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Abstract. We discuss sequent systems of the provability logic R~ introduced in Guaspari and Solovay
[2]. Sasaki and Ohama [5] gave a sequent system with a kind of subformula property, but considering
a cut-free system for the unimodal provability logic GL, there exists a cut that seems to be removable.
Here we introduce another sequent system with a strengthened kind of subformula property. As a result,
it is shown that the <-free and <-free fragment of our system is the system for GL, while it has been
unclear for the system in [5]. Also by our system, we can discuss what kinds of cuts are removable from
the system in [5]. Moreover, in the proof of a completeness theorem for our system, we give a concrete
counter model, while [5] didn’t.

1 The logic R~

To discuss Rosser sentences, Guaspari and Solovay [2] enriched the modal language by adding, for each
OA and OB, the formulas OA < OB and OA < OB, with arithmetic realizations. They introduced
provability logics R™, R and R“ with enriched language by extending the unimodal provability logic GL
and proved kinds of arithmetic completeness for them. The logic R™ is the most preliminary one among
these three logics.

In this section, we introduce the logic R~ and its Kripke semantics. We use p, q, - - - for propositional
variables. We use logical constant L (contradiction), and logical connectives A (conjunction), V (disjunc-
tion), D (implication), O (provability), < (witness comparison), and < (witness comparison). Formulas
are defined inductively as follows:

(1) propositional variables and L are formulas,

(2) if A and B are formulas, then so are (AAB), (AVB),(A D B),(04), (A < OB) and (ODA < OB).
We use upper case Latin letters A, B,C,- - -, possibly with suffixes, for formulas. A formula of the form
OA is said to be a O-formula. Also a formula of the form 0A < OB (OA < OB) is said to be a <-formula
(<-formula). By ¥, we mean the set of all O-formulas, all <-formulas and all <-formulas.

The modal system R~ is defined by the following axioms and inference rules.

Axioms of R~

Al : all tautologies,
A2:0(ADDB)>(WAD>UOB),
A3:0(0A D A) DOA,
A4: ADOA, where A € X,
A5: (0A <0OB) D OA4,
A6: ((O0A <0OB)A (OB <0C)) D (04 < 00),
A7:(0AvOB) D ((BA < OB)V (OB < O4)),
A8:(0A <0OB) D> (DA <0OB),

A9: ((DA<0OB)A (OB <0A4)) D 1,

Inference rules of R~
MP: A ADBeR™ implies Be R,
N :Ae R implies 04 € R™.

In [2] and Smorinski [6], the following two formulas are also axioms of R™, but they are redundant (cf.
de Jongh [3] and Voorbraak [8]).
Al10: OA D (OA < TA),
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All: (WAA(OB D 1)) D (DA < OB).
We introduce Kripke semantics for R™, following [6]. For a non-empty set W, a binary relation < on
W and an element o € W, we put

at={8la<p), al={8|f<a} and al=alUfa}.

Definition 1.1 A Kripke pseudo-model for R~ is a triple (W, <, |=) where
(1) W is a non-empty finite set,
(2) < is an irreflexive and transitive binary relation on W satisfying

a <~ and B <+ imply either one of a = 8, a < f and § < «,
(3) [ is a valuation satisfying, in addition to the usual boolean laws,

a = OA if and only if for any 5 € af, 8 | A.

Definition 1.2 A Kripke pseudo-model (W, <,|=) for R~ is said to be a Kripke model for R~ if the
following conditions hold, for any formula D,

(1) if D € ¥ and « = D, then for any 8 € at,8 = D,

(2) if D is either one of the axioms A5, A6, A7, A8 and A9, then « = D.

A formula A is said to be valid in a Kripke pseudo-model (W, <, =), if « |= A for any « € W. The
following lemma is proved in [2].

Lemma 1.3 A € R~ if and only if A is valid in any Kripke model for R™.

