : T 2 T g = BTM (c; 
);

where

BTM (c; 
) = F�1
0

�
2c+ 2
 � 1

2c

�
:

Proof. First we note that the maximum absolute bias of the median over PF0(c; 
) is attained
when F = c (F0 � ŴL) + 
�xM , where

ŴL(x) = min
�
F0(x);

c+ 
 � 1

c

�
; �1 < x <1;

and �xM denotes the probability measure with mass 1 at xM (su�ciently large). Hence, letting
x0 be the solution of

c (F0 � ŴL)(x0) =
1

2
; i:e:; x0 = F�1

0

�
2c+ 2
 � 1

2c

�
;

we have

supfjTM (F )j : F 2 PF0(c; 
)g = x0:(3.3)

Let D1 and D2 be the regions enclosed by y = f0(x) and the x-axis, and by y = f0(x�2x0)
and the x-axis, respectively, and let D = D1 �D2. Then the area of D is c+2
�1

c
. By making

use of this fact, we construct two distributions F+; F� 2 PF0(c; 
) which are symmetric about
x0 and �x0, respectively, and which are translates of each other. We de�ne the densities f+
and f� of F+ and F�, respectively, as follows (see Figure 3.1):

f+(x) =

8<
:

c
h
f0(x)�

�
c+
�1
c+2
�1

�
(f0(x)� f0(x� 2x0))

i
; for x < x0;

c
h
f0(x� 2x0)�

�
c+
�1
c+2
�1

�
(f0(x� 2x0)� f0(x))

i
; for x � x0;

f�(x) = f+(x+ 2x0):
8



Df0
f+
f-

0

�x0 x0

Figure 3.1: The density functions f+; f�, f0

It is easy to check that F+ and F� belong to PF0(c; 
). Since F�(x) = F+(x + 2x0), it
follows that for any T 2 T

T (F+)� T (F�) = 2x0:

This implies
max(jT (F+)j; jT (F�)j) � x0;

and hence

supfjT (F )j : F 2 PF0(c; 
)g � x0:(3.4)

Therefore the theorem follows from (3.3) and (3.4). 2

4. The implosion bias of scale estimates

Let F0 be a speci�ed distribution function with an even and unimodal density f0. Let
X1; : : : ; Xn be independent and identically distributed with F . We assume that F belongs to
the neighborhood

PF�;s(c; 
) =
�
F : F (x) = c (F0 �W )

�
x� �

s

�
+ 
K(x);(4.1)

x 2 R; W 2 WF0;� ;K 2Mg ;

where � is the unknown location parameter and s > 0 is the unknown scale parameter to
be estimated. Among robust estimates of scale proposed to date, we especially consider the
following �ve estimates:

MADn = a1 med
i
fjXi �med

j
Xjjg;

Sn = a2 med
i
fmed

j
jXi �Xjjg;
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Qn = a3 fjXi �Xj j : i < jg(k);

LMSn = a4 min
i
jX(i+h�1) �X(i)j;

Ln = a5 min
i
fmed

j
jXi �Xjjg;

where ai; i = 1; � � � ; 5 are some constants, k = (h
2
) and h = [n

2
] + 1. The MADn (the median

absolute deviation about the median) with a1 = 1:4826 is well known and used commonly. The
Sn and Qn, which were proposed as alternatives to the MADn and investigated by Rousseeuw
and Croux (1993), have 50 % breakdown points and higher e�ciency than MADn. The LMSn,
which was �rst used in Rousseeuw (1984), has a 50% breakdown point and the same in
uence
function as that of the MAD(Rousseeow and Leroy, 1987). Its e�ciency equals that of the
MAD(Gr�ubel,1988). The Ln which is obtained from the p-subst algorithm of Rousseeuw and
Leroy (1987), is asymptotically equivalent to LMSn, and also has a 50% breakdown point.

The above �ve estimates are location invariant and scale equivariant. We derive the im-
plosion bias of these estimates over PF0(c; 
) (the case of F�;s = F0 with � = 0 and s = 1).
The implosion bias of a scale estimate T over PF0(c; 
) is de�ned by

B�
T (c; 
) = inffT (F ) : F 2 PF0(c; 
)g:(4.2)

In what follows, we let X and Y be independent random variables.

The asymptotic version of MADn is given by

MAD(F ) = a1 med
F
fjX �med

F
Y jg:

Theorem 4.1 Let F0 have an even and unimodal density f0. Then

B�
MAD(c; 
) =

(
a1 F

�1
0

�
2c�2
+1

4c

�
; if 0 � 
 < 1

2
;

0; if 
 � 1
2
:

(4.3)

The asymptotic version of Sn is given by

S(F ) = a2 med
F

gF (X);

where
gF (x) = med

F
jx� Y j:

We note that if Fn is the empirical distribution, then S(Fn) = Sn.

Theorem 4.2 Let F0 have an even and unimodal density f0. Then

B�
S (c; 
) =

(
a2 g

�
�
F�1
0

�
2c�2
+1

4c

��
; if 0 � 
 < 1

2
;

0; if 
 � 1
2
;

(4.4)

where g� is de�ned implicitly by

F0(x+ g�(x))� F0(x� g�(x)) =
1� 2


2c
:(4.5)
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The asymptotic version of Qn is given by

Q(F ) = a3H
�1
F

�
1

4

�
= a3K

�1
F

�
5

8

�
;

where HF and KF denote the distributions of jX � Y j and X � Y under F , respectively. We
note that KF is symmetric about the origin.

Theorem 4.3 Let F0 have an even and unimodal density f0. Then

B�
Q(c; 
) =

(
Q(F̂ ); if 0 � 
 < 1

2
;

0; if 
 � 1
2
;

(4.6)

and Q(F̂ ) satis�es the equation

c2(F0 � Ŵ )�2(a�13 Q(F̂ )) + 2c
(F0 � Ŵ )(a�13 Q(F̂ )) + 
2 =
5

8
;(4.7)

where F̂ is given by (2.7) and (F0 � Ŵ )�2 denotes the convolution (F0 � Ŵ ) � (F0 � Ŵ ).

