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Abstract
For a graph G, a biclique edge partition SBP(G) is a collection of com-

plete bipartite subgraphs {S 1, S 2, . . . , S q} such that each edge of G is con-
tained in exactly one S i. This paper proves that the Minimum Balanced
Complete Bipartite Partitioning Problem (BCBP) is NP-hard to approximate
within a factor (1 + εB) where εB = 1/34544. BCBP seeks for SBP(G) such
that each S i is a balanced complete bipartite graph. A balanced complete
bipartite graph is a bipartite graph G(U,V, E) such that |U | = |V | and for all
vertices u ∈ U and v ∈ V there is an edge uv ∈ E.

1 Introduction
For a graph G, a biclique edge partition SBP(G) is a collection of complete bipar-
tite subgraphs {S 1, S 2, . . . , S q} such that each edge of G is contained in exactly
one S i. This paper proves that the Minimum Balanced Complete Bipartite Parti-
tioning Problem (BCBP) is NP-hard to approximate within a factor (1+ εB) where
εB = 1/34544. BCBP seeks for SBP(G) such that each S i is a balanced complete
bipartite graph. A balanced complete bipartite graph is a bipartite graph G(U,V, E)
such that |U | = |V | and for all vertices u ∈ U and v ∈ V there is an edge uv ∈ E.

The biclique edge partition problem (BPP) has been studied in relation to data
mining and clustering[1]. It is known that BPP is NP-hard [2]. Though the cov-
ering version of BPP, the Minimum Biclique Cover Problem (BCP), has been
extensively studied [3] [4], only a few results are known for approximation hard-
ness of BPP [5]. Feige and Kogan [6] discussed the hardness of the problem of
finding the maximum size of a balanced complete bipartite subgraph in a general
graph.
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2 Construction of an instance of BCBP
A Boolean expression ϕ is in the Conjunctive Normal Form (CNF) if ϕ is a con-
junction of clauses and each clause is a disjunction of literals of positive or negated
variables. For a given ϕ in CNF, the Maximum Satisfiability Problem (MAX-SAT)
is the problem of finding a truth assignment to ϕ that maximizes the number of
satisfied clauses. MAX-3-SAT is MAX-SAT in which each clause has at most
three literals. MAX-E3-SAT is MAX-3-SAT in which each clause has exactly
three literals of different variables. MAX-(3,Bk)-SAT is MAX-E3-SAT in which
every literal occurs exactly k times. Berman et al. [7] proved the next lemma.

Lemma 2.1. Let M be a positive integer. For every 0 < ε < 1, it is NP-hard to
decide whether an instance of MAX-(3,B2)-SAT with 1016M clauses has a truth
assignment that satisfies at least (1016 − ε)M clauses or at most (1015 + ε)M
clauses.

Thus they have the next theorem.

Theorem 2.2 (Theorem 2. of [7]). For every 0 < ε < 1, it is NP-hard to approx-
imate MAX-(3,B2)-SAT to within an approximation ratio smaller than (1016 −
ε)/1015.

Let ϕ be an E3-CNF formula with n variables xi (i = 1, . . . , n) and m clauses
C j ( j = 1, . . . ,m) and the number of occurrences of xi is four. Since each clause
has exactly three literals of different variables in ϕ, 4n = 3m holds. We transform
ϕ into an instance G = (V, E) of BCBP as follows. Our transformation is based on
the reduction given in [8].

2.1 A Graph Gxi for variable xi

Our discussion is for simple graphs and thus graphs have no loops or multiple
edges. First we construct a torus for each variable xi. For each occurrence s =
1, . . . , 4, we consider a 5 × 5 lattice graph Gs

xi shown in Figure 1.
We cascade these Gs

xi’s as follows. We denote by xs
i the s-th occurrence of

variable xi. Let Ps
i tu (1 ≤ t ≤ 5, 1 ≤ u ≤ 5) be vertices of Gs

xi. We will omit
index i unless this causes confusion. We identify Ps

1u and Ps
5u for each u. Then we

have four cylinder-like graphs. We cascade these four graphs, that is, four each
s (1 ≤ s ≤ 3), we identify Ps

t5 and Ps+1
t1 for each t. Finally, we identify P4

t5 and P1
t1

for each t. Thus we have a torus for each variable xi. We denote this torus by Gxi.
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Figure 1: A lattice graph for xi (s omitted). The black cycles are labeled with B.