2 A sequent system GR™

In this section we introduce a sequent system GR™ defined in [5]. We use Greek letters, I' and A,
possibly with suffixes, for finite sets of formulas. The expression OI' denotes the set {IA | A€ T}. By a
sequent, we mean the expression I' — A. For brevity’s sake, we write

Al;"'aAk7F17"'7FZ_)Ala"'aAmyBla"'aBn

instead of
{Al,---,Ak}Urlu---Urg—)A;LU---UAmU{Bl,---,Bn}.

By Sub(A), we mean the set of subformulas of A. Also, we put

Wit(B,C = {DB < 4acC,0B <X 0c,0C <4aB,0c < DB},

Sub®(A) = Sub(4) U {OB © OC | wit(B, B') N Sub(A4) #  for some B',

wit(C,C") N Sub(A) # 0 for some C',® € {<,<}},

Sub™ " (4) = Sub(4) U{OB ®0OC | OB,0C € Sub(4),® € {<,=}},

Sub(T' = A) = Ugerua Sub(B),

Sub™(I' = A) = Uperua Sub™(B),

Sub™ (' = A) = Uperua Sub™ (B).
We note that for a <-free and <-free sequent S, Sub(S) = Sub™(S) C Sub™™(S), for instance, {p, Op} =
Sub(— Op) = Sub™(— Op) C Sub™ (= Op) = {p,0p,0p < Op,Op < Op}.

By the sequent system LK for the classical propositional logic, we mean the system defined, in the
usual way, by two axioms A — A and L —, the usual logical inference rules, two weakening rules (w —)
and (— w), and (cut) in the following form

Fl_>A17A A,F2—>A2
[T = A, Ay

(cut).



The system GR™ is the system obtained from the sequent system LK by adding the following axioms
and inference rules in the usual way.

Additional axioms of GR™
GAl: O0A < 0OB,0B < 0C — 04 < 0OC
GA2: OA — 04 <0OB,0B < 0OA
GA3: OB — 0OA < OB,0B < 0A
GA4: OA < OB — 0OA < OB
GA5: OA < 0B, 0B < OA —

Additional inference rules of GR™

04, T = A
¥/ or— oA

OA, T —- A
04 <0OB,I' - A

- A 04

Oa
(=0) I 5> AOA<OA

(==)

(=)
where ¥ is a finite subset of .

The system GR] is the system obtained from GR™ by restricting a cut to the following form:

I - A, 046008 OAGOB,I;— A,y
1,0 — Ay, Ay

where ® € {<, =<}, and OA and OB are subformulas of a formula occurring in the lower sequent. Using
Lemma 1.3, [5] proved the following lemma.

Lemma 2.1 The following conditions are equivalent:
(]-) Al:"'aAm _)Bla"'aBn € GR;:
(2) Al:"'aAm _)Bla"'aBn € GR_:
(3) AyA--ANAn DB V---VB, e R™,
(4) Ay A NA, DBy V-V B, is valid in any Kripke model for R™.

Corollary 2.2 If a sequent S is provable in GR™, then there exists a proof figure P for S such that each
formula occurring in P belongs to Sub™*(S).

3 Another sequent system GRS

Lemma 2.1 provides a cut-elimination theorem in weakened form, and hence the decision procedure for
the provability of R~. However, the lemma does not say that every cut in GR; is necessary, and there
seems to be a removable cut. For instance, the following cut seems to be removable if I' — A does not
have any <-formula and <-formula. Because we naturally conjecture that the <-free and <-free fragment
of GR™ is the system GGL, the system obtained by adding (— O) to LK, for the provability logic GL,
and a cut-elimination theorem of GGL has been proven in Valentini [7] and Avron [1].

- A0O4
I - AO0A<0A4

OA, T — A
0A <OAT — A
r—A

(==) (==)

(cut)

Here we introduce another system GR., for R~ by adding only inference rules to LK. A proof of a
cut-elimination theorem of the new system will be completed in section 4. As a result, we will find that
what kind of cuts are removable from GR] and that the <-free and <-free fragment of GR; is GGL.

The system GR,, is the system obtained from LK by adding the following inference rules in the usual
way.