The asymptotic version of LMSn is given by

LMS(F ) = a4 inf
t2[0; 1

2 ]

����F�1
�
t+

1

2

�
� F�1 (t)

���� :

Theorem 4.4 Let F0 have an even and unimodal density f0. Then

B�
LMS(c; 
) =

8>><
>>:

2a4F
�1
0

�
2c� 2
 + 1

4c

�
; if 0 � 
 <

1

2
;

0; if 
 �
1

2
:

(4.8)

The asymptotic version of Ln is

L(F ) = a5 inf
x
gF (x);

where
gF (x) = med

F
jx� Y j:

Theorem 4.5 Let F0 have an even and unimodal density f0. Then

B�
L (c; 
) =

8<
: a5F

�1
0

�
2c� 2
 + 1

4c

�
; if 0 � 
 < 1

2
;

0; if 
 � 1
2
:

(4.9)

Remark 4.1 When c = 1�" and 
 = ", B�
S (c; 
) and B

�
Q(c; 
) in Theorem 4.2 and 4.3 reduce

to those in Theorems 4 and 7 of Rousseeuw and Croux (1993).
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5. The derivation of lower bounds on the maximum bias

Let X be a polish space and let fF�g be a parametric family indexed by a real-valued
parameter � 2 � where � is to be estimated. Let


 =
�
(c; 
) : 1� 
 � c <1; 0 � 
 <

1

2

�
;(5.1)

and let '(c; 
) be a nonnegative continuous real valued function de�ned on 
 with '(1; 0) = 0.
We assume that ' is nondecreasing in c and 
. For any two probability measures F;G 2 M
we de�ne a discrepancy d'(G;F ) as follows:

d'(G;F ) = inff'(c; 
) : (c; 
) 2 
G;Fg;(5.2)

where


G;F = f(c; 
) 2 
 : G(B) � c F (B) + 
; 8B 2 Bg:(5.3)

When c = 1 � 
, the discrepancy d' reduces to the Huber discrepancy based on "-
contamination neighborhoods. We can see that 
G;F is convex and closed, and hence there
exists a point (c0; 
0) 2 
G;F such that d'(G;F ) = '(c0; 
0). By using d' we de�ne a
neighborhood of F with discrepancy a as

P'
F (a) = fG 2M j d'(G;F ) � ag:(5.4)

Note that P'
F (a) is nondecreasing in a. As easily seen, we have

P'
F (a) = [

'(c; 
)�a
PF (c; 
);(5.5)

where PF (c; 
) is given by (2.3). For any Fisher consistent estimate T , the maximum asymp-
totic bias of T over P'

F�
(a) is de�ned as

b'T (a; F�) = supf�(T (G); �) : G 2 P'
F�
(a)g;(5.6)

where � is a distance de�ned on �. By Theorem 2.1, for any (c; 
) and any W 2 WF0;�

we consider a parametric family f ~F�;Wg of improper distributions ( ~F�;W (X ) = 1 � 
), where
~F�;W = (F0 �W )�. The variation distance ~dv( ~F�;W ; ~F�;W ) between ~F�;W and ~F�;W is de�ned
as

~dv( ~F�;W ; ~F�;W ) = supfj ~F�;W (B)� ~F�;W (B)j : B 2 Bg:(5.7)

Let ~f�;W and ~f�;W be the densities of ~F�;W and ~F�;W with respect to a �-�nite measure �. Then
it is clear that

~dv( ~F�;W ; ~F�;W ) =
1

2

Z
j ~f�;W � ~f�;W jd� =

Z
( ~f�;W � ~f�;W )+d� =

Z
( ~f�;W � ~f�;W )�d�;(5.8)

where f+ = max(0; f) and f� = max(0; �f). Note that 0 � ~dv( ~F�;W ; ~F�;W ) � 1� 

c . As in

Donoho and Liu (1988), we de�ne a variation gauge ~bv;W (depending on W ) by

~bv;W (a; F�) = supf�(�; �) : � such that ~dv( ~F�;W ; ~F�;W ) � ag:(5.9)

We establish the following result which generalizes Theorem 2.1 of He and Simpson (1993).
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Theorem 5.1 Suppose that fF�g is dominated by a �-�nite measure � and let (c0; 
0) be a
given point in 
. If T is an estimating functional of �, then for each W 2 WF0;� it holds that

sup
�:�(�;�)�~bv;W ((1��) a

1+a
;F�)

b'T (J�(a); F�) �
1

2
~bv;W

�
(1� �)

a

1 + a
; F�

�
; a � 0;(5.10)

where

J�(a) = '(c�(a); 
�(a)); � =
c0 + 
0 � 1

c0
;

c�(a) =
1 + a

(1� �)(1 + 2a)
; 
�(a) =

a

1 + 2a
:

Proof. We �x � 2 �. For each � 2 � we set

� =
~dv( ~F�;W ; ~F�;W )

(1� �)� ~dv( ~F�;W ; ~F�;W )
;(5.11)

where ~dv is given in (5.7). This implies

~dv( ~F�;W ; ~F�;W ) =
(1� �)�

1 + �
:(5.12)

Note that 0 � ~dv � 1� � and 0 � � <1. Let

g =

 
1 + �

(1� �)�

!�
~f�;W � ~f�;W

�
+

and h =

 
1 + �

(1� �)�

!�
~f�;W � ~f�;W

�
�

Then, by (5.8) and (5.12) we haveZ
g d� =

Z
h d� = 1:

Thus g and h are probability density functions. Since

( ~f�;W � ~f�;W )+ = ( ~f�;W � ~f�;W ) + ( ~f�;W � ~f�;W )�

it follows that

(1 + �) ~f�;W + (1� �)� g = (1 + �) ~f�;W + (1� �)� h:(5.13)

Hence, letting

c�(�) =
1 + �

(1� �)(1 + 2�)
and 
�(�) =

�

1 + 2�
;(5.14)

we have

c�(�) ~f�;W + 
�(�)g = c�(�) ~f�;W + 
�(�)h:(5.15)

