$\epsilon - N$ 論法における変数に代入すべき項の選択方法

川邉達治 佐々木克之
E-mail: sasaki@nanzan-u.ac.jp

1 対象とする性質

本研究が対象とする 11 の性質を以下に示す。ここでは、自然数 $(1, 2, \cdots)$ 全体の集合を \mathbb{N} とおく。

1. 2 つの数列 $\{a_i\}, \{b_i\} (i \in \mathbb{N})$ がどちらも収束するならば、数列 $\{a_i + b_i\} (i \in \mathbb{N})$ も収束する。
2. 2 つの数列 $\{a_i\}, \{b_i\} (i \in \mathbb{N})$ がどちらも収束するならば、数列 $\{a_i \cdot b_i\} (i \in \mathbb{N})$ も収束する。
3. 3 つの数列 $\{a_i\}, \{b_i\}, \{c_i\} (i \in \mathbb{N})$ があって、すべての n に対して、$a_n \leq b_n \leq c_n$ を満たすとする。このとき、$\{a_i\}$ も $\{c_i\}$ がどちらも α に収束するならば、$\{b_i\}$ も同じ α に収束する。
4. 数列 $\{a_i\} (i \in \mathbb{N})$ が収束ならば、数列 $\left\{ \frac{1}{a_i} \right\} (i \in \mathbb{N})$ も収束する。
5. 数列 $\{a_i\} (i \in \mathbb{N})$ が α に収束するならば、数列 $\left\{ \frac{a_1 + \cdots + a_i}{i} \right\} (i \in \mathbb{N})$ も同じ α に収束する。
6. 数列 $\{a_i\} (i \in \mathbb{N})$ が α に収束ならば、数列 $\{a_i\}$ の任意の部分列 $\{a_{k_i}\} (i \in \mathbb{N})$ も同じ α に収束する。
7. コーシー列が収束する部分列をもつならば、もとのコーシー列自身も収束する。
8. 数列 $\{a_i\} (i \in \mathbb{N})$ が $\alpha (\neq 0)$ に収束するとき、ある番号 N に対し、$n \geq N$ のすべての n に対して a_n は α と同符号である。
9. 数列 $\{a_i\} (i \in \mathbb{N})$ の収束先は一意である。
10. 数列 $\{a_i\} (i \in \mathbb{N})$ が α に収束し、すべての n に対して $a_n \leq b$ であるならば、$\alpha \leq b$ である。
11. 数列 $\left\{ \frac{1}{a_i} \right\} (i \in \mathbb{N})$ が 0 に収束する。

ただし、4 では、$i \in \mathbb{N}$ に対して $a_i \neq 0$ を前提とする。

これらの性質を $\epsilon - N$ 論法で簡潔に表現するために、次の記号を用いる。

1. 実数を表す変数 $\epsilon, \epsilon_1, \epsilon_2, \cdots, a, b, \alpha, \beta, M, \cdots$
2. 自然数を表す変数 $n, n_1, \cdots, N, N_1, \cdots, m, i, \cdots$
3. 論理記号 \wedge (かつ), \Rightarrow (ならば), \forall (すべて), \exists (が存在する), \neg (～でない), \bot (矛盾)

また、本論文では、数列 $\{a_n\} (i \in \mathbb{N})$ が実数 α に収束することを

$\forall \epsilon (0 < \epsilon \Rightarrow \exists N \forall n (N \leq n \Rightarrow |a_n - \alpha| < \epsilon))$
と定義する。
この約束に基づいて、11の性質の仮定（H₁,H₂,⋯とおく）と結論（Cとおく）を表現すると、次のようになる。

1. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₂:\forall e₂(0 < e₂ \Rightarrow \exists N₂\forall n₂(N₂ \leq n₂ \Rightarrow |b_{n₂} - β| < e₂))\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |a_n + b_n - (α + β)| < e))\)

2. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₂:\forall e₂(0 < e₂ \Rightarrow \exists N₂\forall n₂(N₂ \leq n₂ \Rightarrow |b_{n₂} - β| < e₂))\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |a_n - b_n - αβ| < e))\)

3. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₂:\forall e₂(0 < e₂ \Rightarrow \exists N₂\forall n₂(N₂ \leq n₂ \Rightarrow |b_{n₂} - β| < e₂))\)
 \(H₃:∀m(a_m \leq b_m \leq c_m)\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |b_n - α| < e))\)

4. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow \frac{1}{a_n} - \frac{1}{α} < e))\)

5. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |\frac{a_1 + \cdots + a_n}{n^n} - α| < e))\)

6. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₃:∀m(m \leq k_m)\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |a_{k_m} - α| < e))\)

7. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁\forall n₁'(N₁ \leq n₁ \land N₁ \leq n₁' \Rightarrow |a_{n₁} - a_{n₁'}| < e₁))\)
 \(H₂:\forall e₂(0 < e₂ \Rightarrow \exists N₂\forall n₂(N₂ \leq n₂ \Rightarrow |a_{n₂} - α| < e₂))\)
 \(H₃:∀m(m \leq k_m)\)
 \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |a_n - α| < e))\)

8. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(C:∀N\forall n(N \leq n \Rightarrow (α > 0 \Rightarrow a_n > 0) \land (α < 0 \Rightarrow a_n < 0))\)

9. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₂:\forall e₂(0 < e₂ \Rightarrow \exists N₂\forall n₂(N₂ \leq n₂ \Rightarrow |a_{n₂} - β| < e₂))\)
 \(H₃:α \neq β\)
 \(C:⊥\)

10. \(H₁:\forall e₁(0 < e₁ \Rightarrow \exists N₁\forall n₁(N₁ \leq n₁ \Rightarrow |a_{n₁} - α| < e₁))\)
 \(H₂:∀n₂(a_{n₂} \leq b)\)
 \(H₃:α > b\)
 \(C:⊥\)

11. \(C:∀e(0 < e \Rightarrow \exists N\forall n(N \leq n \Rightarrow |\frac{1}{n} - 0| < e))\)

これらの表現において、異なる役割の束縛変数は異なる記号を用いた。また、11の性質ができる限り同じ形になるように記号を選んだ。これらによって、系統的分析を行いやすくなるからである。さらに、性質6と性質7では、仮定に部分列が現れる。部分列の定義は

数列 \(\{a_{k_i}\}\) が数列 \(\{a_i\}\) の部分列 ⇔ \(∀i∀j(i < j \Rightarrow k_i < k_j)\)
2 代入すべき項が依存する変数

