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Abstract

We look at a consistency of set theory where club guessing fails but the continuum hypothesis holds.
Its proof due to S. Shelah takes many new ideas. Among others, we prepare a preliminary note to deal with
a kind of properness of higher order.

Introduction

In [S1] and [S2], consistencies of statements together with the continuum hypothesis (CH) are dealt.
Starting in the ground model V where we assume CH, we construct models V [G] of set theory via iterated
forcing. We keep the least uncountable cardinal ω1 between V and the extensions V [G]. We add no new
reals over V so that CH remains in V [G] while forcing what we want in V [G].

In this note we take a look at a model where club guessing (CG) fails and CH holds. This construction
has a long history. Please see [S1] and [S2]. Recent related works include [Sa] and [M]. In [Sa], the preservation
of ¬ CG under Cohen forcing is shown. Hence it implies a consistency of set theory where ¬ CG holds while
2ω is large. [M] considers a combinatorial principle which implies both ¬ CG and 2ω = 2ω1 > ω1.

We write this note based on a small fragment of [S2]. What we deal with is sets of countable elementary
substructures of various Hχ and their internal structures. What appears to be left are (1): an argument
with a tower of a finitely many, 5 or so, elementary substructures of [S2]. (2): a right induction hypothesis
with respect to iterated forcing accommodating (1) rather than a game in [S2]. It would take a consideration
to where we argue with (1). (3): exact calculations of how many layers of elementary substructures are
required in advance compared to a given amount of elementary substructures to be retained. Related is
formulations of clubs serving as guides to the calculations of (2) and (3) through the iteration. And of
course, (4): ωω-bounding together with properness under countable support for this purpose as in [S1].

It would take (3) to accomplish (2). I provide no pictures at successor stages for (3). Therefore I have
left a lot to a consistency proof.

§1. How to cope with losing elementary substructures

We first go through some of objects in use to set our notations.

Notation 1.1. Let C be a closed unbounded subset (club) of ω1. The set of countable ordinals which
are accumulation points of C is denoted by C. Let Ω denote the set of countable limit ordinals. Thus C ⊆ Ω
and if δ ∈ C, then C ∩ δ is cofinal below δ ∈ C. A ladder A at δ ∈ Ω is a cofinal subset of δ and is of
order-type ω. A ladder system 〈Aδ | δ ∈ Ω〉 is a system of ladders attatched to each δ ∈ Ω. Club Guessing
(CG) means there exists a ladder system 〈Aδ | δ ∈ Ω〉 such that for any club D of ω1, there exists δ ∈ Ω
such that Aδ \ D is finite. For any set X, its size is denoted by | X |. Hence | Aδ \ D | < ω.

For a regular cardinal χ, Hχ denotes the set of sets which are hereditarily of size less than χ. An ∈-chain
〈Ni | i < l〉 of countable elementary substructures of Hχ means that each (Ni,∈) is a countable elementary
substructure of (Hχ,∈), 〈Ni |i ≤ j〉 ∈ Nj+1 for all j with j + 1 < l and Nj =

⋃{Ni | i < j} for all limit
j with j < l. We also say 〈Mn | n < ω〉 is an ∈-chain, if for all n < ω, we have Mn ∈ Mn+1 and Mn

are countable elementary substructures of different Hχ’s. This use of terminology is some what confusing,
however there should be no real harm by considering the contexts.

We would like to get the consistency of the negation of CG (denoted by ¬ CG) together with the
continuum hypothesis (CH). This consistency together with many others are claimed in [S2]. An account of
this goes as follows; Assuming CH in the ground model, we may iterate ω2-times with the following under
countable support.

Definition 1.2. Let 〈Aδ | δ ∈ Ω〉 be a ladder system. Let p = (αp, Cp) ∈ P = P (〈Aδ | δ ∈ Ω〉), if
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(1) αp < ω1,
(2) Cp ⊆ αp + 1 is closed and αp ∈ Cp,
(3) For all α ∈ Ω with α ≤ αp, | Aα ∩ Cp | < ω.

For p, q ∈ P , let q ≤ p, if

(1) αp ≤ αq,
(2) Cp = Cq ∩ (αp + 1).

The following is from [S2] (or may see [M]).

Lemma 1.3. Let χ be a sufficiently large regular cardinal and N be a countable elementary substructure
of Hχ with P ∈ N . Let δ = N ∩ ω1. Let p ∈ N ∩ P and F be a finite subset of δ, then there exists q ∈ P
such that q is a lower bound of some (P, N)-generic sequence and Cq ∩ F = Cp ∩ F . In particular, P is
proper and σ-Baire.

We iterate with this family of notions of forcing to get ¬ CG via a suitable book-keeping. We denote
it by I = 〈Pα | α ≤ ω2〉. We certainly have ¬ CG, since each ladder system gets killed by the generic clubs
Ċ =

⋃{Cp | p ∈ G}, where G denotes the P -generic filters. But to get CH, we need many new ideas as in
[S2].

Since each P is σ-Baire, we add no new reals at each successor stage. However, if we are to add no
new reals at the limit stages of iterated forcing, we would want some form of higher properness such as
α-properness for all α < ω1 and some type of completeness [S1]. But in the present context we even do not
have an ω-properness. This is because ω-properness preserves CG and iterates under countable support [S1].

Motivation 1.4. (1) Let 〈Nn | n ≤ ω〉 be an ∈-chain in Hχ, where χ is a sufficiently large regular
cardinal. If it happens to be the case that 〈Nn ∩ ω1 | n < ω〉 coincides with the enumeration of Aδω , where
δω = Nω ∩ ω1, then there is no q ∈ P which is (P, Nn)-generic for all n ≤ ω.