Additional inference rules of GR;

(= 0),(==),(2—) are as in GR~



0OA<0OB,I' - A,0B<0A

0A<0B,I' > A )
[ -A0C<0OD I'»A,0D<OF OC<OETL—A
(tran)
r—-A
r—-Ao0c,0p oC <4ap,I' A db<oC,I' A I'','—-A .
r—-A (tin)

where in (tran), C # D, C # E, D # E and {O0C < 0OD,0D < OFE} C Sub™(I' = A); in (lin),
Iy ={0C <0D,0D <04C}, C # D,0C < 0D € Sub™(I' = A).

The system GR; is the system obtained from GR, by removing cut. Here we note that for each

additional inference rule % in GR;, Sub™(S;) C Sub™(S) (i = 1,---,n). Hence GR; satisfies

a kind of subformula property. Also we note that if a <-free and <-free sequent S is provable in GRj3,
then S is provable in GGL for GL.

Lemma 3.1 I' > A € GR™ if and only if I' = A € GR; .

Proof. First, we show “only if” part. Additional inference rules of GR™ are also inference rule in GR, .
So, it is sufficient to show the provability of the additional axioms of GR™ in GR,; .

The axioms GA4(0OA < OB — OA < OB) and GA5(0A < OB,0B < OA —) are proved by (— w)
and (<—).

The axiom GA1(DA < OB,0B < 0OC — 0A < 0OC) can be proved by (tran) and weakening rules if
A# B, A# C and B # C; by weakening rules if A = B or B = ('; and by the following figure if A = C:

04 — 0OA (o<
TAsoa<oa
= (2=)
OA<0OB— 0OA=<0OA
OA < OB,0B < 0A — OA < 0OA

(w —).

The axiom GA2(0A — 0OA < OB,0B < OA) can be proved by (lin), the provability of GA4 and
weakening rules if A # B; by (—=) and weakening rules if A = B. Similarly, the axiom GA3 can be
proved.

We show “if” part. It is sufficient to show that each inference rule in GR; preserves the provability
of GR™. We can see this in the figures in the next page. -

Theorem 3.2 The following conditions are equivalent:
(]-) Al:"'aAm _)Bla"'aBn € GR?T:
(2) Ay,---,A,, — By, --,B, € GRS,
3) AyAN--ANALDBV-- VB, eR™,
(4) Ay A NA, DBy V-V B, is valid in any Kripke model for R™.

“(1) implies (2)” is clear. The equivalence between (2) and (3) is from Lemma 3.1, and the equivalence
between (3) and (4) is from Lemma 2.1. So, it is sufficient to show “(4) implies (1)”, a Kripke completeness
of GR; . A proof of the completeness will be given in the next section.

Corollary 3.3 If a sequent S is provable in GR™, then there exists a proof figure in GR™ whose cuts
are of the form of cuts occurring in the nest page.*

Proof. Suppose that S € GR™. Then by Theorem 3.2, S € GR; . So, there exists a proof figure
P for S in GR; . Let Q be the figure obtained from P by replacing (<—), (tran) and (lin) with the
corresponding figure in the next page. We note that Q is a proof figure for S in GR™ and each cut in Q
is of the form of cuts occurring in the next page. =

1We note that every cut occurring in the next page has at least one occurrence of cut formula whose ancestor occurs in
an additional axiom of GR™.
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Corollary 3.4 If a sequent S is provable in GR. , then there exists a proof figure P for S such that each
formula occurring in P belongs to Sub™(S9).

Corollary 3.5 If a <-free and =-free sequent S is provable in GR; , then there exists a proof figure for
S in GGL.

4 Completeness theorem and a concrete counter model
Here we prove the following theorem.

Theorem 4.1 If A;,---,A,, = B1,---, B, € GR;, then there exists a Kripke model for R™, such that
AiN---NA,, DB V---V B, is not valid.

