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Abstract. We discuss two constructions of non-equivalent modal formulas for normal modal logics. One
is basically same as the dual of the construction in Moss [Mos07] and the other is the construction in
[Sas05], [Sas08] and [Sas09]. The former is useful for any normal modal logics, while as in [Sas09], the
latter has much more information for modal logic S4. Here we define two constructions in sequent style
and discuss the difference between them.

1 Preliminary

In the present section, we introduce modal formulas and normal modal logics.

Formulas are constructed from ⊥ (contradiction) and the propositional variables p1, p2, · · · by using
logical connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication) and 2 (necessitation). We use upper
case Latin letters, A, B,C, · · ·, possibly with suffixes, for formulas. Also we use Greek letters, Γ,∆, · · ·,
possibly with suffixes, for finite sets of formulas. The expressions 2Γ and Γ2 denote the sets {2A | A ∈ Γ}
and {2A | 2A ∈ Γ}, respectively. For a formula A, the depth d(A) of A, is defined as

d(pi) = d(⊥) = 0,
d(B ∧ C) = d(B ∨ C) = d(B ⊃ C) = max{d(B), d(C)},
d(2B) = d(B) + 1.

Let ENU be an enumeration of the formulas. For a non-empty finite set Γ of formulas, the expressions∧
Γ and

∨
Γ

denote the formulas

(· · · ((A1 ∧ A2) ∧ A3) · · · ∧ An) and (· · · ((A1 ∨ A2) ∨ A3) · · · ∨ An),

respectively, where {A1, · · · , An} = Γ and Ai occurs earlier than Ai+1 in ENU. Also the expressions∧
∅ and

∨
∅

denote the formulas ⊥ ⊃ ⊥ and ⊥, respectively.
The set of propositional variables p1, · · · , pm (m ≥ 1) is denoted by V and the set of formulas

constructed from V and ⊥ is denoted by F. Also for any n = 0, 1, · · ·, we define Fn as

Fn = {A ∈ F | d(A) ≤ n}.

Below we also use n for natural numbers 0, 1, · · ·.

By a sequent, we mean the expression (Γ → ∆). For brevity’s sake, we often write Γ → ∆ instead of
(Γ → ∆) and we write

A1, · · · , Ai,Γ1, · · · , Γj → ∆1, · · · , ∆k, B1, · · · , Bℓ

instead of
{A1, · · · , Ai} ∪ Γ1 ∪ · · · ∪ Γj → ∆1 ∪ · · · ∪ ∆k ∪ {B1, · · · , Bℓ}.

1The work was supported by Nanzan University Pache Research Subsidy I-A-2 for Academic Year 2008.
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We use upper case Latin letters X, Y, Z, · · ·, possibly with suffixes, for sequents. For a sequent Γ → ∆,
we define ant(Γ → ∆) and suc(Γ → ∆), the antecedent and the succedent of Γ → ∆, respectively, as
follows:

ant(Γ → ∆) = Γ, suc(Γ → ∆) = ∆.

Also for a sequent X and for a set S of sequents, we define for(X) and for(S) as follows:

for(X) =
{ ∧

ant(X) ⊃
∨

suc(X) if Γ ̸= ∅∨
∆ if Γ = ∅,

for(S) = {for(X) | X ∈ S}.

By LK, we mean the sequent system for the classical propositional logic given by Gentzen [Gen35].
Here we do not use ¬ as a primary connectives, so we use the additional axion ⊥ → instead of the
inference rules (¬ →) and (→ ¬).

By K, we mean the sequent system obtained from LK by adding the inference rule

Γ → ∆
2Γ → 2∆

(2).

By a normal modal logic, we mean a sequent system obtained by K by adding sequents as axioms. We
use L, possibly with suffixes, for normal modal logics.

We write X ∈ L if X is provable in L. We write A ≡L B instead of → (A ⊃ B) ∧ (B ⊃ A) ∈ L. Also
for [A], [B] ∈ F/ ≡L, we write [A] ≤L [B] instead of A → B ∈ L. Then structure ⟨Fn/ ≡L,≤L⟩ expresses
mutual provability of formulas.