Note that (c�; 
�) 2 
 and c� + 
� � 1
c�

= c0 + 
0 � 1
c0 = �. We can also see that c�(�) and


�(�) are decreasing and increasing in �, respectively. Let

F � = c� ~F�;W + 
�G;(5.16)
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where G is the probability measure with the density g. Then it follows from (5.2), (5.15) and
Theorem 2.1 that

d'(F
�; F�) � '(c�; 
�) and d'(F

�; F�) � '(c�; 
�):

Hence

�(�; �) � �(�; T (F �)) + �(�; T (F �))

� sup
d'(F;F�)�'(c�;
�)

�(�; T (F )) + sup
d'(F;F�)�'(c�;
�)

�(�; T (F ))

= b'T ('(c
�; 
�); F�) + b'T ('(c

�; 
�); F�)

= b'T (J�(�); F�) + b'T (J�(�); F�);

where

J�(�) = '(c�(�); 
�(�)):(5.17)

We assume that J�(�) is increasing in �. Since

~dv( ~F�;W ; ~F�;W ) �
(1� �)a

1 + a
if and only if � � a;

it follows that

~bv;W

 
(1� �)a

1 + a
; F�

!
= sup

�: ~dv( ~F�;W ; ~F�;W )�
(1��)a
1+a

�(�; �)

� sup
�:�(�)�a

�(�; �)

� sup
�:�(�)�a

fb'T (J�(�); F�) + b'T (J�(�); F�)g

� 2 sup
�:�(�)�a

b'T (J�(a); F�):

The last inequality follows from the facts that J�(�) is increasing in � and that �(�) = 0.
This completes the proof of the theorem. 2

Let us consider the case of c+ 
 = 1, that is, the "-contamination case. In this case we see
� = 0, W � 0, ~dv = dv and ~bv = bv, where

dv(F�; F�) = supfjF�(B)� F�(B)j : B 2 Bg;(5.18)

bv(";F�) = supf�(�; �) : � such that dv(F�; F�) � "g:

By taking '(c; 
) = 
 and a = "
1� 2" we also have J�(a) = ", a

1 + a = "
1� " and b'T = bT ,

where

bT (";F�) = supf�(T (G); �) : G 2 PF�(1� "; ")g:

Therefore as a special case of Theorem 5.1 we obtain the following result.

Corollary 5.1 (Theorem 2.1 of He and Simpson, 1993) Suppose fF�g is dominated by
a �-�nite measure. If T is a functional mapping distributions to parameter values, then its
contamination bias satis�es

sup
�:�(�;�)�bv("=(1�");F�)

bT (";F�) �
1

2
bv

�
"

1� "
;F�

�
:
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Remark 5.1 Although the de�nition of � in (5.11) is di�erent from that of � =
dv(F�; F�)

1 + dv(F�; F�)
in (7.1) of He and Simpson (1993), both of the de�nitions yield the same results.

We are now interested in deriving a lower bound on the maximum bias BT (c; 
;F ) of T
over PF (c; 
). To do this we consider two cases of 1

2
< c � 1 and c � 1 separately. First we

treat the case 1
2
� c � 1 and restrict 
 to its subset 
1 de�ned as


1 =
�
(c; 
) : 1� 
 � c � 1; 0 � 
 <

1

2

�
:

In this case, we note that PF (c; 
) reduces to the neighborhood introduced by Rieder (1977)
(Take c = 1� " and 
 = "+ �). Let

'1(c; 
) = '
(1)
k;�(c; 
) = max(1� c; k(c+ 
 � 1));(5.19)

where k is a given positive real number. Then we have

J1(�) = J
(1)
k;�(�) = '

(1)
k;�(c

�(�); 
�(�)) = max(1� c�(�); k(c�(�) + 
�(�)� 1));

where c�(�) and 
�(�) are given in (5.14). We assume c�(�) � 1, i.e., � � �
2�+1

. Since 1� c�(�)

and c�(�) + 
�(�)� 1 are increasing and decreasing in �, it follows that J1(�) is increasing at
� if and only if 1� c�(�) � k(c�(�) + 
�(�)� 1), i.e.,

� �
(k + 1)�

1� (k + 2)�
; 0 < k �

1� 2�

�
; � =

c1 + 
1 � 1

c1
:(5.20)

Noting

P'1
F (a) =

[
'1(c;
)�a

PF (c; 
) = PF

 
1� a;

(k + 1)a

k

!
;

we have

b'1T (J1(a); F�) = BT

 
1� J1(a);

 
k + 1

k

!
J1(a);F�

!
:

Hence, by Theorem 5.1 we obtain the following important result which gives a lower bound on
BT (c; 
;F ) for

1
2
< c < 1.

Theorem 5.2 Let (c1; 
1) be a given point in 
1. If T is an estimating functional of �, then
for each W� 2 WF0;� it holds that

sup
�:�(�;�)�~bv;W�

((1��) a
1+a ;F�)

BT

 
1� J1(a);

 
k + 1

k

!
J1(a);F�

!
�

1

2
~bv;W�

�
(1� �)

a

1 + a
; F�

�
;

where a and k satisfy (5.20) with � replaced by a.

15



Next, in order to obtain a lower bound on BT (c; 
;F ) for c � 1 we treat the case c � 1 and
restrict 
 to its subset 
2 de�ned as


2 =
�
(c; 
) : 1 � c <1; 0 � 
 <

1

2

�
:

Let

'2(c; 
) = '
(2)
k;�(c; 
) = max(c� 1; k
 � 1);(5.21)

where k is a given positive real number. Then we have

J2(�) = J
(2)
k;�(�) = '

(2)
k;�(c

�(�); 
�(�)) = max(c�(�)� 1; k
�(�)� 1):(5.22)

We assume c�(�) � 1, i.e., � � �
2�+1

. Since c�(�) and 
�(�) are decreasing and increasing in �,

respectively, it follows that J2(�) is increasing in � if and only if c�(�)� 1 � k
�(�)� 1, i.e.,

� �
1

(1� �)k � 1
; 0 < k �

1

1� �
; � =

c2 + 
2 � 1

c2
:(5.23)

We also see

P'2
F (a) =

[
'2(c;
)�a

PF (c; 
) = PF

�
a+ 1;

a+ 1

k

�
:

Hence, from the condition (5.23) with � replaced by a it follows that

b'2T (J2(a); F�) = BT

�
J2(a) + 1;

1

k
(J2(a) + 1); F�

�
:(5.24)

Thus, by Theorem 5.1 we obtain a lower bound on BT (c; 
;F ) for c � 1.