この節と次の節で、$\varepsilon \sim N$ 論法における変数に代入すべき項の選択の方法について述べる。
とくに、この節では、代入すべき項が、どの変数に依存して決まるのかを考える。結果として、証明すべき性質の仮定に "$\forall \varepsilon \exists N_1$"、結論に "$\forall n$" が現れるか否かで、その依存する変数の傾向をまとめることができた。以下に詳細を述べる。
11 の性質の証明を、鹿島 [3] の自然演繹法の導出図の形で表現すると、それらはどれも下の図 1 の形、または、そこから不要な推論規則を削除した形でかける。

\[
\begin{align*}
\forall n_1 \ldots (\forall \varepsilon) \forall n_2 \ldots (\forall \varepsilon) \\
0 < \varepsilon_1 \Rightarrow \exists N_1 \ldots (\Rightarrow \text{除}) \\
0 < \varepsilon_2 \Rightarrow \exists N_2 \ldots (\Rightarrow \text{除}) \\
0 < \varepsilon_2 \Rightarrow \exists N_2 \ldots (\Rightarrow \text{除}) \\
0 < \varepsilon \Rightarrow \exists N \ldots (\Rightarrow \text{導}) \\
\forall \varepsilon \ldots (\forall \varepsilon)
\end{align*}
\]

図 1 導出図の一般形

上の導出図から、変数に代入すべき項について次がわかる。ただし、$\varepsilon_1, \varepsilon_2, N_2, n_1, n_2, n_1'$ に代入すべき項は、各性質の仮定と結論に自由に現れる変数にも依存するが、本論文ではそのことを明記しない。

- ε, N_1, N_2, n に代入すべき項は、鹿島 [3] の推論規則の変数条件を満たす。本論文では、異なる役割の束縛変数に異なる記号を用いていることから、ε, N_1, N_2, n 代入すべき項は、それぞれ、ε, N_1, N_2, n とすればよい。

- $\varepsilon_1, \varepsilon_2$ 代入すべき項は ε のみに依存する。

- N 代入すべき項は ε, N_1, N_2 のみに依存する。

- n_1, n_2, n_1' 代入すべき項は ε, N_1, N_2, n のみに依存する。

実際に代入された項を、表 1 に示しておく。性質 2 には 3 通りの証明があり、表 1 では、それらを 2A, 2B, 2C とした。性質 4 についても同様である。表 1 において、2A の ε' は $-1 + \sqrt{1 + \frac{\varepsilon}{|\alpha| |\beta|}}$ を、2B の ε'' は $\frac{\varepsilon}{1 + |\alpha| + |\beta|}$ と、5 の N_3 は $\left(\frac{a_1 - \alpha}{\varepsilon} + \cdots + \frac{(a_n - \alpha)}{\varepsilon}\right) + 1$ を表す。ただし、実数 x に対して、$[x]$ は、x を超えない最大の整数を表す。

ここから、依存する変数の表を作ると表 2 のようになる。この表から、N に代入すべき項については、仮定に "$\forall \varepsilon \exists N_1$" が現れるか否かで次の傾向が読み取れる。
表 1: 代入すべき項

<table>
<thead>
<tr>
<th>变数</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>N</th>
<th>n_1</th>
<th>n_2</th>
<th>n'_1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{\epsilon}{2}$</td>
<td>$\frac{\epsilon}{2}$</td>
<td>$\max(N_1, N_2)$</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2A</td>
<td>$</td>
<td>\alpha</td>
<td>\epsilon'$</td>
<td>$</td>
<td>\beta</td>
<td>\epsilon'$</td>
<td>$\max(N_1, N_2)$</td>
</tr>
<tr>
<td>2B</td>
<td>$\min(1, \epsilon')$</td>
<td>$\min(1, \epsilon')$</td>
<td>$\max(N_1, N_2)$</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2C</td>
<td>$\frac{\epsilon}{2M}$</td>
<td>$\frac{2</td>
<td>\alpha</td>
<td>}{2\epsilon}$</td>
<td>$\max(N_1, N_2)$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3</td>
<td>ϵ</td>
<td>ϵ</td>
<td>$\max(N_1, N_2)$</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>4A</td>
<td>$\min\left(\frac{</td>
<td>\alpha</td>
<td>}{2}, \frac{</td>
<td>\alpha</td>
<td>\epsilon}{2}\right)$</td>
<td>-</td>
<td>N_1</td>
</tr>
<tr>
<td>4B</td>
<td>$\frac{</td>
<td>\alpha</td>
<td>^2 \epsilon}{1 +</td>
<td>\alpha</td>
<td>\epsilon}$</td>
<td>-</td>
<td>N_1</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{\epsilon}{2}$</td>
<td>-</td>
<td>$\max(N_1, N_2)$</td>
<td>$N_1, N_1 + 1, \cdots, n$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>ϵ</td>
<td>-</td>
<td>N_1</td>
<td>k_n</td>
<td>-</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{\epsilon}{2}$</td>
<td>$\frac{\epsilon}{2}$</td>
<td>$\max(N_1, N_2)$</td>
<td>n</td>
<td>n</td>
<td>k_n</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>$</td>
<td>\alpha</td>
<td>$</td>
<td>-</td>
<td>N_1</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>$\frac{</td>
<td>\alpha - \beta</td>
<td>}{2}$</td>
<td>$\frac{</td>
<td>\alpha - \beta</td>
<td>}{2}$</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>$\alpha - \beta$</td>
<td>-</td>
<td>-</td>
<td>N_1</td>
<td>N_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>$\left\lfloor \frac{\epsilon}{\epsilon} \right\rfloor + 1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

表 2: 依存する変数

<table>
<thead>
<tr>
<th>变数</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>N</th>
<th>n_1</th>
<th>n_2</th>
<th>n'_1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2A</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2B</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2C</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>4A</td>
<td>ϵ</td>
<td>-</td>
<td>N_1</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4B</td>
<td>ϵ</td>
<td>-</td>
<td>N_1</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n'</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>ϵ</td>
<td>-</td>
<td>N_1</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>7</td>
<td>ϵ</td>
<td>ϵ</td>
<td>N_1, N_2</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>なし</td>
<td>-</td>
<td>N_1</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>なし なし</td>
<td>-</td>
<td>N_1, N_2</td>
<td>N_1, N_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>なし</td>
<td>-</td>
<td>-</td>
<td>N_1</td>
<td>N_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>ϵ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
• 現れるとき（性質1-8）: \(N_i \) に依存

• 現れないとき（性質11）: \(\varepsilon \) のみに依存

ただし、性質5においては、\(\varepsilon \) にも依存する。同様に、\(n_1, n_2 \) へ代入すべき項については、結論に “\(\forall n \)” が現れるか否かで次の傾向が読み取れる。

• 現れるとき（性質1-8）: \(n \) に依存

• 現れないとき（性質9,10）: \(N_i \) のみに依存

ただし、性質5においては、\(N_i \) にも依存する。

3 代入すべき項の選択方法

前節では、代入すべき項が、どの変数に依存するかについて述べた。この節では、それをもう一歩踏み込んで、\(\varepsilon_1, \varepsilon_2, N, n_1, n_2 \) に代入すべき具体的な項の選択方法について述べる。この選択方法を構成する手法は、飯高[1]、一樂[2]、高木[4]、田島[5]、細井[6]で個別の性質に対して用いられているものから抽出した。本稿では、それらを系統的にまとめている。以下では、混乱のない限り、「変数に代入すべき項を選ぶ」を、単純に、「変数を選ぶ」と表現する。