2 The first construction

We construct non-equivalent formulas in Definition 2.1. The dual of the construction is basically same as
[Mos07], which is based on Fine [Fin75]. The construction is useful to clarify the structure ⟨Fn/ ≡L,≤L

since Theorem 2.2 below holds. Also Theorem 2.3 clarify the behavior of connectives. Most of the proof
of two theorems here can be given by the results in [Mos07] and [Sas09]. Here we mainly prove Theorem
2.3(4), in other words, clarify the behavior of 2.

Definition 2.1 The sets EDL(n) of sequents and the mappings NextL, provL, nextL are defined
inductively as follows:

EDL(0) = {(V − V1 → V1) | V1 ⊆ V},
NextL(X) = {(2Γ,ant(X) → suc(X), 2∆) | Γ ∪ ∆ = for(EDL(k)), Γ ∩ ∆ = ∅}, for X ∈ EDL(k),
provL(X) = {Y ∈ NextL(X) | Y ̸∈ L}, for X ∈ EDL(k),
nextL(X) = Next(X) − provL(X), for X ∈ EDL(k),
EDL(k + 1) =

∪
X∈EDL(k)

nextL(X).

Theorem 2.2
(1) Fn/ ≡L= {[

∧
for(S))] | S ⊆ EDL(n)}.

(2) For subsets S1 and S2 of EDL(n),

S1 ⊆ S2 if and only if
∧

for(S2) →
∧

for(S1) ∈ S4.

Theorem 2.3
(1) ⊥ ≡L

∧
for(EDL(n)).

(2) pi ≡L

∧
for({X ∈ EDL(n) | pi ∈ suc(X)}).

(3) For any finite subsets S1 and S2 of EDL(n),
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(3.1)
∧

for(S1) ∧
∧

for(S2) ≡L

∧
for(S1 ∪ S2),

(3.2)
∧

for(S1) ∨
∧

for(S2) ≡L

∧
for(S1 ∩ S2),

(3.3)
∧

for(S1) ⊃
∧

for(S2) ≡L

∧
for((ED∗

L(n) − S1) ∩ S2).
(4) For any finite subset S of EDL(n),

2
∧

for(S) ≡L

∧
for({Y ∈ EDL(k + 1) | 2for(X) ∈ suc(Y ), X ∈ S}).

We prove Theorem 2.3(4), and briefly show the other parts of theorems. The following two lemmas
and corollary were shown in [Sas09] in the case that L is S4, the normal modal logic obtained by adding
two axioms 2A → A and 2A → 22A to K. The proof in [Sas09] can also show the case that L is another
normal modal logic.

Lemma 2.4
(1) None of the members in EDL(n) is provable in L.
(2) For any X, Y ∈ EDL(n), X ̸= Y implies for(X) ∨ for(Y ) ∈ L.

Lemma 2.5 Let Σ, Γ, ∆ be finite sets of formulas. Then for any subset Σ′ ⊆ Σ,

2Σ′,Λ, Γ → ∆ ∈ L,

where Λ = {for(2Φ, Γ → ∆, 2Ψ) | Φ ∪ Ψ = Σ, Φ ∩ Ψ = ∅}.

Corollary 2.6 For any X,Y ∈ EDL(n),
(1) for(nextL(X)) → for(X) ∈ L,
(2)

∧
for(nextL(X)) ≡L for(X),

(3) {for(Z) | Z ∈ nextL(X), 2for(Y ) ∈ suc(Z)},ant(X) → suc(X), 2for(Y ) ∈ L.

Using Lemma 2.4 and Corollary 2.6(2), Theorem 2.3(1), Theorem 2.3(2) and Theorem 2.3(3) can be
shown as in [Sas08] and [Sas09]. By Theorem 2.3, Theorem 2.2 can be shown as in [Sas08] and [Sas09].
By the following lemma, we obtain Theorem 2.3(4).

Lemma 2.7 For any X ∈ EDL(n),

for({Y ∈ EDL(n + 1) | 2for(X) ∈ suc(Y )}) → 2for(X) ∈ L.

Proof. By Corollary 2.6(3), we have

{for(Y ) | Y ∈ nextL(Z), 2for(X) ∈ suc(Y )} → for(Z), 2for(X) ∈ L.

for any Z ∈ EDL(n). So,∪
Z∈EDL(n)

{for(Y ) | Y ∈ nextL(Z),2for(X) ∈ suc(Y )} →
∧

for(EDL(n)), 2for(X) ∈ L.