Theorem 5.3 Let (c2; 
2) be a given point in 
2. If T is an estimating functional of �, then
for each W� 2 WF0;� it holds that

sup
� : �(�;�)�~bv;W�((1��)

a
1+a ; F�)

BT

�
J2(a) + 1;

1

k
(J2(a) + 1); F�

�
�

1

2
~bv;W�

�
(1� �)

a

1 + a
; F�

�
;(5.25)

where a and k satis�es the inequality (5.23) with � replaced by a.

6. Lower bounds on the maximum bias in the location parameter

case

6.1 Lower bounds

Let X be the real line R and let F�(x) = F0(x��), where F0 is a distribution with a density
f0 symmetric about the origin. We consider the following neighborhood of F� given in (3.1).

PF�(c; 
) = fG : G(x) = c (F0 �W )(x� �) + 
 K(x); x 2 X ;W 2 WF0;�;K 2 Mg:(6.1)

We let �(�; �) = j� � �j. An estimate T is said to be location equivariant if it satis�es

T (G�) = T (G) + �; 8� 2 �; 8G 2M;
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where G�(x) = G(x� �). For a location equivariant estimate T , we have

b'T (J�(a); F�) = b'T (J�(a); F0);
8� 2 �;

~bv;W (a; F�) = ~bv;W (a; F0);
8� 2 �:

Therefore, in this case, Theorems 5.1, 5.2 and 5.3 are expressed as follows.

Corollary 6.1 Suppose that fF�(x) = F0(x � �)g is a location parametric family and let
(c0; 
0) be a given point in 
. If T is an estimating functional of �, then for eachW� 2WF0;�,

b'T (J�(a); F0) �
1

2
~bv;W�

�
(1� �)

a

1 + a
; F0

�
;(6.2)

where � is given in (5.10).

Corollary 6.2 Suppose that fF�(x) = F0(x��)g is a location parametric family and let (c1; 
1)
be a given point in 
1. If T is an estimating functional of �, then for each W� 2 WF0;� it holds
that

BT

 
1� J1(a);

 
k + 1

k

!
J1(a);F0

!
�

1

2
~bv;W�

�
(1� �)

a

1 + a
; F0

�
;(6.3)

where a and k satisfy (5.20) with � replaced by a.

Corollary 6.3 Suppose that fF�(x) = F0(x��)g is a location parametric family and let (c2; 
2)
be a given point in 
2. If T is an estimating functional of �, then for each W� 2 WF0;� it holds
that

BT

�
J2(a) + 1;

1

k
(J2(a) + 1); F0

�
�

1

2
~bv;W�

�
(1� �)

a

1 + a
; F0

�
;(6.4)

where a and k satis�es (5.23) with � replaced by a.

6.2 The choice of W and �

Let us investigate ~bv;W�
in the lower bounds in (6.3) and (6.4). Since ~bv;W�

depends on W�,
we need to use W� which makes the lower bounds as large as possible. To this end, we propose
the following ~F0;W1� = F0 �W1�:

W1�(B) = F0(B \ [�z�; z�])� f0(z�)�(B \ [�z�; z�]); B 2 B;(6.5)

~F0;W1�
(x) =

8><
>:

F0(x); x � �z�
F0(�z�) + (x+ z�)f0(z�); �z� < x � z�;

F0(x)� �; x > z�;

where z� is the constant satisfying

F0(z�)� z�f0(z�) =
1 + �

2
; � =

c+ 
 � 1

c
:(6.6)

Let ~F� be the set of all ~F0;W�
that have even and unimodal densities. The following theorem

shows that W1� is the best in ~F�.
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Theorem 6.1 Let (c0; 
0) be a given point in 
. Then

~bv;W1�
(t; F0) = sup

~F0;W�
2 ~F�

~bv;W�
(t; F0); � � 8t � 1� �;(6.7)

where

~bv;W1�(t; F0) =

8>>><
>>>:

t

f0(z�)
; 0 � t � 2F0(z�)� (1 + �);

2F�1
0

 
1 + t+ �

2

!
; 2F0(z�)� (1 + �) � t � 1� �:

(6.8)

As easily seen from (5.21) and (5.25), we have

� �
a

k + 1 + (k + 2)a
for

1

2
< c < 1;(6.9)

� �
(k � 1)a� 1

ka
for c � 1:

Hence the following lemma implies that �(= ��) satisfying the equality in (6.9) is the best for
the lower bound with respect to W1�.

Lemma 6.1 For given a it holds that

~bv;W1�

�
(1� �)

a

1 + a
;F0

�
is increasing in �:

In order to investigate the accuracy of the lower bounds in (6.3) and (6.4) we consider the
median TM . By Theorem 3.1 we see

BTM

 
1� J1;

 
k + 1

k

!
J1;F0

!
= F�1

0

 
k + 2J1

2k(1� J1)

!
;(6.10)

BTM

�
J2 + 1;

1

k
(J2 + 1);F0

�
= F�1

0

 
2(k + 1)(J2 + 1)� k

2k(J2 + 1)

!
:

Since J1 and J2 are increasing in a, we have

J1 = J
(1)
k;�(a) = 1� c�(a) =

a� �(2a+ 1)

(1� �)(2a+ 1)
; a =

�+ (1� �)J1
1� 2�� 2(1� �)J1

:(6.11)

J2 = J
(2)
k;�(a) = k
�(a)� 1 =

(k � 2)a� 1

1 + 2a
; a =

J2 + 1

k � 2(J2 + 1)
;

Therefore from Corollaries 6.2, 6.3, Lemma 6.1, (6.9) and (6.11) we obtain the following
results.