前節の導出図（図1）より、5つの変数は、各性質に応じた次の形の条件を満たすように選べばよい。

\[
\forall n_1 P_1, \forall n_2 P_2, H_3 \Rightarrow \forall n P
\] (1)

ただし、\(\forall n_1 P_1, \forall n_2 P_2, H_3, \forall n P \) のそれぞれは、性質によってはなかったり、\(\perp \) であったりする。

(1) を満たす変数は

\[
P_1, P_2, H_3 \Rightarrow P
\] (2)

を満たすように選べばよい。\(n_i \) に複数の項を代入する場合もある。この場合は、その複数の項を

\[
P_1[n_1,1/n_1], \cdots , P_2[n_1,\varepsilon/n_1], P_2, H_3 \Rightarrow P
\] (3)

を満たす \(n_1,1, \cdots , n_1,\varepsilon \) として選ぶことになる。以下は、(2) を満たす変数の選び方を述べる。\(P \) が \(N \leq n \Rightarrow Q \)、\(P_1 \) が \(N_i \leq n_i \Rightarrow Q_i \) の形のときは、3 条件

\[
N \leq n \Rightarrow N_1 \leq n_1
\] (4)

\[
N \leq n \Rightarrow N_2 \leq n_2
\] (5)

\[
N \leq n, Q_1, Q_2, H_3 \Rightarrow Q
\] (6)

または、2 条件

\[
N \leq n \Rightarrow N_1 \leq n_1
\] (7)

\[
N \leq n, Q_1, P_2, H_3 \Rightarrow Q
\] (8)
などを満たすように選べばよい。最初の 3 条件の場合には、ϵ_1, ϵ_2 は、(6) を満たすように選ぶ。N は、3 条件を満たすように選ぶ。条件

\[\forall N(N \geq N' \Rightarrow (4)) \]
\[\forall N(N \geq N'' \Rightarrow (5)) \]
\[\forall N(N \geq N''' \Rightarrow (6)) \]

を満たす、N', N'', N''' をそれぞれ求めて、$N = \max(N', N'', N''')$ とすればよい。他の場合も同様である。

次に (4) を満たす N, n_1 の選択方法を述べる。(5), (7) は同様である。本論文で扱った例では、次の 2 通りである。

- $N_1 \leq N$ を満たす $N, n_1 = N_1, N_1 + 1, \cdots, n$
- $(N, n_1) = (N_1, n)$

最後に (6) を満たす $\epsilon_1, \epsilon_2, N, n_1, n_2$ の選択方法を 2 つ述べる。(8) は同様である。

(i) 1 つ目は、(6) が $N \leq n$、$|A| < \epsilon_1, |B| < \epsilon_2, H_3 \Rightarrow |C| < \epsilon$ の形のときに選択方法である。この選択方法は具体的には、次の 3 つのステップからなる。

ステップ 1 : $|C| \leq C'$ を満たす C' で

\[\frac{|A|, |B|}{a_n, |b_n|, n} \text{の式} \]

の形のものを求める。ただし、x_1, x_2, \cdots, x_n の式とは、x_1, x_2, \cdots, x_n についての多項式で、すべての係数が正であるもののことである。

ステップ 2 : $C' < f$ となる f で、$\epsilon_1, \epsilon_2, N, n_1, n_2$ で表現されたものを求める。

ステップ 3 : $f < \epsilon$ を満たすように $\epsilon_1, \epsilon_2, N, n_1, n_2$ に代入すべき項を選ぶ。

最初の 2 つのステップで得られる C', f は、$|C| \leq C' < f$ を満たすので、ステップ 3 で求めた項が、それぞれに代入すべき項だとわかる。

ステップ 1 は、三角不等式

\[(i.1) \ |X + Y| \leq |X| + |Y| \]

などを用いる。ステップ 2 は、

\[(i.2) \ N \leq n (前提) \]
\[(i.3) \ |A| < \epsilon_1 (前提) \]
\[(i.4) \ |B| < \epsilon_2 (前提) \]
\[(i.5) \ H_3 (前提) \]
\[(i.6) \ |a| - \epsilon_1 < |a_n| (A = a_n - \alpha の場合、(i.3) より) \]
\[(i.7) \ |\beta| - \epsilon_2 < |b_n| (B = b_n - \beta の場合、(i.4) より) \]
\[(i.8) \ |a_n| < M (\{a_i\} の有界性より) \]
などを用いる。(i.6) は、三角不等式と (i.3) から、

\[|a| - |a_n| \leq |a_n - a| < \epsilon_1 \]

なので、ここから得られる。(i.7) も同様である。また、ステップ 2 において、

\[\epsilon_i \leq 1 \]
\[\epsilon_i \leq \frac{\alpha}{2} \]

などの条件を加えて \(f \) を求めて、ステップ 3 において、加えた条件と \(f \leq \epsilon \) を満たすように \(\epsilon_i \) を選ぶ方法 (i.9) も有効である。加えた条件が、\(\epsilon_i \leq 1 \) のときは、\(f \leq \epsilon \) を満たす \(\epsilon_i \) を \(\epsilon_i' \) とすると、

\(\epsilon_1 = \min(1, \epsilon_i') \) すればよい。

(ii) 2 つ目は、(6) の \(Q_i \) または \(Q \) が \(|A - \alpha| < \epsilon \) の形のときの選び方である。具体的には、

\[|A - \alpha| < \epsilon \leq \alpha - \epsilon < A < \alpha + \epsilon \]

に変形し、「\(\Rightarrow \)」の前後を比較する方法である。i) で述べた (i.9) も有効である。

以下では、表 1 にある結果が上の方法で選べることを、その手順にしたがって確かめる。これら
の選択方法は、結果として、いくつかの文献で説明されている方法と同様になることがある。以下
では、その文献の例を注記に示す。また、その手法を説明したり、その結果の代入方法で証明
したりしている文献の例も示す。

1. 和

\[N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1(P_1) \]
\[N_2 \leq n_2 \Rightarrow |b_{n_2} - \beta| < \epsilon_2(P_2) \] から \(N \leq n \Rightarrow |a_n + b_n - (\alpha + \beta)| < \epsilon(C) \) が導かれるように変数 \(\epsilon_1, \epsilon_2, N, n_1, n_2 \) に代入すべき項を選ぶ。3 条件

\[N \leq n \Rightarrow N_1 \leq n_1 \]
\[N \leq n \Rightarrow N_2 \leq n_2 \]
\[|a_{n_1} - \alpha| < \epsilon_1, |b_{n_2} - \beta| < \epsilon_2 \Rightarrow |a_n + b_n - (\alpha + \beta)| < \epsilon \]

を満たすように選ぶ。

この場合、\(N \) は 3 つ目の条件に依存させる必要がなく、最初の 2 条件を満たすように \(N, n_1, n_2 \)
を選べばよい。例えば、

\[N = \max(N_1, N_2), n_1 = n, n_2 = n \]

とすればよい。

3 つ目の条件を満たす \(\epsilon_1, \epsilon_2 \) を方法 (i) で求める。まず、三角不等式 (i.1) を用いて、

\[|a_n + b_n - (\alpha + \beta)| = |a_n - \alpha + b_n - \beta| \]
\[\leq |a_n - \alpha| + |b_n - \beta| \]