To prove the above theorem, we construct a concrete Kripke model for R, in which 4A; A---AA,, D
By V-V B, is not valid, while [5] only showed existence of such model in the proof of Lemma 2.1 in the
following sense. To prove Lemma 2.1, [5] used the following lemma in [2], called “extension lemma”,

Lemma 4.2 Let S be a set of formulas satisfying Sub™(A) C S for any A € S and let K* be a Kripke
pseudo-model for R~ satisfying the two conditions in Definition 1.2 for any D such that Sub(D)NX C S.
Then there exists a Kripke model IC for R~ such that for any A € S, A is valid in K* if and only if A is
valid in .

[5] first gave a Kripke pseudo-model for R~ satisfying the conditions, in which a given formula is not
valid, and using “extension lemma” several times, proved existence of counter Kripke model for R™. Also
it may be possible to know a concrete counter model by following a proof of “extension lemma” several
times, but probably it takes a long time and we do not know how to express the counter model since it
would be very complicated. In a similar way, it is possible to prove Theorem 4.1(cf. [4]), but here we
directly construct a concrete counter Kripke model. To do so, we need some preparations.

Definition 4.3 A sequent I' — A is said to be saturated if the following conditions hold:
(1) if ANB €T, then A,B €T,
(2)if ANB € A, then A€ A or Be€ A,
(3)if AVBEeT, then AcT or BeT,
(4) if AV B € A, then A,B € A,
(5)if ADBET, then A€ A or BeT,
(6)if ADBeA, then AeT and B € A,
(7) if 0A < OB €T, then A €T,
(8) if A X OA € A, then OA € A,
(9) if DA< OB€T, thenOA<OB€Tl and OB K04 € A,
(10) if A# B, A# C, B # C and {0A < OB,0B < 0OC} C Sub™(I' = A), then either one of
OA<0OCel',04<0B €A, and OB < 0C € A holds,
(11) if A# B and OA < OB € Sub™(I' = A), then either one of {0A,0B} C A, OA < OB €T,
OB <0OA€Tl and {0UA<0OB,0B < 0OA} CT holds.

Lemma 4.4 IfT' - A ¢ GR; , then there exists a saturated sequent I'' — A satisfying T’ — A" ¢ GR;,
L CI'CSub™(I' = A), ACA' CSub™(I' = A) and Sub™(I'" — A’) = Sub™ (' = A).

Proof. Let it be that p & Sub(I' = A). Since Sub™ (I' — A) is finite, there exist formulas Ag, Ay, -+, A,_1
such that
{Ao,Al, o ',Anfl} = Sub+(1" — A) @] {DB AOCAOD ADp |
{O0B <0C,0C <= 0OD} CSub™(I' =+ A),B# C,B # D,C # D}.

We define a sequence of sequents (g — Ag), (I'y = Ay), -, inductively as follows.
Step 0: (T'g = Ap) = (' = A).



Step k+1: If Ar mod » = 0B < OB, then (Fk+1 — Ak+1) = (Fk — Ak) If Ax moa » = 0B < 0OC
and B # C, then

S it S, ¢ GR;
Sz if S, € GR; and S»  GR;
(Fk+1 — Ak+1) = S3 if 51,55 € GRB»_ and S3 € GRB»_
Sy if 51,52,53 S GR; and Sy ¢ GR;

(Tr = Ag) otherwise

where
S = (Fk — Ak,DB,DC)7
Sy = (DB < ad, I'y —» Ak),
Sy = (DB <0C,O0B < 0OC,T'y - Ag,0C < DB),
S3 = (DC < aB, Ty — Ak) and
S, = (OB <x0C,0C < OB, T — Ag).?
If Ak mod n — oB j DC, then

(DB,Fk —)Ak) ifaB < 0C €Iy
(Fk—i-l —)Ak+1): (Fk —>Ak,DB) ifOB <0C €Ay, —T'yand B=C
(T = Ag) otherwise

If Ay moa »n = OB AOCAOD A p, then

Sy if $) ¢ GRy
- Sy if 57 € GR; and Ss ¢ GRg
(Chets = Ara) = Sy if 51,9, € GR3 and S5 ¢ GR;

(Tx = Ag) otherwise

where

S; = (I - Ay, 0B <X 0C),

Sy = (Fk = Ag,0C < DD) and

S; = (OB < OD, T}, — Ag).°
If Ak mod n is a O-formula, then (T'x41 — Agr1) = (T'x = Ag). In the other cases, (Tr41 — Agt1) is
defined in the usual way.