Theorem 6.2 Suppose that fF�(x) = F0(x � �)g is the location parametric family and let
(c1; 
1) be a given point in 
1. Then

BTM

 
1� J1;

 
k + 1

k

!
J1;F0

!
�

1

2
~bv;W1��

 
(k + 1)J1
k(1� J1)

;F0

!
; �� =

J1
k(1� J1)

:
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Theorem 6.3 Suppose that fF�(x) = F0(x � �)g is the location parametric family and let
(c2; 
2) be a given point in 
2. Then

BTM

�
J2 + 1;

1

k
(J2 + 1);F0

�
�

1

2
~bv;W1��

�
1

k
;F0

�
; �� =

(k + 1)J2 + 1

k(J2 + 1)
:

Remark 6.1 As an example of ' di�erent from (5.19) and (5.24) we can consider '(c; 
) =
c+2
�1

2c
corresponding to the maximum bias of the median TM . In this case, we have

P'
F (a) =

[

=�( 1

2
�a)c+ 1

2

PF (c; 
) and b'TM (a) = BTM (1; a); 0 � a <
1

2
:

7. The normal distribution model case

In this section we consider the case that the central model distribution F0 is the standard
normal distribution � and present some tables and �gures of the implosion bias of scale esti-
mates and the lower bounds in Theorem 6.2 and 6.3 for the median together with comments.

First we consider the scale estimates discussed in Section 4. In order to make their estimates
consistent at the model � we take a1 = 2a4 = a5 = 1:4826, a2 = 1:1926 and a3 = 2:2219.
Then we can see B�

MAD(c; 
) = B�
LMS(c; 
) = B�

L (c; 
). Therefore we are concerned with MAD,
S and Q. Tables 7.1, 7.2 and 7.3 exhibit B�

MAD(c; 
); B
�
S (c; 
); B

�
Q(c; 
) for selected c and 
.

For clarity we denote the maximum and the minimum among the three values for the same
(c; 
) by the boldface and the italics, respectively. Roughly speaking, from these tables we can
observe the following features:

(i) B�
Q(c; 
) > B�

MAD(c; 
) > B�
S (c; 
) for c � 0:90.

(ii) B�
MAD(c; 
) > B�

Q(c; 
) > B�
S (c; 
) for c � 1 and 
 � 0:03.

(iii) B�
MAD(c; 
) > B�

Q(c; 
)
:
=
_
B�

S (c; 
) for c � 1 and 
 < 0:03.

Figure 7.1 shows the graphs of the implosion biase for 
 = 0; 0:2 and 0:3 when c varies,
and Figure 7.2 for c = 0:9; 1:0; 1:5 and 3:0 when 
 varies. We can observe that the implosion
biase curves are convex in c and nearly linear in 
.

Next we consider the lower bounds in Theorem 6.2 and 6.3. Table 7.4 gives
1

2
~bv;W1��

�



c
; �
�

for selected c and 
. We denote c = 1�J1, 
 =
�
k+1
k

�
J1 for c < 1 and c = J2+1, 
 = 1

k
(J2+1)

for c � 1. Note that
(k + 1)J1
k(1� J1)

=



c
for c < 1 and

1

k
=




c
for c � 1. Table 7.6 exhibits

BTM(c; 
; �) for the same c and 
. We can observe that the larger 
 is, the better the lower

bound is, and that
1

2
~bv;W1��

�



c
; �
�
= BTM (c; 
; �) holds for c+ 
 = 1.

For comparison let us consider W2� = �F0, ~F0;W2�
= (1� �)F0 2 ~F� (i.e., "-contamination

case). In this case, since

~dv( ~F�;W2�
; ~F�;W2�

) = (1� �)dv(F�; F�);
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Table 7.1 Implosion bias B�
MAD(c; 
)

c n 
 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.543 0.403 0.267
0.80 - - - - - - - 0.725 0.596 0.472 0.352 0.233
0.85 - - - - - - 0.803 0.679 0.560 0.444 0.331 0.219
0.90 - - - - - 0.874 0.754 0.639 0.527 0.418 0.312 0.207
0.95 - - - 0.939 0.892 0.823 0.711 0.603 0.498 0.396 0.295 0.196
0.99 - 0.988 0.942 0.896 0.852 0.786 0.680 0.577 0.477 0.379 0.283 0.188
1.00 1.000 0.977 0.931 0.886 0.842 0.777 0.673 0.571 0.472 0.376 0.280 0.186
2.00 0.472 0.463 0.443 0.424 0.404 0.376 0.328 0.280 0.233 0.186 0.140 0.093

5.00 0.186 0.183 0.175 0.168 0.160 0.149 0.130 0.112 0.093 0.074 0.056 0.037

10.00 0.093 0.091 0.087 0.084 0.080 0.074 0.065 0.056 0.046 0.037 0.028 0.019

100.00 0.009 0.009 0.009 0.008 0.008 0.007 0.007 0.006 0.005 0.004 0.003 0.002

Table 7.2 Implosion bias B�
S (c; 
)

c n 
 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.70 - - - - - - - - - 0.467 0.336 0.218

0.80 - - - - - - - 0.656 0.520 0.400 0.291 0.190

0.85 - - - - - - 0.746 0.606 0.483 0.373 0.273 0.178

0.90 - - - - - 0.833 0.689 0.563 0.452 0.350 0.257 0.168

0.95 - - - 0.918 0.856 0.770 0.641 0.527 0.424 0.330 0.242 0.159

0.99 - 0.984 0.921 0.861 0.805 0.726 0.607 0.501 0.404 0.315 0.232 0.153

1.00 1.000 0.968 0.907 0.848 0.793 0.716 0.599 0.495 0.400 0.312 0.230 0.151

2.00 0.400 0.391 0.373 0.355 0.338 0.312 0.270 0.230 0.190 0.151 0.113 0.075

5.00 0.151 0.148 0.142 0.136 0.130 0.120 0.105 0.090 0.075 0.060 0.045 0.030

10.00 0.075 0.073 0.070 0.067 0.064 0.060 0.052 0.045 0.037 0.030 0.022 0.015

100.00 0.007 0.007 0.007 0.007 0.006 0.006 0.005 0.004 0.004 0.003 0.002 0.001

Table 7.3 Implosion bias B�
Q(c; 
)