を得る (ステップ 1)。次に、2 つの前提 \(|a_n - \alpha| < \epsilon_1(i.3), |b_n - \beta| < \epsilon_2(i.4) \) を用いて

\[|a_n + b_n - (\alpha + \beta)| \leq |a_n - \alpha| + |b_n - \beta| \]
\[< \epsilon_1 + \epsilon_2 \]

\[^3 \text{この選択方法は、飯高 [1] とほぼ同じである。} \]
を得る（ステップ2）。最後に、\(\varepsilon_1 + \varepsilon_2 \leq \varepsilon \) を満たす \(\varepsilon_1, \varepsilon_2 \) を選ぶのが、例えば、

\[
\varepsilon_1 = \varepsilon_2 = \frac{\varepsilon}{2}
\]

とすればよい（ステップ3）。

2. 積^{15}

\(N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \varepsilon_1(P_1) \) と \(N_2 \leq n_2 \Rightarrow |b_{n_2} - \beta| < \varepsilon_2(P_2) \) から \(N \leq n \Rightarrow |a_n \cdot b_n - \alpha \cdot \beta| < \varepsilon(P) \) が導かれるように変数 \(\varepsilon_1, \varepsilon_2, N, n_1, n_2 \) 代入すべき値を選ぶ。3 条件

\[
N \leq n \Rightarrow N_1 \leq n_1 \\
N \leq n \Rightarrow N_2 \leq n_2 \\
|a_{n_1} - \alpha| < \varepsilon_1, |b_{n_2} - \beta| < \varepsilon_2 \Rightarrow |a_n \cdot b_n - \alpha \cdot \beta| < \varepsilon
\]

を満たすように選ぶ。

この場合、\(N \) は3つ目の条件に依存させる必要がなく、最初の2条件を満たすために \(N, n_1, n_2 \) を選べばよい。例えば、

\[
N = \max(N_1, N_2), n_1 = n, n_2 = n
\]

とすればよい。

3つ目の条件を満たす \(\varepsilon_1, \varepsilon_2 \) を3通りの方法2A, 2B, 2Cで求める。いずれも方法(i)である。

2A: まず、三角不等式(i.1)を用いて、

\[
|a_n \cdot b_n - \alpha \cdot \beta| = |(a_n - \alpha)(b_n - \beta) + \beta(a_n - \alpha) + \alpha(b_n - \beta)| \\
\leq |(a_n - \alpha)(b_n - \beta)| + |\beta||a_n - \alpha| + |\alpha||b_n - \beta|
\]

を得る（ステップ1）。次に、2つの前提 \(|a_n - \alpha| < \varepsilon_1(i.3), |b_n - \beta| < \varepsilon_2(i.4) \) を用いて

\[
|a_n \cdot b_n - \alpha \cdot \beta| \leq |(a_n - \alpha)(b_n - \beta)| + |\beta||a_n - \alpha| + |\alpha||b_n - \beta| \\
< \varepsilon_1 \varepsilon_2 + |\beta| \varepsilon_1 + |\alpha| \varepsilon_2
\]

を得る（ステップ2）。最後に、\(\varepsilon_1 \varepsilon_2 + |\beta| \varepsilon_1 + |\alpha| \varepsilon_2 \leq \varepsilon \) を満たす \(\varepsilon_1, \varepsilon_2 \) を選ぶのが、例えば、

\[
\varepsilon_1 = |\alpha| \varepsilon, \varepsilon_2 = |\beta| \varepsilon
\]

とおくと、

\[
|\alpha \beta|(\varepsilon^2 + 2\varepsilon) \leq \varepsilon
\]

なので、これを満たす \(\varepsilon \) を選べばよい。例えば、方程式 \(|\alpha \beta|(\varepsilon^2 + 2\varepsilon) = \varepsilon \) を解くと、

\[
\varepsilon^2 = -1 + \sqrt{1 + \frac{\varepsilon}{|\alpha \beta|}}
\]

が求まる。\(1 + \frac{\varepsilon}{|\alpha \beta|} > 1 \) より、\(\varepsilon \) は0以上である。したがって、

\[
\varepsilon_1 = |\alpha|(-1 + \sqrt{1 + \frac{\varepsilon}{|\alpha \beta|}}), \varepsilon_2 = |\beta|(-1 + \sqrt{1 + \frac{\varepsilon}{|\alpha \beta|}})
\]

^{4}2Bの選択方法は、飯高[1]とほぼ同じである。

^{5}一乗[2]では、2Cにおける(i.1), (i.8)を説明している。
とすればよい（ステップ3）。
2B: (9) では、2A と同じである。 (9) で \(\epsilon_1 = \epsilon_2 = \varepsilon'' \) とおくと、

\[
|a_n \cdot b_n - \alpha \cdot \beta| < \varepsilon''^2 + |\alpha| \varepsilon'' + |\beta| \varepsilon''
\]

であり、さらに、\(\varepsilon'' \leq 1 \) という条件を加えると、\(\varepsilon''^2 \leq \varepsilon'' \) となることから、

\[
|a_n \cdot b_n - \alpha \cdot \beta| < \varepsilon''(1 + |\alpha| + |\beta|)
\]

を得る（ステップ2）。次に、\(\varepsilon''(1 + |\alpha| + |\beta|) \leq \varepsilon \) を満たす \(\varepsilon'' \) を選ぶのがだ、例えば

\[
\varepsilon'' = \frac{\varepsilon}{1 + |\alpha| + |\beta|}
\]

とすればよい。したがって、

\[
\epsilon_1 = \epsilon_2 = \min(1, \frac{\varepsilon}{1 + |\alpha| + |\beta|}) \quad (i.9)
\]

とすればよい（ステップ3）。
2C: まず、三角不等式 (i.1) を用いて

\[
|a_n \cdot b_n - (\alpha \cdot \beta)| = |a_n b_n - \alpha b_n + \alpha b_n - \alpha \beta| \leq |b_n||a_n - \alpha| + |\alpha||b_n - \beta|
\]

を得る（ステップ1）。次に 2 つの前提 \(|a_n - \alpha| < \epsilon_1(i.3), |b_n - \beta| < \epsilon_2(i.4) \) と \(\{b_n\} \) の有界性 \(|b_n| < M(i.8) \) を用いて

\[
|a_n \cdot b_n - (\alpha \cdot \beta)| \leq |b_n||a_n - \alpha| + |\alpha||b_n - \beta| < M \epsilon_1 + |\alpha| \epsilon_2
\]

を得る（ステップ2）。最後に、\(M \epsilon_1 + |\alpha| \epsilon_2 \leq \varepsilon \) を満たす \(\epsilon_1, \epsilon_2 \) を選ぶのがだ、例えば、

\[
\epsilon_1 = \frac{\varepsilon}{2M}, \epsilon_2 = \frac{\varepsilon}{2|\alpha|}
\]