(2) Let χi be sufficiently large regular cardinals for i = 0, 1, 2. Suppose p ∈ P , P ∈ Hχ0 ∈ Hχ1 ∈ Hχ2. Let
N be a countable elementary substructure of Hχ2 with χ0, χ1, p, P ∈ N . Notice that we have Hχ0, Hχ1 ∈ N
and so N ∩Hχ0 and N ∩Hχ1 are elementary substructures of Hχ0 and Hχ1 respectively. Let 〈N1n | n ≤ ω〉
be an ∈-chain of countable elementary substructures of Hχ1 such that χ0, p, P ∈ N10 and N1ω = N ∩ Hχ1.
Let δω = N1ω ∩ ω1. Let 〈N0i | i < ω2〉 be an ∈-chain in Hχ0 such that p, P ∈ N00, for all n < ω,
N0ω·(n+1) = N1n ∩ Hχ0 . We may choose an ∈-subchain 〈N0in | n < ω〉 so that ω · n < in < ω · (n + 1) and
Aδω ∩ {N0in ∩ ω1 | n < ω} = ∅. Now construct 〈qn | n < ω〉 such that qn ∈ N0in+1 ∩ P is (P, N0in)-generic,
Cqn ∩Aδω = Cp∩Aδω and p ≥ qn ≥ qn+1. Let q = (αq, Cq), where αq = δω and Cq =

⋃{Cqn | n < ω}∪{δω}.
Then Cq ∩Aδω = Cp ∩ Aδω . Hence q ∈ P and q is (P, N0in)-generic for all n < ω.

Starting with a family Y of many countable elementary substructures of various Hχ’s, we may push
further so that a subfamily of Y of some large size gets retained and have a common generic condition. We
lose many elementary substructures out of Y but we still keep many at hand. This type of starting-many-
retaining-sub-many argument takes place in the context of iterated forcing I = 〈Pα | α ≤ ω2〉. Therefore we
need to prepare a theory to deal with many countable elementary substructures of many Hχ’s in a tractable
manner. The contents of subsequent sections are developed based on a small fragment of [S2] and are far
from being complete at present.

§2. Many elementary substructures

Definition 2.1. Let I be an ω2-stage iterated forcing. Let 〈χα | α < ω2〉 be a sequence of regular
cardinals such that

(1) I ∈ Hχ0 ,
(2) For all α < ω2, 〈Hχβ | β < α〉 ∈ Hχα.

Notice that if 0 < α < ω2, then 0 < α < ω2 < χ0 < χα holds.
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For α < ω2, let

Eα = {N | N is a countable elementary substructure of Hχα with I, 〈Eβ | β < α〉 ∈ N} ⊂ Hχα.

Eα’s are pairwise disjoint and sort of downward closed.

Proposition 2.2. (1) If N ∈ Eα, then 〈Hχβ | β < α〉, 〈χβ | β < α〉, α ∈ N .
(2) If N ∈ Eα and N ∈ Eβ, then α = β.
(3) If N ∈ Eα and β ∈ N ∩ α, then N ∩ Hχβ ∈ Eβ.
(4) If N ∈ Eα and N ∩ Eβ �= ∅, then β ∈ N and β ≤ α.

Proof. For (1):
⋃ Eβ = Hχβ and χ = Hχ∩ ON. Hence 〈Hχβ | β < α〉, 〈χβ | β < α〉 ∈ N .

For (2): If not, then we may assume β < α. Then 〈Hχγ | γ < α〉 ∈ N and N ⊂ Hχβ (Actually, we have
N ∈ Hχβ). Hence 〈Hχγ | γ < α〉 ∈ Hχβ and so Hχβ ∈ Hχβ . This is a contradiction.

For (3): Since N is an elementary substructure of Hχα and Hχβ ∈ N , we have N ∩ Hχβ is a countable
elementary substructure of Hχβ . We have I ∈ N ∩ Hχ0. Hence I ∈ N ∩ Hχβ . Since 〈Eγ | γ < α〉 ∈ N and
β ∈ N . Hence 〈Eγ | γ < β〉 ∈ N ∩ Hχβ .

For (4): Let M ∈ N ∩ Eβ . Then β ∈ M ⊂ N and so β ∈ N . Since 〈Hχγ | γ < β〉 ∈ M ⊂ N , we have
〈Hχγ | γ < β〉 ∈ Hχα and so β ≤ α.

Via absoluteness considerations, we actually have the following.

Proposition 2.3. For a countable elementary substructure N of Hχα with I ∈ N , 〈χβ | β < α〉 ∈ N if
and only if 〈Hχβ | β < α〉 ∈ N if and only if 〈Eβ | β < α〉 ∈ N .

Definition 2.4. For N ∈ Eα, we know α = α(N ) is uniquely determined by N . Let us denote

box(N) = boxα(N) =
⋃

{Eβ ∩N | β ∈ N ∩ α}.

Let D(N) = Dα(N) be the set of all Y such that

• Y ⊆ box(N),

• For each β ∈ N ∩α, (Y ∩Eβ,∈) is a well-order. If 〈Nβi(Y ) | i < lβ(Y )〉, simply denoted as, 〈Nβi | i < lβ〉
lists the elements of Y ∩ Eβ in the strict order ∈, then it forms an ∈-chain and converges to N ∩ Hχβ .
By this we mean

• 〈Nβj | j ≤ i〉 ∈ Nβi+1 (strictly increasing),

• If i is limit, then Nβi =
⋃{Nβj | j < i} (continuous),

• N ∩ Hχβ =
⋃{Nβi | i < lβ} (Nβi converges to N ∩ Hχβ).