c n 
 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.587 0.429 0.282

0.80 - - - - - - - 0.768 0.622 0.489 0.363 0.241

0.85 - - - - - - 0.840 0.700 0.573 0.454 0.338 0.225

0.90 - - - - - 0.903 0.767 0.646 0.533 0.423 0.317 0.211

0.95 - - - 0.957 0.901 0.824 0.708 0.601 0.498 0.397 0.298 0.199

0.99 - 0.993 0.938 0.888 0.841 0.773 0.669 0.570 0.474 0.379 0.285 0.190

1.00 1.000 0.973 0.921 0.873 0.827 0.762 0.660 0.563 0.468 0.374 0.282 0.188

2.00 0.393 0.388 0.376 0.364 0.352 0.332 0.297 0.259 0.219 0.178 0.135 0.091
5.00 0.150 0.148 0.144 0.140 0.135 0.128 0.115 0.101 0.086 0.070 0.054 0.036
10.00 0.074 0.074 0.072 0.070 0.068 0.064 0.058 0.051 0.043 0.035 0.027 0.018

100.00 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.005 0.004 0.004 0.003 0.002

the de�nition (5.11) of � becomes

� =
dv(F�; F�)

1� dv(F�; F�)
;(7.1)

where dv is the total variation distance given in (5.18). That is to say, the use of W2�

corresponds to that of dv. Since W2� satis�es Lemma 6.1, Theorem 6.1 states that W2� is
inferior to W1�. These facts show that ~dv based improper distributions ~F�;W�

is useful. Table

7.5 presents
1

2
~bv;W2�

�



c
; �
�
=

1

2
bv

 



1� 


!
, which depends on only 
.
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c=0.9
c=1

c=1.5

c=3


 = 0


 = 0:2


 = 0:3

�! c

Figure7.1

Implosion bias curves B�
� (c; 0:0), B

�
� (c; 0:2),

B�
� (c; 0:3)(� = MAD;S;Q)

�! 


Figure7.2

Implosion bias curves B�
� (0:9; 
), B

�
� (1; 
),

B�
� (1:5; 
), B

�
� (3; 
) (� =MAD;S;Q)

Table 7.4 ~bv;W1��
(
=c; �)=2; � = N(0; 1)

c n 
 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.70 - - - - - - - - - 0.566 0.792 1.068
0.80 - - - - - - - 0.319 0.482 0.664 0.883 1.150
0.85 - - - - - - 0.223 0.359 0.513 0.696 0.918 1.187
0.90 - - - - - 0.140 0.253 0.382 0.537 0.723 0.947 1.220
0.95 - - - 0.066 0.102 0.158 0.268 0.400 0.557 0.746 0.973 1.250
0.99 - 0.013 0.042 0.074 0.108 0.166 0.278 0.412 0.571 0.762 0.992 1.271
1.00 0.000 0.013 0.043 0.075 0.110 0.168 0.280 0.414 0.575 0.766 0.997 1.276
2.00 0.000 0.021 0.064 0.109 0.158 0.235 0.379 0.547 0.742 0.971 1.242 1.566
5.00 0.000 0.026 0.079 0.136 0.195 0.289 0.464 0.664 0.895 1.163 1.478 1.853

10.00 0.000 0.029 0.089 0.151 0.217 0.322 0.515 0.736 0.989 1.283 1.627 2.035
100.00 0.000 0.037 0.113 0.193 0.276 0.408 0.652 0.927 1.243 1.607 2.030 2.528

Table 7.5 ~bv;W2��
(
=(1� 
); �)=2; � = N(0; 1)


 0.00 0.01 0.03 0.05 0.07 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bias 0.000 0.013 0.039 0.066 0.094 0.140 0.223 0.319 0.431 0.566 0.736 0.967

Table 7.6 BTM (c; 
; �); � = N(0; 1)
c n 
 0.00 0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.70 - - - - - - - - - 0.566 0.792 1.068
0.80 - - - - - - - 0.319 0.489 0.674 0.887 1.150
0.85 - - - - - - 0.223 0.377 0.541 0.722 0.929 1.187
0.90 - - - - - 0.140 0.282 0.431 0.589 0.765 0.967 1.221
0.95 - - - 0.066 0.119 0.199 0.336 0.480 0.634 0.805 1.003 1.252
0.99 - 0.013 0.063 0.114 0.165 0.243 0.376 0.516 0.667 0.834 1.030 1.276
1.00 0.000 0.025 0.075 0.126 0.176 0.253 0.385 0.524 0.674 0.842 1.036 1.282
2.00 0.674 0.690 0.722 0.755 0.789 0.842 0.935 1.036 1.150 1.282 1.440 1.645
5.00 1.282 1.293 1.317 1.341 1.366 1.405 1.476 1.555 1.645 1.751 1.881 2.054

10.00 1.645 1.655 1.675 1.695 1.717 1.751 1.812 1.881 1.960 2.054 2.170 2.326
100.00 2.576 2.583 2.597 2.612 2.628 2.652 2.697 2.748 2.807 2.878 2.968 3.09
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8. Proofs

Proof of Lemma 2.1. The assertion (ii) follows from the assertion (i) and the fact that

Z 1

�1
G(x)g(x)dx �

Z 1

�1
Ĝ(x)ĝ(x)dx =

1

2
m2; 8g 2 F0:

We prove the assertion (i). Let g 2 F0. First assume
R1
�1 g(x)dx < m. Then it is clear that

there exists g1 2 F0 such that g � g1 and
R1
�1 g1(x)dx = m. In this case, it readily follows

thatZ 1

�1
fG(x+ t)�G(x)gg(x)dx �

Z 1

�1
fG1(x+ t)�G1(x)gg1(x)dx; for 8t � 0;

because of G1(x+ t)�G1(x) � 0 for 8x 2 R. Hence, we assume
R1
�1 g(x)dx = m. Let

hg;t(x) = G(x+ t)�G(x):

For simplicity we hereafter omit the subscript t of hg;t. SinceZ 1

�1
hg(x)g(x)dx =

Z 1

0
G(h�1g [u; 1))du;

the inequality

G(h�1g [u; 1)) � Ĝ(h�1ĝ [u; 1)); for 0 � 8u <1;(8.1)

is su�cient for proving the assertion (i). To show (8.1) we consider three cases (1) 0 � t < a,
(2) a � t < 2a and (3) t � 2a.