Figure 2: A Lattice graph partitioned into C4’s.

Apparently, balanced complete bipartite subgraphs of Gxi are K2,2(= C4) and K1,1

(an edge). Gxi has 64 C4’s.
Observe that Gxi can be edge-partitioned into 32 bicliequs (actually C4’s) in

exactly two ways. One of which is shown in Figure 2. We define two sets of
C4’s B and W. B and W make a checkerwise pattern on Gxi and we assume
cycle (Pi

11, Pi
12, Pi

21, Pi
22) is in B. In Figure 1, C4’s in B are labeled with B. The

remaning C4’s belong toW. If a C4 is in B, we call it a black cycle, otherwise we
call it a white cycle. We use this observation for a switch of an assignment for xi

being FALSE or TURE.
Next we define two subgraphs of Gs

xi, a T-patch and an F-patch. T-patch is a
subgraph of Gs

xi induced by Ps
22, Ps

23, Ps
32, Ps

33 and their adjacent vertices. We call
cycle (Ps

22, Ps
23, Ps

32, Ps
33) the center of this T-patch. F-patch is a subgraph of Gs

xi
induced by Ps

32, Ps
33, Ps

42, Ps
43 and their adjacent vertices. We call cycle (Ps

32, Ps
33,

Ps
42, Ps

43) the center of this F-patch. Note that the center of a T-patch is a black
cycle and the center of an F-patch is a white cycle.
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2.2 Graph GC j for clause C j
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Figure 3: Lattice graph Gi
C j and its two patches: an L-patch (thick line) and a

C-patch (dotted line).

Next we construct a graph for each clause C j ( j = 1, . . . ,m). Let xi1 , xi2 , xi3 be
variables appearing in C j. For each i ∈ {i1, i2, i3}, we construct a 5×9 lattice graph.
We denote this graph by Gi

C j. Let PCi
tu (1 ≤ t ≤ 5, 1 ≤ u ≤ 9) be vertices of Gi

C j.
We transform Gi

C j into a torus by identifying PCi
1u and PCi

5u for each u = 1, . . . , 9
and identifying PCi

t9 and PCi
t1 for each t = 1, . . . , 5.

We define black cycles and white cycles in the same manner as in Gxi. We
assume that cycle (PCi

11, PCi
12, PCi

21, PCi
22) is a black cycle. We delete the edges

of black cycle (PCi
26, PCi

27, PCi
37, PCi

36). See Figure 3. We define a C-patch of
Gi

C j as the subgraph induced by vertices PCi
26, PCi

27,PCi
37,PCi

36 and their adjacent
vertices. Actually, C-patch is a cycle graph C12. We identify C-patches of Gi

C j for
all i ∈ {i1, i2, i3}. We denote the resulted graph by GC j.

For each i ∈ {i1, i2, i3}, we define an L-patch of Gi
C j as the subgraph induced by

vertices PCi
22, PCi

23, PCi
33, PCi

32 and their adjacent vertices. We call cycle (PCi
22,

PCi
23, PCi

33, PCi
32) the center of this L-patch. Assume that xi appears as positive

literal in C j and it is an s-th occurrence of xi in ϕ. Then we identify the T-patch
of Gs

xi and the L-patch of Gi
C j. If xi appears as negated literal in C j, we identify

the F-patch of Gs
xi and the L-patch of Gi

C j. We denote by G the resulted graph. G
consists of n torus graphs Gxi for variables and m graphs GC j for clauses. G has
204m distinct edges. Note that any balanced complete bipartite subgraphs in G is
an edge or C4. Thus, in order to minimize the size of SBP(G), we must let C4 be
in SBP(G) as many as possible.
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2.3 How to partition G for ϕ
For the constructed graph G, we will show that if ϕ is satisfiable, G can be par-
titioned into 51m C4’s. Next we will show that for an arbitrarily small ε, if the
number of satisfiable clauses of ϕ is at most (1 − ε)m, then we cannot partition G
into less than (51 + 9ε/2)m balanced complete bipartite graphs.

Theorem 2.3. (1 + εB)-approximation of BCBP for a bipartite graph is NP-hard,
where εB = 1/34544.