In particular, the order-type lβ is limit.

• For β ∈ N ∩ α, M ∈ Y ∩ Eβ and γ ∈ M ∩ β, we demand M ∩ Hχγ ∈ Y and M ∩ Hχγ = Nγj for some
limit j < lγ . In particular, we have M ∩Hχγ =

⋃{Nγi | i < j}.

Proposition 2.5. (1) If N, M ∈ Eα and M ∈ N , then box(M ) ⊂ box(N).
(2) If N ∈ E0, then box(N) = ∅ and so D0(N) = {∅}.
(3) Let N ∈ Eα and Y ∈ Dα(N). Then no N ∩Hχβ belongs to Y for any β ∈ N ∩ α.
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Proof. For (3): This is because if N ∩ Hχβ ∈ Y , then N ∩ Hχβ ∈ N and so N ∩ Hχβ ∈ N ∩ Hχβ . This
would be a contradiction.

Pictorially, we may draw Y as a sort of a triangle inside a rectangular shape box(N). We see Y consists
of ∈-chains 〈Nβi | i < lβ〉 converging to N ∩ Hχβ at all levels Hχβ for all β ∈ N ∩ α.

Example 2.6. We pay attention to typical elements of E0, E1 and E2.

(1) Let N be a countable elementary substructure of Hχ0 with I ∈ N . Then this is equivalent to N ∈ E0.

(2) Let N be a countable elementary substructure of Hχ1 such that I, χ0 ∈ N . Then this is equivalent to
N ∈ E1. Let 〈Nn | n < ω〉 be an ∈-chain in E0 such that

⋃{Nn | n < ω} = N ∩ Hχ0 . Then {Nn | n < ω} ∈
D1(N).

(3) Let N be a countable elementary substructure of Hχ2 with I, χ0, χ1 ∈ N . Then this is equivalent to
N ∈ E2. Let 〈N1n | n < ω〉 be an ∈-chain in E1 such that N ∩Hχ1 =

⋃{N1n | n < ω}. Let 〈N0i | i < ω2〉 be
an ∈-chain in Hχ0 with I ∈ N00. For all n < ω, we demand N1n∩Hχ0 = N0ω·(n+1) =

⋃{N0i | i < ω ·(n+1)}.
Then {N0i |i < ω · (n + 1)} ∈ D1(N1n) for all n < ω and {N0i | i < ω2} ∪ {N1n | n < ω} ∈ D2(N).

Though we draw Y ∈ Dα(N) as a triangle in box(N), Y ’s structure would be much more complex. In
particular, we see no easy comparisions of lβ ’s for β ∈ N ∩ α.

Proposition 2.7. Let N ∈ Eα and Y N = {Nβi | β ∈ N ∩ α, i < lβ} ∈ Dα(N). Let γ < β < α and
γ, β ∈ N . Let i0 be the least i < lβ such that γ ∈ Nβi. Let f : [i0, lβ) → lγ be a function such that f(i) = j,
where i0 ≤ i < lβ and Nβi ∩ Hχγ = Nγj . We know f(i) is a limit ordinal and so

f(i0) + ω · (i− i0) ≤ f(i).

Hence ω · (1 + (i − i0)
) ≤ f(i) and so ω · (1 + (lβ − i0)

) ≤ lγ .

For a simpler situation with i0 = 0, we have

Proposition 2.8. Let N ∈ Eα and Y N = {Nβi | β ∈ N ∩ α, i < lβ} ∈ Dα(N). Let β ∈ N ∩ α and
γ ∈ Nβ0 ∩ β. Then

(1) For all i < lβ , if Nβi ∩ Hχγ = Nγj , then we have Nγj ∩ ω1 < N ∩ ω1 and so

ω · (1 + i) ≤ j < N ∩ ω1.

(2) In particular, we have lβ ≤ lγ ≤ l0 ≤ N ∩ ω1.

By example 2.6, we see that lβ may not be indecomposable.

§3. Internal strutures of Dα(N)

We consider two natural projections.

Proposition 3.1. Let N ∈ Eα and Y = {Nβi | β ∈ N ∩ α, i < lβ} ∈ Dα(N). Let β ∈ N ∩ α and
M ∈ Y ∩ Eβ.

(1) Y ∩ box(M ) ∈ Dβ(M). We may call
(
M, Y ∩ box(M )

)
the projection of (N, Y ) down to M .
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(2) For each γ ∈ M ∩ β, (Y ∩ box(M )) ∩ Eγ listed as 〈Nγi | i < fγ(M)〉, where Nγfγ (M) = M ∩ Hχγ and
fγ(M) is a limit ordinal.

(3) Y ∩ box(N ∩Hχβ) ∈ Dβ(N ∩Hχβ). We may call
(
N ∩Hχβ , Y ∩ box(N ∩Hχβ

)
the projection of (N, Y )

down to β.
(4) For each γ ∈ (N ∩ Hχβ) ∩ β = N ∩ β,

(
Y ∩ box(N ∩ Hχβ)

) ∩ Eγ = Y ∩ Eγ listed as 〈Nγi | i < lγ〉.
Proof. For (1) and (2): We have three conditions to check. First Y ∩ box(M ) ⊆ box(M ).