The proofs in (2) and (3) are similar to that in (1). Hence we give only the proof in the
case of (1). Let

Lg(t) =
Z 1

�1
hg;t(x)dx:

Di�erentiating Lg(t) with respect to t, we have

L0g(t) = m:

Since Lg(0) = 0, it follows that

Lg(t) = mt:

Thus the area enclosed by the graph of y = hg(x) and the x-axis does not depend on g. In order
to observe the graph of y = hg(x) in more detail, we di�erentiate y = hg(x) and y = hĝ(x)
with respect to x, and obtain

@

@x
hg(x) � f(x+ t) =

@

@x
hĝ(x); �a� t � x � �a;(8.2)

@

@x
hg(x) � �f(x) =

@

@x
hĝ(x); a� t � x � a:

From (8.2) it follows that the set fx j hĝ(x) � hg(x)g is an interval, which is given by one of
the forms (�1; b], [a; b] and [a; 1), where �1 < a < b <1. Figure 1 shows the graphs of

y = hg(x), y = hĝ(x) and hf(x), where hf(x) = F (x+ t)� F (x) and F (x) =
Z x

�1
f(t)dt.
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hg(x)
hg^(x)
hf(x)

0

u

�a� t xg0 xĝ0 �a � t
2

a� t xĝ1 xg1 a

Figure 8.1: The graphs of y = hg(x), y = hĝ(x), y = hf(x)

For 0 � u <1 we de�ne

xg0 = inffx j hg(x) � ug;

xg1 = supfx j hg(x) � ug:

Then it is easy to see

G(h�1g ([u; 1))) � G([xg0; xg1]) = G(xg1)�G(xg0);

Ĝ(h�1ĝ ([u; 1))) = Ĝ([xĝ0; xĝ1]) = Ĝ(xĝ1)� Ĝ(xĝ0):

We consider the following three cases:

(a) For u � hĝ(�
t
2
), we have

Ĝ(h�1ĝ ([u; 1))) = Ĝ(�) = 0 = G(�) = G(h�1g ([u; 1))):

(b) For hĝ(�a) � u < hĝ(�
t
2
), we have

[�a; a] � [xĝ0; xĝ1] � [xg0; xg1];

and hence

Ĝ(h�1ĝ ([u; 1))) = Ĝ([xĝ0; xĝ1]) � Ĝ([xg0; xg1])

� G([xg0; xg1]) � G(h�1g ([u; 1))):

(c) For 0 � u < hĝ(�a), we have

hĝ(xĝ1) = hg(xg1) = u;

and hence
Ĝ(xĝ1 + t)� Ĝ(xĝ1) = G(xg1 + t)�G(xg1);

Since xĝ1 + t > a, it follows that

Ĝ(xĝ1 + t) = m � G(xg1 + t):
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Hence we have
G(xg1) � Ĝ(xĝ1):

Since xĝ0 � �a, we also have Ĝ(xĝ0) = 0. Therefore

Ĝ(h�1ĝ ([u; 1))) = Ĝ(xĝ1)� Ĝ(xĝ0) = Ĝ(xĝ1)

� G(xg1) � G(xg1)�G(xg0)

= G(h�1g ([u; 1))):

The results of (a), (b) and (c) imply that the proposition holds for 0 � t < a. 2

Proof of Theorem 4.1 Let F̂ be given by (2.7), i.e.,

F̂ = c (F0 � Ŵ ) + 
�0:

Then, from the symmetry and unimodality of f0 it follows that for
8F 2 PF0(c; 
) and for

8t � 0

PF (jX �med
F

Y j � t) � sup
y
PF (jX � yj � t)

� PF̂ (jX j � t) = PF̂ (jX �med
F̂

Y j � t): (med
F̂

Y = 0)

This implies the distribution GF of jX � medF Y j under F is stochastically smallest under
F = F̂ . Hence we have

B�
MAD(c; 
) = MAD(F̂ ) = a1G

�1
F̂

�
1

2

�
:

Noting

GF̂ (t) =

8><
>:


; if t = 0;
2cF0(t)� c+ 
; if 0 < t � F�1

0 ( c�
+1
2c

);
1; if t � F�1

0 ( c�
+1
2c

);

we have

G�1

F̂

�
1

2

�
= F�1

0

�
2c� 2
 + 1

4c

�
:

It is obvious that G�1
F̂
(1
2
) = 0 holds for 
 � 1

2
. This completes the proof. 2

Proof of Theorem 4.2. Suppose that 0 � 
 < 1
2
. We �rst show that B�

S (c; 
) = S(F̂ ),

where F̂ is given by (2.7). For each x let ax be the positive number such that

F0(x+ ax)� F0(x� ax) =
1� 


c
;

and let

F �
x = c (F0 �W �

x ) + 
�x;(8.3)
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where

W �
x (B) = F0(B \ [x� ax; x+ ax]

c); 8B 2 B;

and �x is the probability measure with mass 1 at x. Then it is clear that

gF�
x
(x) = inffgF (x) : F 2 PF0(c; 
)g;

8x 2 R:

Since 0 � 
 < 1
2
, we can see

PF�
x
(jx� Y j � gF �

x
(x)) =

1

2
:

Hence, by gF�
x
(x) < ax we have

F0(x+ gF�
x
(x))� F0(x� gF �

x
(x)) =

1� 2


2c
:

From the symmetry and unimodality of f0, it follows that gF�
x
(x) and gF̂ (x) are strictly in-

creasing in jxj and symmetric about the origin. Hence, for any F 2 PF0(c; 
)

S(F ) = a2 med
F

gF (X) � a2 med
F

gF�
X
(X) = a2 gF�

medF jXj
(med

F
jXj)

� a2 gF�
med

F̂
jXj
(med

F̂
jX j) = a2 gF̂ (med

F̂
jXj) = S(F̂ ):

This implies B�
S (c; 
) = S(F̂ ).