とすればよい（ステップ3）。

3. はさみうちの定理⁶

\(N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1(P_1), N_2 \leq n_2 \Rightarrow |c_{n_2} - \alpha| < \epsilon_2(P_2), \forall m(a_m \leq b_m \land b_m \leq c_m)(H_3) \)

から \(N \leq n \Rightarrow |b_n - \alpha| < \epsilon(P) \) が導かれるように変数 \(\epsilon_1, \epsilon_2, N, n_1, n_2, m \) に代入すべき項を選ぶ。

3 条件

\[
N \leq n \Rightarrow N_1 \leq n_1
N \leq n \Rightarrow N_2 \leq n_2
\]

\[
|a_{n_1} - \alpha| < \epsilon_1, |c_{n_2} - \alpha| < \epsilon_2, \forall m(a_m \leq b_m \land b_m \leq c_m) \Rightarrow |b_n - \alpha| < \epsilon
\]

⁶一乗 [2] では、方法 (ii) を説明している。
を満たすように選べばよい。
この場合、N は 3 つ目の条件に依存させる必要が多く、最初の 2 条件を満たすように N, n_1, n_2 を選べばよい。例えば、

$$N = \max(N_1, N_2), n_1 = n, n_2 = n$$

とすればよい。
3 つ目の条件を満たす ϵ_1, ϵ_2 を方法 (ii) で求める。まず、2 つの前提 $|a_n - a| < \epsilon_1, |c_n - a| < \epsilon_2$ を、それぞれ

$$\alpha - \epsilon_1 < a_n < \alpha + \epsilon_1$$
$$\alpha - \epsilon_2 < c_n < \alpha + \epsilon_2$$

と変形する。ここで $\forall m (a_m \leq b_m \land b_m \leq c_m) (H_3)$ を用いるには、$m = n$ とすればよい。よって

$$\alpha - \epsilon_1 < a_n \leq b_n \leq c_n < \alpha + \epsilon_2$$

を得る。次に $|b_n - a| < \epsilon$ を

$$\alpha - \epsilon < b_n < \alpha + \epsilon$$

と変形する。2 つの式を比べると、$\epsilon_1 = \epsilon_2 = \epsilon$ とすればよいとわかる。

4. 逆数78

$N_1 \leq n_1 \Rightarrow |a_{n_1} - a| < \epsilon_1 (P_1)$ から $N \leq n \Rightarrow |\frac{1}{a_n} - \frac{1}{\alpha}| < \epsilon (P)$ が導かれるように変数 ϵ_1, N, n_1 に代入すべき項を選ぶ。2 条件

$$N \leq n \Rightarrow N_1 \leq n_1$$

$$|a_{n_1} - a| < \epsilon_1 \Rightarrow |\frac{1}{a_n} - \frac{1}{\alpha}| < \epsilon$$

を満たすように選べばよい。
この場合、N は 2 つ目の条件に依存させる必要が多く、最初の条件を満たすように N, n_1 を選べばよい。例えば、

$$N = N_1, n_1 = n$$

とすればよい。
2 つ目の条件を満たす ϵ_1 を方法 (i),(ii) でそれぞれ求める。
4A: まず、

$$|\frac{1}{a_n} - \frac{1}{\alpha}| = \frac{|a_n - a|}{|a_n| |a|}$$

と変形する（ステップ 1）。次に、前提 $|a_n - a| < \epsilon_1 (i.3)$ と $|a| - \epsilon_1 < |a_n| (i.6)$ を用いて、

$$|\frac{1}{a_n} - \frac{1}{\alpha}| = \frac{|a_n - a|}{|a_n| |a|}$$

$$< \frac{\epsilon_1}{(|a| - \epsilon_1)|a|}$$

4A の選択方法は、飯高 [1] とほぼ同じである。
4B の選択の結果は、細井 [6] と一致している。

10
を得る。ここで \(\varepsilon_1 \leq \frac{|a|}{2} \) という条件を加えると、\(|a| - \varepsilon_1 \geq \frac{|a|}{2} \) だから、

\[
|\frac{1}{a_n} - \frac{1}{a}| < \frac{\varepsilon_1}{(|a| - \varepsilon_1)|a|} \leq \frac{2\varepsilon_1}{|a|^2}
\]

を得る（ステップ 2）。最後に、\(\frac{2\varepsilon_1'}{|a|^2} \leq \varepsilon \) を満たす \(\varepsilon_1' \) を選び、\(\varepsilon_1 = \min\left(\frac{|a|}{2}, \varepsilon_1'\right) \) とするのが、例えば、\(\varepsilon_1' = \frac{|a|^2\varepsilon}{2} \) とし、

\[
\varepsilon_1 = \min\left(\frac{|a|}{2}, \frac{|a|^2\varepsilon}{2}\right) \quad (i: 9)
\]

とすればよい（ステップ 3）。

4B: まず、前提 \(|a_n - a| < \varepsilon_1 \) を

\[
\alpha - \varepsilon_1 < a_n < \alpha + \varepsilon_1
\]

と変形し、さらに辺々の逆数をとる。

\(\alpha > 0 \) のとき: 右側の不等式について、\(a_n > 0, \alpha + \varepsilon_1 > 0 \) なので、

\[
\frac{1}{\alpha + \varepsilon_1} < \frac{1}{a_n}
\]

を得る。左側の不等式についても同様に考えるのだが、\(\alpha - \varepsilon_1 \) の符号が問題となる。そこで、\(\alpha - \varepsilon_1 > 0 \) （すなわち、\(\varepsilon_1 < |a| \)）という条件を加える。すると、

\[
\frac{1}{a_n} < \frac{1}{\alpha - \varepsilon_1}
\]

を得る。したがって、

\[
\frac{1}{\alpha + \varepsilon_1} < \frac{1}{a_n} < \frac{1}{\alpha - \varepsilon_1} \quad (10)
\]

を得る。

\(\alpha < 0 \) のとき: 上の場合と同様にして、\(\alpha + \varepsilon_1 < 0 \) （すなわち、\(\varepsilon_1 < |a| \)）という条件を加えると、(10) を得る。

したがって、いずれの場合も、条件 \(\varepsilon_1 < |a| \) のもとで (10) を得る。また、\(|\frac{1}{a_n} - \frac{1}{\alpha}| < \varepsilon \) を

\[
\frac{1 - \alpha\varepsilon}{\alpha} < \frac{1}{a_n} < \frac{1 + \alpha\varepsilon}{\alpha}
\]

と変形する。2 つの式を比べると、

\[
\frac{1 - \alpha\varepsilon}{\alpha} \leq \frac{1}{\alpha + \varepsilon_1} \text{ かつ } \frac{1}{\alpha - \varepsilon_1} \leq \frac{1 + \alpha\varepsilon}{\alpha}
\]

を得るに \(\varepsilon_1 \) を選べばよいとわかる。
\(\alpha > 0 \) のとき: \(1 - \alpha \varepsilon \leq 1 + \alpha \varepsilon \) であり、条件 \(\epsilon_1 < |\alpha| \) のもとで \(\alpha - \epsilon_1 > 0 \) なので、