Also in the usual way, we can prove that (J;° Ty = ;o A; is a saturated sequent satisfying the
conditions, where the condition Sub™(I' = A) = Sub™ (U;2, Ty — Uio, Ai) is proved by using Sub(I' —
A) CSub(UZoTi = Uiey Ai) € Subt (I — A).4 =

For a sequent S ¢ GRy, there are several saturated sequents satisfying the conditions in the above
lemma. In the following, however, we need fixed one, denoted sat(S), in order to prove several lemmas.
We will use sat(S) for a sequent S that is unprovable in GRy , but its unprovability is not known at that
time. So, we also define sat(S) for a sequent S that is provable in GR; .

Definition 4.5 For a sequent S € GR;, we fix a saturated sequent satisfying the conditions in the
above lemma for sat(S). For S € GRj3 , we put sat(S) = S.

Remark 4.6 For a sequent S,
(1) S € GRj; if and only if sat(S) € GR;,
(2) Sub™ (sat(S)) = Sub™(S),
(3) the antecedent of S is a subset of antecedent of sat(S).

A sequence of formulas is defined as follows:
(1) []is a sequence of formulas,

By I' » A ¢ GR; and (lin), we can find that “otherwise” case does not occur.

3By I' > A ¢ GR; and (tran), we can find that “otherwise” case does not occur.

4The proof of Lemma 3.1 provides the provability of additional axioms in GR™ in GRj . This makes it easier to check
that the sequent is saturated.



(2) if [44,---, A,] is a sequence of formulas, then so is [Ay,---, Ay, B].
A binary operator o is defined by

[Ala"'aAm]o[Bla"'aBn] = [Ala"'aAmyBl7"'7Bn]-

We use 7 and o, possibly with suffixes, for sequences of formulas.
From now on, we fix a sequent Sy, as a sequent that is not provable in GRj3 .

Definition 4.7 We define the set W(Sy) of pairs of a sequent and a sequence of formulas, inductively
as follows:

(1) (sat(So);[]) € W(So),

(2) if a pair (I' - A, 0A; 7) belongs to W(Sp), then so does the pair

(sat(DA,{D | 0D €'}, I'NY — A); 7o [OA4]).

We note that S is saturated if (S;7) € W(Sp).

The set W(Sp) will be the set of possible worlds in the final model. A world (I'; — Ay;0) € W(Sp)
will validate the formulas in I'; and refute the formulas in A;. So, w = (I' = A, 04;7) € W(Sp) will
refute JA. Also the pair

wy = (sat(OA,{D |OD €T}, TNE — A);7 0 [0A]),
which we find in Definition 4.7(2), will be a world refuting A and satisfying w < w;.
Lemma 4.8 If (S1;7),(S2;7) € W(Sp), then S; = Sa.

Proof. We use an induction on 7. If 7 = [ ], then we have S; = S» = sat(Sp). Suppose that 7 = oo[0A].
Then there exist (I'y = Ay, 04;0) and (['; = Ay, 04;0) € W(Sp) such that for ¢ = 1, 2,

S; = sat(0A,{D | OD € T;},T;N T — A).

By the induction hypothesis, we have (I'y - A;,0A4) = (I'y = A,,0A4), and so, Iy = I'y. Hence we
obtain S; = S. .

Lemma 4.9 Let (I'y = Ay;7) and (T2 = Ag; 70 [DA]) be in W(Sp). Then
(1) OA € Sub(T'; — Ay),
(2) ry —» Al ¢ GR; zmphes I's — AQ g GR3—,
(3) Sub+(I‘1 — Al) D) Sub+(F2 — A2),
4 T1NSChyNy.