Next, for γ ∈ M ∩ β,

(Y ∩ box(M )) ∩ Eγ = Y ∩ (Eγ ∩ M) = (Y ∩ Eγ) ∩ (M ∩ Hχγ ).

Hence (Y ∩ box(M )) ∩ Eγ = {Nγi | i < j}, where Nγj = M ∩ Hχγ . And so it is well-ordered by ∈. It forms
an initial segment of the ∈-chain 〈Nγi | i < lγ〉 which lists the elemennts of Y ∩ Eγ in the strict order ∈. We
have

⋃{Nγi | i < j} = Nγj = M ∩ Hχγ .

Lastly, for any γ1 ∈ M ∩ β, M1 ∈ (Y ∩ box(M )) ∩ Eγ1 and γ2 ∈ M1 ∩ γ1 ⊂ M ∩ β, we have

M1 ∩Hχγ2
∈ Y ∩ Eγ2 ⊆ Y ∩ box(M ),

and if M1 ∩Hχγ2
= Nγ2j, then j is limit. We know 〈Nγ2i | i ≤ j〉 is an initial segment of Y ∩ box(M )∩ Eγ2 .

For (3) and (4): Similar.

Motivation 3.2. Let M ∈ EαM and N ∈ EαN . We are interested in their possible configurations.

(1) Let M ∈ N . Then we have αM ≤ αN , M ∩ αM ⊆ N ∩ αN and for all β ∈ M ∩ αM , we have Hχβ ∈ M
and so M ∩ Hχβ ∈ N holds. In particular, we have box(M ) ⊆ box(N).

(2) In turn, let box(M ) ⊆ box(N) and for all β ∈ M ∩ αM , M ∩ Hχβ ∈ N . Suppose N∗ ∈ Eα∗ and
M, N ∈ Y ∗ ∈ Dα∗(N∗). Let us denote Y M = Y ∗ ∩ box(M ) and Y N = Y ∗ ∩ box(N). Then we have
seen that Y M ∈ DαM (M) and Y N ∈ DαN (N). We have Y M = Y N ∩ box(M ). For any β ∈ M ∩ αM ,
we have M ∩ Hχβ ∈ Y ∗ and so M ∩ Hχβ ∈ Y ∗∩ box(N) = Y N .

Definition 3.3. Let N ∈ EαN , Y N ∈ DαN (N), M ∈ EαM and Y M ∈ DαM (M).

We denote (M, Y M ) <0 (N, Y N ), if

• Y M = Y N ∩ box(M ),
• For all β ∈ M ∩ αM , M ∩ Hχβ ∈ Y N .

We similarly denote (M, Y M) <ho (N, Y N ), if

• αM = αN ,
• M ∈ N ,
• (M, Y M ) <0 (N, Y N).

Lastly, (M, Y M ) <up (N, Y N), if

• M ∈ Y N ,
• (M, Y M ) <0 (N, Y N).

Notice that (M, Y M) <ho (N, Y N ) does not imply sup(M ∩ αM ) = sup(N ∩ αN). It is possible that
sup(M ∩ αM) < sup(N ∩ αN ). For example, consider αN = αM = ω1. On the other hand if (M, Y M ) <up

(N, Y N ) and αN is limit, then sup(M ∩ αM ) < sup(N ∩ αN) holds. Since M, αM ∈ N and αM < αN , we
have sup(M ∩ αM ) ∈ N and sup(M ∩ αM) ≤ αM < αM + 1 < αN .
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Proposition 3.4. Let N ∈ EαN , Y N ∈ DαN (N), M ∈ EαM , Y M ∈ DαM (M), N∗ ∈ EαN∗ and
Y N∗ ∈ DαN∗ (N∗).

(1) (M, Y M ) <0 (M, Y M ) iff Y M = ∅ iff αM = 0.
(2) If (M, Y M ) <0 (N, Y N ) <0 (N∗, Y N∗

), then (M, Y M ) <0 (N∗, Y N∗
) (transitive).

(3) If β ∈ N ∩ αN and M ∈ Y N ∩ Eβ, then (M, Y N ∩ box(M )) <up (N, Y N).

Let (M, Y M ), (N, Y N) <0 (N∗, Y N∗
). Then

(4) If M ∈ N , then αM ≤ αN and for all β ∈ M ∩ αM , M ∩ Hχβ ∈ Y N .
(5) If for all β ∈ M ∩ αM , M ∩ Hχβ ∈ Y N , then (M, Y M) <0 (N, Y N ).
(6) If αM = αN and M ∈ N , then (M, Y M ) <ho (N, Y N).
(7) If M ∈ Y N , then αM < αN and (M, Y M ) <up (N, Y N ).

Proof. For (4): Let β ∈ M ∩αM . Then β ∈ N ∩αN . Hence Hχβ ∈ N and so M ∩Hχβ ∈ N ∩Hχβ ∈ Y ∗.
We conclude M ∩ Hχβ ∈ Y N .

For (5): Want Y M = Y N∩ box(M ). For β ∈ M ∩αM , we have M ∩Hχβ ∈ Eβ ∩Y N and so β ∈ N ∩αN .
Hence M∩αM ⊆ N∩αN . For β ∈ M∩αM , Y M∩Eβ is the initial segment of Y ∗∩Eβ below M∩Hχβ ∈ Y ∗∩Eβ.
This initial segment can be viewed as the initial segment of Y N ∩ Eβ below M ∩ Hχβ ∈ Y N ∩ Eβ. Hence
Y M =

⋃{Y M ∩ Eβ | β ∈ αM ∩ M} =
⋃{Y N ∩ Eβ ∩ (M ∩ Hχβ) | β ∈ αM ∩ M} = Y N ∩ ⋃{Eβ ∩ M | β ∈

αM ∩ M} = Y N∩ box(M ).