(11) \iff (1 - \alpha \varepsilon)(\alpha + \epsilon_1) \leq \alpha \quad \text{かつ} \quad \alpha \leq (1 + \alpha \varepsilon)(\alpha - \epsilon_1) \\
\iff (1 - \alpha \varepsilon)\epsilon_1 \leq \alpha^2 \varepsilon \quad \text{かつ} \quad (1 + \alpha \varepsilon)\epsilon_1 \leq \alpha^2 \varepsilon \\
\iff (1 + \alpha \varepsilon)\epsilon_1 \leq \alpha^2 \varepsilon \\
\iff \epsilon_1 \leq \frac{\alpha^2 \varepsilon}{1 + \alpha \varepsilon}

を得る。したがって、条件

\(\epsilon_1 < \alpha \quad \text{かつ} \quad \epsilon_1 \leq \frac{\alpha^2 \varepsilon}{1 + \alpha \varepsilon} \)

を満たすように \(\epsilon_1 \) を選べばよい（i.9）。ここで、

\[\frac{\alpha^2 \varepsilon}{1 + \alpha \varepsilon} < \frac{\alpha^2 \varepsilon}{\alpha \varepsilon} = \alpha \]

だから、

\[\epsilon_1 \leq \frac{\alpha^2 \varepsilon}{1 + \alpha \varepsilon} \]

のみを満たすように \(\epsilon_1 \) を選べばよい。例えば、

\[\epsilon_1 = \frac{\alpha^2 \varepsilon}{1 + \alpha \varepsilon} = \frac{|\alpha|^2 \varepsilon}{1 + |\alpha| \varepsilon} \]

とすればよい。

\(\alpha < 0 \) のとき: \(1 + \alpha \varepsilon \leq 1 - \alpha \varepsilon \) であり、条件 \(\epsilon_1 < |\alpha| \) のもとで \(\alpha + \epsilon_1 < 0 \) なので、同様に、条件

\(\epsilon_1 < -\alpha \quad \text{かつ} \quad \epsilon_1 \leq \frac{\alpha^2 \varepsilon}{1 + (-\alpha) \varepsilon} \)

を満たすように \(\epsilon_1 \) を選べばよい（i.9）。ここで、

\[\frac{\alpha^2 \varepsilon}{1 + (-\alpha) \varepsilon} < \frac{\alpha^2 \varepsilon}{-\alpha \varepsilon} = \alpha \]

だから、

\[\epsilon_1 \leq \frac{\alpha^2 \varepsilon}{1 + (-\alpha) \varepsilon} \]

のみを満たすように \(\epsilon_1 \) を選べばよい。例えば、

\[\epsilon_1 = \frac{\alpha^2 \varepsilon}{1 + (-\alpha) \varepsilon} = \frac{|\alpha|^2 \varepsilon}{1 + |\alpha| \varepsilon} \]

とすればよい。

以上より、いずれの場合も

\[\epsilon_1 = \frac{|\alpha|^2 \varepsilon}{1 + |\alpha| \varepsilon} \]
とすればよい。

5. 平均9

\[N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1(P) \] から \(N \leq n \Rightarrow \left| \frac{a_1 + \cdots + a_n}{n} - \alpha \right| < \epsilon(P) \) が導かれるように変数 \(\epsilon_1, N, n_1 \) に代入すべき項を選び。

結果として、(3) の形で代入すべき項を選ぶことになるが、ここでは、その理由を示すために、まずは、(2) の形で考える。2 条件

\[N \leq n \Rightarrow N_1 \leq n_1 \]
\[N \leq n_1, |a_{n_1} - \alpha| < \epsilon_1 \Rightarrow \left| \frac{a_1 + \cdots + a_n}{n} - \alpha \right| < \epsilon \]

を満たすように選べばよい。2 つ目の条件を満たす \(N, \epsilon_1, \epsilon_2, n_1 \) を方法 (i) で求める。まず、三角不等式を用いて

\[
|\frac{a_1 + \cdots + a_n}{n} - \alpha| = |\frac{a_1 + \cdots + a_{N_1-1}}{n} + \frac{a_{N_1} + \cdots + a_n}{n} - \alpha|
= |(a_1 - \alpha) + \cdots + (a_{N_1-1} - \alpha) + (a_{N_1} - \alpha) + \cdots + (a_n - \alpha)|
\leq |(a_1 - \alpha) + \cdots + (a_{N_1-1} - \alpha)| + |a_{N_1} - \alpha| + \cdots + |a_n - \alpha|
\]

を得る。ここで、ステップ 2 を考えると、前提 \(|a_{n_1} - \alpha| < \epsilon_1 \) の \(n_1 \) には、\(n, n-1, \cdots \) などの複数の項を代入する必要性、すなわち、(3) の形で考える必要性がわかる。さらに、1 つ目の条件を考えると、\(n_1 \) には \(N_1, N_1+1, \cdots, n \) を代入すべきと考えられる。

以下、(3) の形で考える。上の考察から、\(n_1 \) に代入すべき項を \(N_1, N_1+1, \cdots, n \) と考え、変数 \(\epsilon_1, N \) に代入すべき項を、\((n - N_1 + 2) \) 個の条件

\[N \leq n \Rightarrow N_1 \leq n_1 \]
\[N \leq n \Rightarrow N_1 = N_1 + 1 \]
\[\vdots \]
\[N \leq n \Rightarrow N_1 \leq n \]
\[N \leq n, |a_{N_1} - \alpha| < \epsilon_1, \cdots, |a_n - \alpha| < \epsilon_1 \Rightarrow |\frac{a_1 + \cdots + a_n}{n} - \alpha| < \epsilon \]

を満たすように選ぶ。最初の \((n - N_1 + 1) \) 個の条件を満たすには、\(N \geq N_1 \) を満たすように \(N \) を選べばよい。

最後の条件を満たす \(N, \epsilon_1 \) を方法 (i) で求める。まず、上の (2) の形の考察より、

\[
|\frac{a_1 + \cdots + a_n}{n} - \alpha| \leq |(a_1 - \alpha) + \cdots + (a_{N_1-1} - \alpha)| + |a_{N_1} - \alpha| + \cdots + |a_n - \alpha|
\]

を得る（ステップ 1）。次に、前提 \(|a_{N_1} - \alpha| < \epsilon_1, \cdots, |a_n - \alpha| < \epsilon_1 \) を用いると、

\[
|\frac{a_1 + \cdots + a_n}{n} - \alpha| \leq \frac{|a_1 - \alpha| + \cdots + |a_{N_1-1} - \alpha|}{n} + \frac{|a_{N_1} - \alpha| + \cdots + |a_n - \alpha|}{n}
< \frac{|a_1 - \alpha| + \cdots + |a_{N_1-1} - \alpha|}{n} + \frac{\epsilon_1}{n} + \cdots + \frac{\epsilon_1}{n}
< \frac{|a_1 - \alpha| + \cdots + |a_{N_1-1} - \alpha|}{n} + \frac{n - N_1 + 1}{n} \epsilon_1
\]