Proof . Assume that ϕ is satisfiable. We will show that all edges of G can be
partitioned into only C4’s. Let π be a satisfying assignment and we will construct
SBP(G) from π where |SBP(G)| = 51m. We have observed that if we partition Gxi

into white (or black) C4’s, all edges of Gxi are partitioned. If all edges of Gxi are
partitioned into white C4’s, we call this partition W-partitioning. If all edges of
Gxi are partitioned into black C4’s, we call this partition B-partitioning. For Gi

C j,
we define W-partitioning and B-partitioning in the same manner as for Gxi.

In principle, if π assigns TRUE to xi, we partition Gxi by W-partitioning, oth-
erwise we partition Gxi by B-partitioning. We partition GC j as follows. For each
clause C j, choose one literal that is TRUE under π. If there are two or three
TRUE literals, choose one literal arbitrarily. If this literal is s-occurrence of xi,
we denote it by xs

i j and we call it a selected literal. We denote by xi′ j and xi′′ j the
other two literals and denote by xi′ and xi′′ their variables. We partition Gi

C j by
B-partitioning. See Figure 4.

Since the L-patch of this Gi
C j has been partitioned, we have to change the par-

titioning of Gs
xi as follows. If xs

i j is a positive literal, T-patch of Gs
xi was identified

to the L-patch of this Gi
C j. We exclude C4’s that partition the edges of this T-patch

from the partition of Gxi. See Figure 5. If xs
i j is a negated literal, we exclude C4’s

that partition the edges of the F-patch of Gs
xi from the partition of Gxi. See Figure

6.
Next we partition Gi′

C j and Gi′′
C j by W-partitioning as shown in Figure 7. That is,

we do not touch the L-patch in this partition. Note that regardless of xi′ (xi′′) being
TRUE or FALSE, all edges of Gi′

C j (Gi′′
C j) can be partitioned into C4’s appropriately

since the edges of T-patch/F-patch have already partitioned in the partitioning for
Gxi.

For each clause C j, we have partitioned all edges of three GC j into (15+2×8) =
31 C4’s. Thus, all edges of Gxi have been partitioned into 32n − 4m (= 24m− 4m)
C4’s. Therefore, we have a biclique edge-partition SBP(G) with |SBP(G)| = 32n −
4m + 31m = 51m. Since G has 204m edges, SBP(G) is an optimal solution.
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Figure 4: C4’s (indicated by label P) in SBP(G) of Gi
C j for a selected literal xs

i j.
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Figure 5: C4’s (indicated by label P) in SBP(G) of Gxi when a selected literal xs
i j is

positive.

In order to prove the remaining part of Theorem 2.3, We will prove two lem-
mas. Let Cl be a set of clauses of ϕ, and C j be a clause in Cl. We assume that C j

has variables xa, xb and xc. We define G j as the subgraph of G consisting of GC j,
Gxa , Gxb and Gxc .

Lemma 2.4. If every G j such that C j ∈ Cl can be partitioned into only C4’s, then
there is an assignment that satisfies all clauses in Cl.

Proof . Since G j is partitioned into C4’s, GC j is also partitioned into C4’s. Then,
there is one Gi

C j such that its C-patch is partitioned into C4’s. W.l.o.g., we assume
that Ga

C j is partitioned into C4’s. Thus, Ga
C j is partitioned by B-partitioning (See

Figure 4). If T-patch of Gxa is identified to L-patch of Ga
C j, that is, if xa appears

as a positive literal in C j, then Gxa should be partitioned by W-partitioning. If
F-patch of Gxa is identified to L-patch of Ga

C j, then Gxa should be partitioned by
B-partitioning. Gxb and Gxc may be partitioned by either W-partitioning or B-
partitioning. In this way, we decide the partition of Gxa for a variable xa of each
clause in Cl. From the construction of G, it is easy to verify that these partitions
are consistent each other. Since Gxa , Gxb and Gxc are partitioned by either W-
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Figure 6: C4’s (indicated by label P) in SBP(G) of Gxi when a selected literal xs
i j is

negative.
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Figure 7: C4’s (indicated by label P) in SBP(G) of Gi
C j for a non-selected literal.

partitioning or B-partitioning, there is at least one consistent assignment that
satisfies all clauses in Cl. �

Lemma 2.5. Assume that for some positive constant ε (< 1), at most (1 − ε)m
clauses of ϕ are satisfiable simultaneously. Then, at least (51 + 3ε/2)m balanced
complete bipartite subgraphs are necessary to partition G.