By the following two propositions, we see that Dα(N) has a recursive construction.

Proposition 3.5. (Successor) Let N ∈ Eα+1. Then the following are equivalent.

(1) Y ∈ Dα+1(N).
(2) There exists an ∈-chain 〈Ni | i < l〉 in Eα such that l is limit and

⋃{Ni | i < l} = N ∩ Hχα and
for all i < l, there exist Yi ∈ Dα(Ni) such that 〈(Ni, Yi) | i < l〉 is a <ho-increasing sequence and
Y =

⋃{Yi ∪ {Ni} | i < l}.
If (2) holds, then for all i < l, we have (Ni, Yi) <up (N, Y ).

Proof. (1) implies (2): α ∈ N , as 〈Hχβ | β < α+1〉 ∈ N . Let 〈Ni | i < l〉 list the elements of (Y ∩Eα,∈)
increasingly. Then 〈Ni | i < l〉 is an ∈-chain with

⋃{Ni | i < l} = N ∩ Hχα. Let Yi = Y ∩ box(Ni).
Then we have (Ni, Yi) <up (N, Y ). Therefore we may conclude 〈(Ni, Yi) | i < l〉 is <ho-increasing such that
Y =

⋃{Yi ∪ {Ni} | i < l}.
(2) implies (1): We have three conditions to check. First Yi ⊆ box(Ni) ⊂ box(N) and Ni ∈ box(N).

Hence Y ⊆ box(N). Next let β ∈ N ∩(α+1). We want Y ∩Eβ is an ∈-chain. If β < α, then β ∈ Ni∗ for some
i∗ < l. Then Y ∩Eβ =

⋃{Yi∩Eβ | i ≥ i∗}. Since (Ni, Yi) forms a <ho-increasing sequence,
⋃{Yi∩Eβ | i ≥ i∗}

is an ∈-chain converging to N ∩ Hχβ . If β = α, then Y ∩ Eβ = {Ni | i < l} is an ∈-chain converging to
N ∩Hχβ . Lastly, let γ1 ∈ N ∩ (α + 1), M ∈ Y ∩ Eγ1 and γ2 ∈ M ∩ γ1. We want M ∩Hχγ2

∈ Y ∩ Eγ2 and if
M ∩ Hχγ2

= Nγ2j , then j is limit. But since 〈(Ni, Yi) | i < l〉 is <ho-increasing, we are done.

Proposition 3.6. (Limit) Let N ∈ Eα and α be limit. Then the following are equivalent.

(1) Y ∈ Dα(N).
(2) There exists 〈(αn, Nn, Yn) | n < ω〉 such that 〈αn | n < ω〉 is a strictly increasing cofinal sequence in N∩α,

Nn ∈ Eαn ∩N , Yn ∈ Dαn(Nn) and (Nn, Yn) <up (Nn+1, Yn+1), Nn converges to
⋃{N ∩Hχβ | β ∈ N ∩α}

and Y =
⋃{Yn | n < ω} =

⋃{Yn ∪ {Nn} | n < ω}.
If (2) holds, then for all n < ω, (Nn, Yn) <up (N, Y ).
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Proof. (1) implies (2): Take 〈αn | n < ω〉 such that αn ∈ N ∩ α are strictly increasing and cofinal
in N ∩ α. Let us then take an ∈-chain 〈Nn | n < ω〉 such that Nn ∈ Eαn ∩ Y and

⋃{Nn | n < ω} =⋃{N ∩ Hχβ | β ∈ N ∩ α}.
Now set

Yn = Y ∩ box(Nn).

Since (Nn, Yn), (Nn+1, Yn+1) <up (N, Y ) and Nn ∈ Yn+1, we have

(Nn, Yn) <up (Nn+1, Yn+1).

Since
⋃{N ∩ Eβ | β ∈ N ∩ α} =

⋃{Nn ∩ Eβ | n < ω, β ∈ Nn ∩ αn}, we have

box(N) =
⋃

{box(Nn) | n < ω}

and so
Y =

⋃
{Yn | n < ω}.

(2) implies (1): We have three conditions to check. First we want Y ⊆ box(N). This holds, because
Y =

⋃{Yn | n < ω} and Yn ⊆ box(Nn) ⊆ box(N).
Next let β ∈ N ∩α. Then Y ∩Eβ is well-ordered by ∈ and if 〈Nβi(Y ) | i < l〉 lists the elements of Y ∩Eβ

in the strict order ∈, then it is an ∈-chain in Hχβ converging to N ∩Hχβ . This holds, because αn are strictly
increasing cofinally in N ∩ α, (Nn , Yn) <up (Nn+1, Yn+1) and Nn converges to

⋃{N ∩ Hχβ | β ∈ N ∩ α}.
Lastly, let β ∈ N ∩α and M ∈ Y ∩Eβ. Then β ∈ Nn ∩αn and M ∈ Yn ∩Eβ for some n. Let γ ∈ M ∩ β.

Then M ∩ Hχγ ∈ Yn. Hence M ∩ Hχγ ∈ Y . If M ∩ Hχγ = Nγj(Yn), then M ∩ Hχγ = Nγj(Yn) = Nγj(Y )
and j is limit.

We extract constructions above.

Lemma 3.7. (<0-Limit) We have two typical constructions.