9細井 [9] では、\(\epsilon_1 \) の選び方を説明している。
を得る。さらに、n を大きくすると \[\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right) \] が限りなく 0 に近づくことを用いる。具体的には、$\varepsilon_1 > 0$ に対し、ある番号 N_3 をとると、

\[N_3 \leq n \Rightarrow \left| \frac{\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right)}{n} \right| < \varepsilon_1 \]

すなわち

\[N_3 \leq n \Rightarrow \left| \frac{\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right)}{\varepsilon_1} \right| < n \]

が成り立つことを用いる。これを満たす N_3 は、

\[\left| \frac{\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right)}{\varepsilon_1} \right| < N_3(\leq n) \]

を満たすように選べばよいので、例えば

\[N_3 = \left\lfloor \frac{\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right)}{\varepsilon_1} \right\rfloor + 1 \]

とするよりよい。よって、$N \geq N_3$ とするとき、前提 $N \leq n(i)$ が成り立つ、

\[\left| \frac{a_1 + \cdots + a_n}{n} - \alpha \right| < \left| \frac{\left(a_1 - \alpha \right) + \cdots + \left(a_{n-1} - \alpha \right)}{n} \right| + \frac{n - N_1 + 1}{n} \varepsilon_1 \]

\[< \varepsilon_1 + \frac{n - N_1 + 1}{n} \varepsilon_1 \]

を得る。1 ≤ N_1 から $n - N_1 + 1 \leq n$ なので、

\[\left| \frac{a_1 + \cdots + a_n}{n} - \alpha \right| < \varepsilon_1 + \frac{n - N_1 + 1}{n} \varepsilon_1 \]

\[< \varepsilon_1 + \varepsilon_1 = 2\varepsilon_1 \]

を得る（ステップ 2）。最後に $2\varepsilon_1 \leq \varepsilon$ を満たす ε_1 選ぶのだが、例えば、

\[\varepsilon_1 = \frac{\varepsilon}{2} \]

とすればよい（ステップ 3）。

$N \geq N_1$ であれば最初の $(n - N_1 + 1)$ 個の条件を満たし、$N \geq N_3$ であれば最後の条件を満たすので、求める N は \(\max(N_1, N_3) \) となる。

6. 部分列

$N_1 \leq n \Rightarrow |a_{m_1} - \alpha| < \varepsilon_1(P_1), \forall m(m \leq k_{m_1})(H_3)$ から $N \leq n \Rightarrow |a_{k_n} - \alpha| < \varepsilon(P')$ が導かれるように変数 $\varepsilon_1, N_1, n_1, m$ に代入すべき項を選ぶ。2 条件

\[\forall m(m \leq k_{m_1}), N \leq n \Rightarrow N_1 \leq n_1 \]

\[N \leq n, |a_{m_1} - \alpha| < \varepsilon_1 \Rightarrow |a_{k_n} - \alpha| < \varepsilon \]

を得る。
2つの目的条件を満たす \(\epsilon_1, n_1 \) は、例えば \((\epsilon_1, n_1) = (\epsilon, k_n) \) である。このとき1つの目的条件は、

\[
\forall m(m \leq k_m), N \leq n \Rightarrow N_1 \leq k_n
\]

となる。\((H_3)\)を用いるには \(m = n \) とすればよい。さらに、\(N_1 \leq N \) を満たすように \(N \) を選ぶと、

\[
n \leq k_n, N \leq n \Rightarrow N_1 \leq N \leq n \leq k_n
\]

\[
\Rightarrow N_1 \leq k_n
\]

となり、1つの目的条件を満たす。具体的には、\(N = N_1 \) とすればよい。

7. コーシー列

\(N_1 \leq n_1 \land N_1 \leq n_1' \Rightarrow |a_{n_1} - a_{n_1'}| < \epsilon_1(P_1), N_2 \leq n_2 \Rightarrow |a_{k_{n_2}} - a| < \epsilon_2(P_2), \forall m(m \leq k_m)(H_3) \)から \(N \leq n \Rightarrow |a_n - a| < \epsilon(P) \) が導かれるように変数 \(\epsilon_1, \epsilon_2, N, n_1, n_1', n_2, m \) に代入すべき項を選ぶ。3条件

\[
\forall m(m \leq k_m), N \leq n \Rightarrow N_1 \leq n_1 \land N_1 \leq n_1'
\]

\[
N \leq n \Rightarrow N_2 \leq n_2
\]

\[
\forall m(m \leq k_m), N \leq n, |a_{n_1} - a_{n_1'}| < \epsilon_1, |a_{k_{n_2}} - a| < \epsilon_2 \Rightarrow |a_n - a| < \epsilon
\]

を満たすように選べばよい。

この場合、\(N \) は3つの目的条件に依存させること必要はなく、最初の2条件を満たすように \(N \) を選べばよい。例えば、

\[
N = \max(N_1, N_2)
\]

である。また、最初の2条件を満たす \(n_1, n_1', n_2 \) は、\(n_1 \geq n, n_1' \geq n, n_2 \geq n \) を満たしていていればよい(3)。

3つの目的条件を満たす \(\epsilon_1, \epsilon_2, n_1, n_1', n_2 \) を方法(i)で求める。まず、三角不等式(i.1)を用いると

\[
|a_n - a| = |a_n - a_{n'} + a_{n'} - a| \\
\leq |a_n - a_{n'}| + |a_{n'} - a|
\]

を得る。2つの前提 \(|a_{n_1} - a_{n_1'}| < \epsilon_1(i.3), |a_{k_{n_2}} - a| < \epsilon_2(i.4) \) を用いるためには、\(n_1 = n, n_1' = n_1 = k_{n_2} \) とすればよい。\(n_2 \) は、\(n_2 = n \) とすればよい(すなわち、\((n, n_1', n_2) = (n, k_n, n)\))。具体的には、

\[
|a_n - a| \leq |a_{n_1} - a_{n_1'}| + |a_{k_n} - a| \\
< \epsilon_1 + \epsilon_2
\]

を得る（ステップ1、2）。次に、\(\epsilon_1 + \epsilon_2 \leq \epsilon \) を満たす \(\epsilon_1, \epsilon_2 \) を選ぶのだが、例えば

\[
\epsilon_1 = \epsilon_2 = \frac{\epsilon}{2}
\]

とすればよい（ステップ3）。

最後に、\(m = n \) のときの\((H_3)\)、すなわち、\(n \leq k_n \) を用いると、\((*)\)から \((n_1, n_1', n_2) = (n, k_n, n)\) が最初の2条件も満たすことがわかる。
8. 同符号

\[N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1(P_1) \text{ から } N \leq n \Rightarrow (\alpha > 0 \Rightarrow \alpha > 0) \land (\alpha < 0 \Rightarrow \alpha < 0)(P) \]

が導かれるように変数 \(\epsilon_1, N, n_1 \) に代入すべき項を選ぶ。2 条件

\[N \leq n \Rightarrow N_1 \leq n_1 \]

\[|a_{n_1} - \alpha| < \epsilon_1 \Rightarrow (\alpha > 0 \Rightarrow \alpha > 0) \land (\alpha < 0 \Rightarrow \alpha < 0) \]