In other words,

for({Y ∈ EDL(n + 1) | 2for(X) ∈ suc(Y )}) →
∧

for(EDL(n)), 2for(X) ∈ L.

Using Theorem 2.3(1), we obtain the lemma. ⊣
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3 The second construction

We construct another non-equivalent formulas in Definition 3.1. The construction is introduced in [Sas05],
[Sas08] and [Sas09] and has much more information on normal modal logics containing S4. [Sas09]
considered S4 and proved the corresponding results to two theorems in the previous section. Also it is
also useful to clarify infinite structure ⟨F/ ≡S4,≤S4⟩, and useful to construct prov∗

S4(X) defined below
without using the provability of S4. So, it is natural to consider whether the corresponding theorems
hold for any other normal modal logics. In the present section, using the results in the previous sections,
we give another proof of theorems in [Sas09] and consider such problem.

Definition 3.1 The subsets GL(n) and G∗
L(n) of sequents, and the mappings Next∗L, prov∗

L, next∗L
are defined inductively as follows:

GL(0) = {(V − V1 → V1) | V1 ⊆ V},
Next∗L(X) = {(2Γ,ant(X) → suc(X), 2∆) | Γ ∪ ∆ = for(GL(k)), Γ ∩ ∆ = ∅}, for X ∈ GL(k),
prov∗

L(X) = {Y ∈ Next∗L(X) | Y ̸∈ L}, for X ∈ GL(k),
next∗L(X) = Next∗(X) − prov∗

L(X), for X ∈ GL(k),
GL(k + 1) =

∪
X∈GL(k)−G∗

L(k)

next∗L(X),

G∗
L(k+1) = {X ∈ GL(k+1) | (ant(X))2 ⊆ (ant(Y ))2 implies (ant(X))2 = (ant(Y ))2, for any Y ∈

GL(k + 1)}.

Definition 3.2 We define ED∗
L(n) as follows:

ED∗
L(n) = GL(n) ∪

n−1∪
k=0

G∗
L(k).

By sketching the proof in [Sas09], the following two theorems hold.

Theorem 3.3 Let L be a normal modal logic containing S4.
(1) Fn/ ≡L= {[

∧
for(S))] | S ⊆ ED∗

L(n)}.
(2) For subsets S1 and S2 of ED∗

L(n),

S1 ⊆ S2 if and only if
∧

for(S2) →
∧

for(S1) ∈ L.

Theorem 3.4 Let L be a normal modal logic containing S4.
(1) ⊥ ≡L

∧
for(ED∗

L(n)).
(2) pi ≡L

∧
for({X ∈ ED∗

L(n) | pi ∈ suc(X)}).
(3) For any finite subsets S1 and S2 of ED∗

L(n),
(3.1)

∧
for(S1) ∧

∧
for(S2) ≡L

∧
for(S1 ∪ S2),

(3.2)
∧

for(S1) ∨
∧

for(S2) ≡L

∧
for(S1 ∩ S2),

(3.3)
∧

for(S1) ⊃
∧

for(S2) ≡L

∧
for((ED∗

L(n) − S1) ∩ S2).

(4) For any finite subset S of EDk, 2
∧

for(S) ≡L

∧
for(S1 ∪ S2), where

S1 = {Y ∈ G∗(i) | (ant(X))2 = (ant(Y ))2, X ∈ S ∩ G∗(i), 0 ≤ i ≤ k},
S2 = {Y ∈ EDk+1 | 2for(X) ∈ suc(Y ), X ∈ S}.

Also we can show the two theorems using the results in the previous section.

Definition 3.5 For any X ∈ GL(n), we define C(X) and nL(X) as follows:
C(X) = {Y ∈ GL(n) | (ant(X))2 = (ant(Y ))2},
nL(X) = (2for(GL(n) − C(X)),ant(X) → suc(X), 2for(C(X))).
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Definition 3.6 We define BGL(n) as follows:

BGL(n) = V ∪
n−1∪
i=0

2for(GL(i)).

The following two lemmas were shown in [Sas09] in the case that L = S4, and we find that the same
proof can show the two lemmas.

Lemma 3.7 For any X ∈ GL(n), ant(X) ∪ suc(X) = BGL(n) and ant(X) ∩ suc(X) = ∅.