(1) (successor step) Let N ∈ Eα+1. Let 〈Ni | i < l〉 be an ∈-chain in Eα such that l is limit and Ni converge
to N ∩ Hχα. Let 〈Yi | i < l〉 satisfy for all i < l, Yi ∈ Dα(Ni) and for all i < j, (Ni, Yi) <ho (Nj , Yj).
Let Y =

⋃{Yi ∪ {Ni} | i < l}. Then Y ∈ Dα+1(N) such that for all i < l, (Ni, Yi) <up (N, Y ).

(2) (limit step) Let α be limit. Let N ∈ Eα. Let 〈αn | n < ω〉 be strictly increasing and cofinal in N ∩α. Let
〈Nn | n < ω〉 be an ∈-chain such that Nn ∈ N ∩Eαn and Nn converge to

⋃{N ∩Hχβ | β ∈ N ∩α}. Let
〈Yn | n < ω〉 satisfy for all n < ω, Yn ∈ Dαn(Nn) and (Nn, Yn) <up (Nn+1, Yn+1). Let Y =

⋃{Yn | n <
ω}. Then Y ∈ Dα(N) and for all n < ω, (Nn , Yn) <up (N, Y ).

Proof. Routine. For (1): Let β ∈ N ∩ α. Then

〈Nβj (Y ) | j < lβ(Y )〉 =
⋃

{〈Nβj(Yi) | j < lβ(Yi)〉 | i < l, β ∈ Ni ∩ α}.

For (2): Let β ∈ N ∩ α. Then

〈Nβj(Y ) | j < lβ(Y )〉 =
⋃

{〈Nβj(Yn) | j < lβ(Yn)〉 | n < ω, β ∈ Nn ∩ α}.

§4. Extension Properties

We define 4 extension types.
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Definition 4.1. Let Ni ∈ Eαi for i = 1, 2, 3 and let Yi ∈ Dαi(Ni) for i = 1, 2 such that N1, N2 ∈ N3,
α2 ∈ N1 ∩ α1 and

(N1 ∩ Hχα2
, Y1 ∩ box(N1 ∩ Hχα2

)) <ho (N2, Y2).

We want to find Y3 ∈ Dα3(N3) such that

(N1, Y1), (N2, Y2) <0 (N3, Y3).

Depending on the configurations, we have 2 types.

(Type 1) α2 < α1 = α3: (N1, Y1) <ho (N3, Y3) and (N2, Y2) <up (N3, Y3).

(Type 2) α2 < α1 < α3: (N1, Y1) <up (N3 , Y3) and (N2 , Y2) <up (N3, Y3).

Let Ni ∈ Eαi for i = 1, 2 such that N1 ∈ N2. Let Y1 ∈ Dα1(N1). We want to find Y2 ∈ Dα2(N2) such
that

(N1, Y1) <0 (N2, Y2).

Depending on the configurations, we have two types.

(Type 3) α1 = α2: (N1 , Y1) <ho (N2, Y2).

(Type 4) α1 < α2: (N1 , Y1) <up (N2, Y2).

Proposition 4.2. All of the 4 extension types hold.

Proof. We prove all of the 4 extension types simultaneously. Let α < ω2 be the greatest ordinal in each
type. We prove by induction on α.

Successor α → α + 1:

(Type 1) We have two cases.

Case 1. α2 < α: Look at N1 ∩Hχα, N2 and N3 ∩Hχα. Let 〈Mn | n < ω〉 be an ∈-chain in Eα such that
N1 ∩Hχα, N2 ∈ M0 and Mn converges to N3 ∩Hχα . Then apply (Type 1) at α to

(
N1 ∩Hχα , Y1 ∩box(N1 ∩

Hχα)
)
, (N2, Y2) and M0. We have Y M0 ∈ Dα(M0) such that

(
N1 ∩Hχα, Y1∩box(N1 ∩Hχα)

)
<ho (M0, Y

M0)
and (N2 , Y2) <up (M0, Y

M0). We then apply (Type 3) repeatedly to get Y Mn+1 ∈ Dα(Mn+1) such that
(Mn, Y Mn) <ho (Mn+1, Y

Mn+1). Let Y3 = (Y1 ∩Eα)∪ {N1 ∩Hχα}∪
⋃{Y Mn ∪ {Mn} | n < ω}. Then this Y3

works.

Case 2. α2 = α: Take an ∈-chain 〈Mn | n < ω〉 in Eα such that N2 ∈ M0 and Mn converges to
N3 ∩ Hχα. The rest is the same as case 1 except no use of (Type 1) at α made. We just repeatedly apply
(Type 3) at α. Let Y3 = (Y1 ∩ Eα) ∪ {N1 ∩ Hχα, N2} ∪

⋃{Y Mn ∪ {Mn} | n < ω}. Then this Y3 works.

(Type 2) We have two cases

Case 1. α1 < α: Let us take an ∈-chain 〈Mn | n < ω〉 in Eα such that N1, N2 ∈ M0 and Mn converges
to N3 ∩ Hχα. Then apply (Type 2) at α to get Y M0 ∈ Dα(M0) such that (N1, Y1), (N2, Y2) <up (M0, Y

M0).
Then repeatedly apply (Type 3) at α to get Y Mn+1 ∈ Dα(Mn+1) such that (Mn, Y Mn) <ho (Mn+1, Y

Mn+1).
Let Y3 =

⋃{Y Mn ∪ {Mn} | n < ω}. Then this Y3 works.