Secondly, we show that S(F̂ ) = a2 g
�
�
F�1
0

�
2c�2
+1

4c

��
. We note that gF̂ (x) is the smallest

positive solution of

cf(F0 � Ŵ )(x+ gF̂ (x))� (F0 � Ŵ )(x� gF̂ (x))g

+
f�0(x+ gF̂ (x))��0(x� gF̂ (x))g+ 
I(x� gF̂ (x) = 0) �
1

2
:

For 0 � t < x, we have

PF̂ (jx� Y j � t) <
1

2
;

and hence gF̂ (x) � x. We also have

x = gF̂ (x) i� x � F�1
0

�
c� 2
 + 1

2c

�
=2:

Next, for x < gF̂ (x) we can see

F0(x+ gF̂ (x))� F0(x� gF̂ (x)) =
1� 2


2c
;

which implies gF̂ (x) = g�(x). From the symmetry of F̂ it follows that

med
F̂
jXj = F̂�1

�
3

4

�
= F�1

0

�
2c� 2
 + 1

4c

�
:

Therefore we obtain

S(F̂ ) = a2 gF̂ (med
F̂
jXj) = a2 g

�
�
F�1
0

�
2c� 2
 + 1

4c

��
:

Because

F�1
0

�
2c� 2
 + 1

4c

�
< F�1

0

�
c� 2
 + 1

2c

�
=2;

(4.4) and (4.5) provide an implicit determination of B�
S (c; 
).

When 
 � 1
2
, it immediately follows from S(F̂ ) = 0 that B�

S (c; 
) = 0. 2
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Proof of Theorem 4.3. When 0 � 
 < 1
2
, we can easily see Q(F̂ ) = a3K

�1
F̂
(5
8
) > 0, and

hence

PF̂�F̂ (X � Y � a�13 Q(F̂ )) =
5

8
:

This equation is written as

c2((F0 � Ŵ )� (F0 � Ŵ ))(X � Y � a�13 Q(F̂ ))

+2c
((F0 � Ŵ )��0)(X � Y � a�13 Q(F̂ )) + 
2(�0 ��0)(X � Y � a�13 Q(F̂ )) =
5

8
;

which reduces to (4.7).
On the other hand, when 
 � 1

2
, we see

PF̂�F̂ (X � Y < 0) <
5

8
� PF̂�F̂ (X � Y � 0):

This implies Q(F̂ ) = 0. 2

Proof of Theorem 4.4. When 0 � 
 <
1

2
, we can see for any F 2 PF0(c; 
)

inf
t2[0; 1

2
]

����F�1
�
t+

1

2

�
� F�1 (t)

���� �
����F̂�1

�
3

4

�
� F̂�1

�
1

4

����� ;
where where F̂ is given in (2.7). This implise

B�
LMS(c; 
) = LMS(F̂ ) = a4

����F̂�1
�
3

4

�
� F̂�1

�
1

4

����� :
Since

F̂�1
�
3

4

�
= F�1

0

�
2c� 2
 + 1

4c

�
and F̂�1

�
1

4

�
= F�1

0

�
2c+ 2
 � 1

4c

�
;

we have

B�
LMS(c; 
) = a4

����F̂�1
�
3

4

�
� F̂�1

�
1

4

����� = 2a4 F
�1
0

�
2c� 2
 + 1

4c

�
:

When 
 � 1
2
, we can easily see LMS(F̂ ) = 0 and hence B�

LMS(c; 
) = 0. 2

Proof of Theorem 4.5. Suppose that 0 � 
 < 1
2
． Then, for any x 2 R,

gF�
x
(x) = inffgF (x) : F 2 PF0(c; 
)g;

where F �
x is given by (8.3). Hence

B�
L (c; 
) = a5 inffinf

x
gF (x) j F 2 PF0(c; 
)g

= a5 inf
x
finf gF (x) j F 2 PF0(c; 
)g

= a5 inf
x
gF�

x
(x) = a5 gF�

0
(0) = a5 med

F̂
jY j

= a5 F
�1
�
3

4

�
= a1 F

�1
�
2c� 2
 + 1

4c

�
:

When 
 � 1
2
, we can easily see that B�

L (c; 
) = 0. 2

26



Proof of Lemma 6.1 We �rst note that z� is strictly increasing in �. By (6.6) and (6.8)
we have for 0 � (1� �) a

1+a
� 2F0(z�)� (1 + �)

~bv;W1�

�
(1� �)

a

1 + a
;F0

�
=

2a

1 + a

 
1� F0(z�) + z�f0(z�)

f0(z�)

!
:

Then it follows from the unimodality and symmetry of f0 that

@

@z�
~bv;W1�

�
(1� �)

a

1 + a
;F0

�
= �

2a(1� F0(z�))f
0
0(z�)

(1 + a)f0(z�)2
> 0:(8.4)

Also, by (6.6) and (6.8) we have for 2F0(z�)� (1 + �) � (1� �) a
1+a

� 1� �,

~bv;W1�

�
(1� �)

a

1 + a
;F0

�
= F�1

0

 
1 + 2a+ �

2(1 + a)

!
:(8.5)

Therefore the lemma follows from (8.4) and (8.5). 2

Proof of Theorem 6.1. Since ~F0;W1� has an even and unimodal density, we have as in (3.2)
of He and Simpson (1993),

~dv( ~F �

2
;W1�

; ~F��

2
;W1�

) = 2 ~F0;W1�

 
j�j

2

!
� (1� �) :(8.6)

It is easy to see that ~bv;W1�
(t; F0) is the solution j�j of the equation

2 ~F0;W1�

 
j�j

2

!
� (1� �) = t:(8.7)

Hence, by solving (8.7) in j�j we obtain (6.8).
Let ~F0;W�

be any element of ~F0. Then, by the unimodality and symmetry of ~F0;W1� and
~F0;W�

we have

~F0;W1�
(x) � ~F0;W�

(x); 0 � x <1:(8.8)

Since (8.6) also holds for ~F0;W�
, it follows from (8.7) and (8.8) that

~bv;W1�
(t; F0) � ~bv;W�

(t; F0) :

This implies that the theorem holds. 2
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