Lemma 3.8 Let L be a normal modal logic containing S4 and let X and Y be sequents in GL(n)
satisfying (ant(X))2 = (ant(Y ))2. Then

(1) X ∈ G∗
L(n) if and only if Y ∈ G∗

L(n),
(2) X ∈ G∗

L(n) implies 2for(Y ) → for(X) ∈ L.

Lemma 3.9 (Ohnishi and Matsumoto [OM57]) Let L be a normal modal logic containing S4. The the
following two inference rule hold:

A,Γ → ∆
2A,Γ → ∆

(2 →)
2Γ → A

2Γ → 2A
(→ 2).

Lemma 3.10 Let L be a normal modal logic containing S4 and X be a sequent in G∗
L(n).

(1) (ant(X))2 → 2for(Y ) ∈ L, for any Y ∈ (
∞∪

k=n

GL(k)) − C(X),

(2) for(X) ≡L for(nL(X)),
(3) next∗L(X) = {nL(X)}.

Proof. For (1). Let Y be a sequent in GL(n) − C(X). Then we have (ant(X))2 ̸= (ant(Y ))2. Using
X ∈ G∗

L(n), we have (ant(X))2 ̸⊆ (ant(Y ))2. So, there exists a formula 2A ∈ (ant(X))2 − (ant(Y ))2.
Using Lemma 3.7, we have 2A ∈ (ant(X))2 ∩ (suc(Y ))2. Hence

(ant(X))2 → for(Y ) ∈ L.

Using Lemma 3.9, we have
(ant(X))2 → 2for(Y ) ∈ L. (1.1)

So, (1.1) holds for any Y ∈ GL(n)−C(X). Using Lemma 3.8(1), (1.1) holds for any Y ∈ GL(n)−G∗
L(n).

Since 2for(Z) → 2for(Z⊕) ∈ L, for any Z⊕ ∈ next∗L(Z), using an induction on i(> 0), (1.1) holds for
any Y ∈ GL(n + i). Hence we obtain (1).

For (2). It is easily seen that
for(X) → for(nL(X)) ∈ L.

So, we have only to show
for(nL(X)) → for(X) ∈ L. (2.1)

By (1),
ant(X) → B ∈ L for any B ∈ ant(nL(X)). (2.2)

On the other hand, by Lemma 3.8, we have

B → for(X) ∈ L for any B ∈ suc(nL(X)). (2.3)

By (2.2) and (2.3), we have
ant(X), for(nL(X)) → for(X) ∈ L.

Hence we obtain (2.1).
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For (3). By (2), we have nL(X) ̸∈ L, and so,

next∗L(X) ⊇ {nL(X)}.

We show
next∗L(X) ⊆ {nL(X)}.

Suppose that

2for(GL(n) − ∆),ant(X) → suc(X),2for(∆) ∈ next∗L(X) − {nL(X)}. (2.1)

We note that ∆ ⊆ GL(n) and ∆ ̸= C(X).
We divide the cases.
The case that ∆ ̸⊆ C(X). There exists a sequent Z ∈ ∆ − C(X) ⊆ GL(n) − C(X). So, using (1),

(ant(X))2 → 2for(Z) ∈ L.

Hence
2for(GL(n) − ∆),ant(X) → suc(X),2for(∆) ∈ L,

which is in contradiction with (2.1).
The case that ∆ ̸⊇ C(X). There exists a sequent Z ∈ C(X) − ∆ ⊆ C(X). So, using Lemma 3.8, we

have 2for(Z) → for(X) ∈ L. Hence

2for(GL(n) − ∆),ant(X) → suc(X),2for(∆) ∈ L,

which is in contradiction with (2.1). ⊣

For sets S1 and S2 of sequents, we write S1
∼=L S2 if there exists a one-to-one mapping f from S1

onto S2 satisfying for(X) ≡L for(f(X)) for any X ∈ S1.

Lemma 3.11 Let L be a normal modal logic containing S4. Then

EDL(n) ∼=L ED∗
L(n).