Case 2. α1 = α: Take an ∈-chain 〈Mn | n < ω〉 in Eα such that N1, N2 ∈ M0 and Mn converges to
N3 ∩Hχα . The rest is the same as case 1 except one use (Type 1) at α. We then repeatedly apply (Type 3)
at α. Let Y3 = {N1} ∪

⋃{Y Mn ∪ {Mn} | n < ω}. Then this Y3 works.

(Type 3) Take an ∈-chain 〈Mn | n < ω〉 in Eα such that N1∩Hχα ∈ M0 and Mn converges to N2∩Hχα.
Then we repeatedly apply (Type 3) at α to get Y Mn ∈ Dα(Mn) such that

(
N1∩Hχα , Y1∩box(N1∩Hχα)

)
<ho

(M0, Y
M0) and (Mn, Y Mn) <ho (Mn+1, Y

Mn+1). Let Y2 = (Y1∩Eα)∪{N1∩Hχα}∪
⋃{Y Mn ∪{Mn} | n < ω}.

Then this Y2 works.

(Type 4) We have two cases.
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Case 1. α1 < α: Take an ∈-chain 〈Mn | n < ω〉 in Eα such that N1 ∈ M0 and Mn converges N2 ∩Hχα.
Take Y M0 ∈ Dα(M0) such that (N1, Y1) <up (M0, Y

M0) by (Type 4) at α. Then repeatedly apply (Type 3) at
α to get Y Mn+1 ∈ Dα(Mn+1) such that (Mn, Y Mn) <ho (Mn+1, Y

Mn+1). Let Y2 =
⋃{Y Mn ∪{Mn} | n < ω}.

Then this Y2 works.

Case 2. α1 = α: Take an ∈-chain 〈Mn | n < ω〉 in Eα such that N1 ∈ M0 and Mn converges to N2∩Hχα.
The rest is the same as case 1 except no use of (Type 4) at α made. Let Y2 = {N1}∪

⋃{Y Mn∪{Mn} | n < ω}.
Then this Y2 works.

Limit α is limit: We first prepare a lemma.

Lemma. (White-hole Lemma) Let α < ω2 be limit. Let N ∈ Eα and Y N ∈ Dα(N). Let α∗ =
sup(N ∩ α) ≤ α and let M ∈ Eα∗ with N ∩ Hχα∗ ∈ M .

(1) If α∗ < α, then N ∩ Hχα∗ �∈ Eα∗ (White-hole).

(2) There exists Y M ∈ Dα∗(M) such that (N, Y N) <0 (M, Y M ).

Proof. For (1): By contradiction. Suppose N ∩ Hχα∗ ∈ Eα∗ . Then 〈Eβ | β < α∗〉 ∈ N ∩ Hχα∗ and
so α∗ ∈ N . Since we assume that α∗ < α and that α is limit, we have α∗ + 1 ∈ N ∩ α. This contradicts
sup(N ∩ α) = α∗.

For (2): Fix a sequence of strictly increasing ordinals 〈βn | n < ω〉 cofinally in α ∩ N . Hence we have
sup{βn | n < ω} = α∗. Let 〈Mn | n < ω〉 be an ∈-chain such that N ∩ Hχβn

∈ Mn and Mn ∈ Eβn ∩ M
converge to

⋃{Hχβ ∩ M | β ∈ M ∩ α∗}. Form Y N∩ box(N ∩ Hχβn
) ∈ Dβn(N ∩ Hχβn

) for each n < ω.
First get Y M0 ∈ Dβ0 (M0) such that

(
N ∩ Hχβ0

, Y N∩ box(N ∩ Hχβ0
)
)

<0 (M0, Y
M0). This is possible by

(Type 3) at β0. We then construct Y Mn+1 ∈ Dβn+1(Mn+1) by repeatedly applying (Type 1) at βn+1 so
that

(
N ∩ Hχβn+1

, Y N∩ box(N ∩ Hχβn+1
)
)

<ho (Mn+1, Y
Mn+1) and (Mn, Y Mn) <up (Mn+1, Y

Mn+1). Let
Y M =

⋃{Y Mn | n < ω}. Then this Y M works.

(Type 1) We have two cases.

Case 1. sup(N1∩α) = sup(N3∩α): In this case we have sup(N1∩α) = sup(N3∩α) = α. This is because
α, N1 ∈ N3 and so sup(N1 ∩ α) ∈ N3. If sup(N1 ∩ α) < α, then we would have sup(N1 ∩ α) + 1 ∈ N3 ∩ α.
This contradicts sup(N1 ∩ α) = sup(N3 ∩ α).

Take a strictly increasing sequence 〈βn | n < ω〉 of ordinals which are cofinal in N1 ∩ α with α2 < β0.
Then take an ∈-chain 〈Mn | n < ω〉 such that N ∩Hχβ0

, N2 ∈ M0 ∈ N3∩Eβ0 and N ∩Hχβn
∈ Mn ∈ N3∩Eβn

and that Mn converge to
⋃{N3 ∩Hχγ |γ ∈ N3 ∩ α}. We repeatedly apply (Type 1) to get Y Mn ∈ Dγn(Mn)

such that
(N1 ∩ Hχβ0

, Y1 ∩ box(N1 ∩ Hχβ0
)) <ho (M0 , Y

M0), (N2, Y2) <up (M0, Y
M0),

(N1 ∩ Hχβn+1
, Y1 ∩ box(N1 ∩Hχβn+1

)) <ho (Mn+1, Y
Mn+1), (Mn , Y Mn) <up (Mn+1, Y

Mn+1).