Proof . Let SBP(G) be an optimal solution of BCBP. SBP(G) consists of some C4’s
and some edges. We define SC4(G) as the set of C4’s in SBP(G), and define Se(G)
as the set of edges in SBP(G). Thus, SBP(G) = SC4(G) ∪ Se(G).

Since the degree of each vertex of G is even, each element (edge) of Se(G)
incidents to another element of Se(G). Thus, edges of S e(G) make cycles. We
denote by Cy(G) the set of these cycles. Each cycle of Cy(G) is even cycle, since
G has no odd cycle. Since SBP(G) is an optimal solution, Cy(G) has no C4. Thus,
the size of each cycle of Cy(G) is no less than six.

We restrict ourselves to G j and define Cy(G j), E(G j) and C4(G j) as follows.
Define Cy(G j) as the subset of Cy(G) such that each element is a subgraph of G j.
Define E(G j) as the subset of Se(G) such that each element is a subgraph of G j,
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and define C4(G j) as the subset of SC4(G) such that each element is a subgraph of
G j.

Let π be an optimal assignment to ϕ. Let Cl′ be the set of unsatisfied clauses of
ϕ under π, and C j be a clause in Cl′. From the assumption of the lemma, |Cl′| ≥ εm
holds. We will show that |Se(G)| ≥ 2εm as follows.

Since one variable appears in at most four clauses, εm/4 variables appear at
most εm clauses. Assume that |Se(G)| < 8 × εm/4 = 2εm. Then the number of G j

such that |E(G j)| ≤ 8 is more than (1−ε)m. Note that |E(G j)| = 4|C4(G j)|+ |E(G j)|.
Since |E(G j)| is multiple of four and |E(G j)| has no C4, it is clear that if |Cy(G j)| ,
0, then |E(G j)| ≥ 8. Thus, the number of G j’s for which |Cy(G j)| = 0 is more than
(1 − ε)m. From Lemma 2.4, there is an assignment that satisfies all C j for which
|Cy(G j)| = 0. Thus, there exist an assignment that satisfies more than (1 − ε)m
clauses. This leads to a contradiction.

Note that 204m = 4|SC4(G)|+|Se(G)|. The number of C4’s inSBP(G) is no more
than (204m− |Se(G)|)/4 = 51m− 2εm/4. We have proved that it is not possible to
partition G into less than 51m− 2εm/4+ 2εm = (51+ 3ε/2)m balanced complete
bipartite graphs. �

Let ϕ be a formula that can be satisfied at most (1 − ε)m clauses. We have
proved that ϕ can be transformed into an instance of BCBP that cannot be par-
titioned into no less than (51 + 3ε/2)m balanced complete bipartite subgraphs.
From Lemma 2.1 with ε = 1/1016, we have Theorem 2.3. �

3 Conclusion
As we have mentioned in Section 1, only a few results are known for approxi-
mation hardness of the biclique edge partition problem (BPP). In [5], it is shown
that BPP is NP-hard to approximate within a factor 6053/6052. (Note that the
problem is not the balanced complete bipartite partition.)

Note that our reduction in this paper cannot be used directly to the biclique
edge partition problem. The lattice graph can be partitioned not only into C4’s but
into stargraphs K1,t (2 ≤ t). It is not clear that partitioning into stargraphs can be
used for a switch of an assignment for xi being FALSE or TURE. We cannot count
the number of bicliques by a simple discussion, since G has K1,t (2 ≤ t ≤ 8).

The Minimum Biclique Cover Problem (BCP) is a graph covering problem
similar to BPP in which we seek a cover of the edge set instead of a partition.
BCP arises in data mining, the set basis problem, textile designing and some
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other optimization problems [4][9]. Polynomial time algorithms are known for
restricted cases [4]. It is known that O(n1/3)-approximation for BCP is NP-hard,
where n is the number of vertices of G [3]. Such a good hardness result for BPP
is challenging research.
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