を満たすように選べばよい。

この場合、\(N \) と \(n_1 \) は 2 つ目の条件に依存させる必要がなく、1 つ目の条件を満たすように \(N, n_1 \)
を選ぶ。例えば、

\[N = N_1, n_1 = n \]

とすればよい。

2 つ目の条件を満たす \(\epsilon_1 \) を方法(ii) で求める。
\(\alpha > 0 \) のとき: 前提 \(|a_n - \alpha| < \epsilon_1 \) より、\(\alpha - \epsilon_1 < a_n \) を得る。よって、\(0 \leq \alpha - \epsilon_1 \) を満たす \(\epsilon_1 > 0 \)
を選ぶ。\(\alpha > 0 \) より、例えば、

\[\epsilon_1 = \alpha = |\alpha| \]

とすればよい。
\(\alpha < 0 \) のとき: 前提 \(|a_n - \alpha| < \epsilon_1 \) より、\(a_n < \alpha + \epsilon_1 \) を得る。よって、\(\alpha + \epsilon_1 \leq 0 \) を満たす \(\epsilon_1 \) を
選べばよい。\(\alpha < 0 \) より、\(-\alpha > 0 \) であるから、例えば、

\[\epsilon_1 = -\alpha = |\alpha| \]

とすればよい。

以上より、いずれの場合も、\(\epsilon_1 = |\alpha| \) とすればよい。

9. 一意性\(^{11}\)

\[N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1(P_1), N_2 \leq n_2 \Rightarrow |a_{n_2} - \beta| < \epsilon_2(P_2), \alpha \neq \beta(H_3) \text{ から } \perp (P) \text{ が導かれるように変数 } \epsilon_1, \epsilon_2, n_1, n_2 \text{ に代入すべき項を選ぶ。3 条件 } \]

\[\Rightarrow N_1 \leq n_1 \]

\[\Rightarrow N_2 \leq n_2 \]

\[|a_{n_1} - \alpha| < \epsilon_1, |a_{n_2} - \beta| < \epsilon_2, \alpha \neq \beta \Rightarrow \perp \]

を満たすように選べばよい。

\(n_1, n_2 \) は、3 つ目の条件より、\(n_1 = n_2 \) であることが望ましい。他の 2 つの条件も満たすには、
例えば

\[n_1 = n_2 = \max(N_1, N_2) \]

\(^{11}\)この定理は、一乗 [2] で用いている。
とすればよい。

3つ目の条件を満たす\(\epsilon_1, \epsilon_2 \) を方法 (i) で求める。
\(\alpha > \beta \) のとき: まず、三角不等式 (i.1) を用いると,
\[
\alpha - \beta = |\alpha - \beta| = |\alpha - a_{n_1} + a_{n_2} - \beta|
\leq |a_{n_1} - \alpha| + |b_{n_2} - \beta|
\]
を得る（ステップ 1）。
次に、2つの前提 \(|a_{n_1} - \alpha| < \epsilon_1 (i.3), |a_{n_2} - \beta| < \epsilon_2 (i.4) \) を用いると
\[
\alpha - \beta \leq |a_{n_1} - \alpha| + |b_{n_2} - \beta| < \epsilon_1 + \epsilon_2
\]
を得る（ステップ 2）。
最後に、矛盾（ここでは \(\alpha - \beta < \alpha - \beta \) ）を導きたいので,
\[
\epsilon_1 + \epsilon_2 = \alpha - \beta
\]
を満たす \(\epsilon_1, \epsilon_2 \) を選ぶのだが、例えば,
\[
\epsilon_1 = \epsilon_2 = \frac{\alpha - \beta}{2} = \frac{|\alpha - \beta|}{2}
\]
とすればよい。

\(\beta > \alpha \) のとき: 上の場合と同様に考えると,
\[
\epsilon_1 = \epsilon_2 = \frac{\beta - \alpha}{2} = \frac{|\alpha - \beta|}{2}
\]
とすればよいことがわかる。
以上より、いずれの場合も,
\[
\epsilon_1 = \epsilon_2 = \frac{|\alpha - \beta|}{2}
\]
とすればよい。

10. 上限\(^{12}\)
\(N_1 \leq n_1 \Rightarrow |a_{n_1} - \alpha| < \epsilon_1 (P_1) a_{n_2} \leq b (P_2), \alpha > b (H_3) \) から \(\perp (P) \) が導かれるように変数 \(\epsilon_1, n_1, n_2 \) に代入すべき項を選ぶ。2 条件
\[
\Rightarrow N_1 \leq n_1
\]
\[
|a_{n_1} - \alpha| < \epsilon_1, a_{n_2} \leq b, \alpha > b \Rightarrow \perp
\]
を満たすように選べばよい。1つ目の条件を満たすには,
\[
n_1 = N_1
\]
とすればよい。

2つ目の条件を満たす \(\epsilon_1, n_2 \) を方法 (ii) で求める。
\(^{12}\)この代入方法は、一乗 [2] で用いている。
前提 \(|a_{N_1} - a| < \varepsilon_1\) より、\(a - \varepsilon_1 < a_{N_1}\) を得る。\(a_{n_2} \leq \beta(P_2)\) を用いるには、

\[n_2 = N_1 \]

とすればよい。\(a - \varepsilon_1 < a_{N_1}\) と条件 \(P_2\)（すなわち、\(a_{N_1} \leq b\)）より、

\[a - \varepsilon_1 < b \]

を得る。矛盾（ここでは \(a - \varepsilon_1 < a - \varepsilon_1\)）を導きたいので、\(a - \varepsilon_1 = b\) を満たす \(\varepsilon_1\) を選ぶ。すなわち

\[\varepsilon_1 = a - b \]

とすればよい。

11. 数列 \(\left\{ \frac{1}{n} \right\}\) の収束

\[N \leq n \Rightarrow \left| \frac{1}{n} - \varepsilon \right| < \varepsilon(P) \]

を満たすように変数 \(N\) に代入すべき項を選ぶ。\(\left| \frac{1}{n} \right| < \varepsilon\) は \(\frac{1}{c} < n\) と同値であるから、例えば

\[N = \left\lfloor \frac{1}{c} \right\rfloor + 1 \]

とすればよい。

参考文献

[1] 飯高茂：『微積分と集合　そのまま使える答えの書き方』。講談社サイエンティフィック、東京、1999。

[2] 一楽重雄：『集合と位相　そのまま使える答えの書き方』。講談社サイエンティフィック、東京、2001。

[3] 鹿島亮：『数理理論学』。朝倉書店、東京、2009。

[4] 高木貞治：『解析概論』。岩波書店、東京、2010。

[5] 田島一郎：『イプシロン・デルタ』。共立出版、東京、1978。

[6] 細井勉：『わがるイプシロン・デルタ』。日本評論社、東京、1995。

\[^{13}\] 細井 [6] で、\(N\) の選び方を説明している。ただし、そこでは \(N = \left\lfloor \frac{1}{c} \right\rfloor + 1\) としている。