Let Y3 =
⋃{Y Mn | n < ω}. Then this Y3 works.

Case 2. sup(N1 ∩ α) <sup(N3 ∩ α):

Let α∗ = sup(N1 ∩ α). Then α∗ ∈ N3 ∩ α. We know N1 ∩ Hχα∗ �∈ Eα∗ (white-hole). Then take a
strictly increasing sequence 〈γn | n < ω〉 of ordinals which are cofinal in N3 ∩ α and α∗ = γ0. Then take an
∈-chain 〈Mn | n < ω〉 such that M0 ∈ N3 ∩ Eα∗ with N1 ∩ Hχα∗ , N2 ∈ M0 and Mn+1 ∈ N3 ∩ Eγn+1 and Mn

converges to
⋃{N3 ∩ Hχγ |γ ∈ N3 ∩ α}. As in case 1 and white-hole lemma, get Y M0 ∈ Dα∗(M0) such that

(N2, Y2) <up (M0, Y
M0) and (N1, Y1) <0 (M0, Y

M0). Namely, (N1∩Hχβ , Y1∩box(N1∩Hχβ)) <up (M0, Y
M0)

for all β ∈ N1 ∩ α.
We repeatedly apply (Type 4) to get Y Mn+1 ∈ Dγn+1 (Mn+1) such that (Mn, Y Mn) <up (Mn+1, Y

Mn+1).
Let Y3 =

⋃{Y Mn | n < ω}. Then this Y3 works.
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(Type 2) Take a strictly increasing sequence 〈γn | n < ω〉 of ordinals cofinally in N3 ∩ α with α1 <
γ0. Take M0 ∈ N3 ∩ Eγ0 such that (N1, Y1) <up (M0 , Y

M0) and (N2, Y2) <up (M0, Y
M0) by (Type 2)

at γ0. Then take an ∈-chain 〈Mn+1 | n < ω〉 such that Mn+1 ∈ N3 ∩ Eγn+1 and Mn+1 converges to⋃{N3 ∩Hχγ | γ ∈ N3 ∩α}. Then repeatedly appy (Type 4) at γn+1 to get Y Mn+1 ∈ Dγn+1 (Mn+1) such that
(Mn, Y Mn) <up (Mn+1, Y

Mn+1). Let Y3 =
⋃{Y Mn | n < ω}. Then this Y3 works.

(Type 3) We have two cases. Similar to (Type 1).

Case 1. sup(N1 ∩ α) = sup(N2 ∩ α): In this case we have sup(N1 ∩ α) = sup(N2 ∩ α) = α.

Take a strictly increasing sequence 〈βn | n < ω〉 of ordinals cofinally in N1∩α. Take an ∈-chain 〈Mn | n <
ω〉 such that N1 ∩Hχβn

∈ Mn and Mn ∈ N2∩Eβn and that Mn converge to
⋃{N2∩Hχγ | γ ∈ N2 ∩α}. First

appy (Type 3) at β0 to get Y M0 ∈ Dβ0 (M0) such that
(
N1∩Hχβ0

, Y1∩box(N1∩Hχβ0
)
)

<ho (M0, Y
M0). Then

repeatedly apply (Type 1) to get Y Mn+1 ∈ Dβn+1(Mn+1) such that
(
N1∩Hχβn+1

, Y1∩box(N1∩Hχβn+1
)
)

<ho

(Mn+1, Y
Mn+1) and (Mn, Y Mn) <up (Mn+1, Y

Mn+1). Let Y2 =
⋃{Y Mn | n < ω}. Then this Y2 works.

Case 2. sup(N1 ∩ α) <sup(N2 ∩ α):

Let α∗ = sup(N1 ∩ α). Then α∗ ∈ N2 ∩ α. We know N1 ∩ Hχα∗ �∈ Eα∗ (white-hole). Then take a
strictly increasing sequence 〈γn | n < ω〉 of ordinals cofinally in N2 ∩ α with α∗ = γ0. Take an ∈-chain
〈Mn | n < ω〉 such that M0 ∈ N2 ∩ Eγ0 such that N1 ∩ Hχα∗ ∈ M0 and Mn+1 ∈ N2 ∩ Eγn+1 and Mn

converges to
⋃{N2 ∩ Hχγ | γ ∈ N2 ∩ α}. Then get Y M0 ∈ Dα∗(M0) such that (N1, Y1) <0 (M0, Y

M0) by
white-hole lemma. Namely,

(
N1 ∩ Hχβ , Y1 ∩ box(N1 ∩ Hχβ)

)
<up (M0, Y

M0) for all β ∈ N1 ∩ α. Then
repeatedly apply (Type 4) at γn+1 to get Y Mn+1 ∈ Dγn+1(Mn+1) such that (Mn, Y Mn) <up (Mn+1, Y

Mn+1).
Let Y2 =

⋃{Y Mn | n < ω}. Then this Y2 works.

(Type 4) Take a strictly increasing sequence 〈γn | n < ω〉 of ordinals cofinally in N2 ∩α with α1 < γ0.
Take an ∈-chain 〈Mn | n < ω〉 such that N1 ∈ M0, Mn ∈ N2 ∩ Eγn and Mn converges to

⋃{N2 ∩ Hχγ | γ ∈
N2 ∩ α}. Then repeatedly apply (Type 4) to get Y Mn ∈ Dγn(Mn) such that (N1, Y1) <up< (Mn, Y Mn) <up

(Mn+1, Y
Mn+1). Let Y2 =

⋃{Y Mn | n < ω}. Then this Y2 works.
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