Proof. We use an induction on n.
Basis(n = 0) is clear from EDL(0) = ED∗

L(0).
Induction step(n > 0). By the induction hypothesis, there exists a one-to-one mapping f from

EDL(n − 1) onto ED∗
L(0) satisfying

for(X) ≡L for(f(X)) for any X ∈ EDL(n − 1). (1)

We define a mapping f ′ from EDL(n) to the set of sequents as follows:

f ′(X⊕) = (2for({f(Y ) | Y ∈ S1}),ant(f(X)) → suc(f(X)), 2for({f(Y ) | Y ∈ S2})),

where
X⊕ = (2for(S1),ant(X) → suc(X), 2for(S2)) ∈ EDL(n), (2)

for some X ∈ EDL(n − 1) and subsets S1 and S2 of EDL(n − 1). We note

f(X) ∈ EDL(n − 1) −
n−1∪
i=0

G∗
L(i) implies f ′(X⊕) ∈ EDL(n)

and by (1) and Lemma 2.4(1), we have

for(X⊕) ≡L for(f ′(X⊕)) (3)
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and
f ′(X⊕) ̸∈ L (4)

So, we can define a mapping g from EDL(n) to ED∗
L(n) as follows:

g(X⊕) =

 f(X) if f(X) ∈
n−1∪
i=0

G∗
L(i)

f ′(X⊕) otherwise,

where X⊕ is a sequent as in (2).
We show

for(X⊕) ≡L for(g(X⊕)) for any X⊕ ∈ ED1. (5)

We use X⊕ as in (2). If f(X) ̸∈
n−1∪
i=0

G∗
L(i), then by (3), we have

for(X⊕) ≡L for(f ′(X⊕)) = for(g(X⊕)).

If f(X) ∈ G∗
L(n − 1), then by (3), (4), Lemma 3.10(3) and Lemma 3.10(2), we have

for(X⊕) ≡L for(f ′(X⊕)) = for(n(f(X))) ≡L for(f(X)) = for(g(X⊕)).

So, we assume that f(X) ∈
n−2∪
i=0

G∗
L(i). By (4) and Lemma 3.10(1), we have

f ′(X⊕) = (2for(ED∗
L(n − 1)),ant(f(X)) → suc(f(X))).

Using Lemma 3.10(1), again,
for(f ′(X⊕)) ≡L for(f(X)).

So, using (3),
for(X⊕) ≡L for(f ′(X⊕)) ≡L for(f(X)) = for(g(X⊕)).

Hence we obtain (5).
By Theorem 2.2(3) and the above (5), we have that g is one-to-one.
We show that g is onto. Let Z⊕ be a sequent in ED∗

L(n). If Z⊕ ∈ GL(n), then there exists a sequent
Z ∈ GL(n − 1) − G∗

L(n − 1) such that Z⊕ ∈ next∗L(Z), and so, Z ′
⊕ defined as

Z ′
⊕ = (2for({f−1(Y ) | 2for(Y ) ∈ ant(Z⊕) ∩ 2for(GL(n − 1)})),ant(f−1(Z))

→ suc(f−1(Z)), 2for({f−1(Y ) | 2for(Y ) ∈ suc(Z⊕) ∩ 2for(GL(n − 1))}))

satisfies
g(Z ′

⊕) = Z⊕ and Z ′
⊕ ∈ EDL(n),

using the properties of f . If Z⊕ ∈ G∗
L(n − 1), then Z ′

⊕ defined as

Z ′
⊕ = (2for({f−1(Y ) | 2for(Y ) ∈ ant(n(Z⊕)) ∩ 2for(GL(n − 1)})),ant(f−1(Z⊕))

→ suc(f−1(Z⊕)), 2for({f−1(Y ) | 2for(Y ) ∈ suc(n(Z⊕)) ∩ 2for(GL(n − 1))}))

satisfies
g(Z ′

⊕) = Z⊕ and Z ′
⊕ ∈ EDL(n),

using the properties of f and Lemma 3.10(2). If Z⊕ ∈
n−2∪
i=0

G∗
L(i), then Z ′

⊕ defined as

Z ′
⊕ = (2for(EDL(n − 1)),ant(f−1(Z⊕)) → suc(f−1(Z⊕)))

satisfies
g(Z ′

⊕) = Z⊕ and Z ′
⊕ ∈ EDL(n),
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using the properties of f and Lemma 3.10(1). ⊣

By Theorem 2.2 and Lemma 3.11, we obtain Theorem 3.2.

We note that property of S4 is used only in Lemma 3.8(2) and Lemma 3.10(1). So, considering these
two lemmas, there is a possibility to obtain the corresponding results to [Sas09] for a normal modal logic
without containing S4.
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