Proof. First, we note that I'; — A; (i = 1,2) are saturated, and so, every condition in Definition 4.3 for
these sequents holds. By (I'z2 — Ay;7 o [OA]) € W(Sp), there exists a pair (I's — Ag,0A4;7) € W(Sp)
such that (I's = As) = sat(S), where S = (OA,{D | OD € I';},I's N Y — A). On the other hand, by
Lemma 4.8, (I's — As,04) = (T'; — A;). So, (1) is clear. By Remark 4.6(1) and (— O), we have that
S € GR; if and only if sat(S) = (I'; = Az) € GR5 and that S € GR3 implies (I's — Az, 04) =
(I'1 = A;) € GRy, respectively, and hence we obtain (2). (3) and (4) are shown using Remark 4.6(2)
and Remark 4.6(3), respectively. =

Lemma 4.10 Let (I'y = Ay;7) and (I's = Ag;700) be in W(Sy). Then
(1) o consists of only O-formulas in Sub(I'y, — A;),
(2) Ty — Ay ¢ GRS implies T's — Ay ¢ GRS,
(3) Sub+(I‘1 — Al) D) Sub+(F2 — A2),
4 I NEChNy.

Proof. We use an induction on o. From Lemma 4.8, we have Basis(c = [ ]). By Lemma 4.9, we also
have Induction Step(c # [ ]). —|



Corollary 4.11 Let (I' = A;7) be in W(Sp). Then
(1) 7 consists of only O-formulas in Sub(sat(Sy)),
(2) T - AZGRj3.

Lemma 4.12 W(Sy) is finite.

Proof. By Lemma 4.8 and Corollary 4.11(1), it is sufficient to show (S;m oc[0A]omyo[0A]oTs) & W(Sp),
for any A, S, 71, 72 and 73. Suppose that the above pair belongs to W (Sp). Since we can show, by the
induction on o,

(S2;700) € W(Sp) implies (S1;7) € W(Sp) for some Sy,

we have (Fl — Al;Tl o [DA]), (Fz — Az;Tl o [DA] o TQ), (F3 — Ag;Tl o [DA] 0Ty O [DA]) S W(So)
for some I'; = A; (i = 1,2,3). Using the definition of W(Sp), we have OA € I'1, and using Lemma
4.10(4), A € I';. On the other hand, by (I's — Ag; 7y o [OA] o713 0 [OA]) € W(Sp) and the definition of
W(Sp), there exists (I's = Ay; 71 0 [OA] 0o 1m) € W(Sp) such that OA € A4. Using Lemma 4.8, we have
OA € Ay = Ay. This is in contradiction with OA € I’y and Corollary 4.11(2). -

Definition 4.13 We define a structure K(Sp) = (W (Sp), <, ) as follows:
(1) (S1;71) < (S2; 1) if and only if 7o = 7 0 0 for some o # [ ],
(2) = is a valuation satisfying, in addition to the conditions in Definition 1.1(3), for any v(= (I' —
A;71)) € W(So),
(2.1) y Epifand only if p € T,
(2.2) v = 0OA < OB if and only if either one of the following three holds:
(2.21) DA< OB €T,
(2.2.2) there exists a € yJsuch that o |= 0A and a = OB,
(2.2.3) OD < OB ¢ Sub™(I' = A) for any D and there exist a formula C and /(= (I'" — A’;7')) €
~vIsuch that OA < OC €IV, ' = 0A4, ' |= 0B, v/ |= OC and for any f € v'|, § £ OA, 8 [~ OB
and g £ OC,
(2.3) y EOA <0OB if and only if v |=0A4 and v £ OB < OA.

Here we note that for any (I'y — Aq;71), (Dy = Ag;m2) € W(Sy), every condition in Lemma 4.10
holds if (Fl — Al;Tl) < (Fz — Az;Tg).

Lemma 4.14 K*(Sy) is a Kripke pseudo-model for R™.

Proof. By Lemma 4.12, W(Sp) is finite. The irreflexivity and the transitivity of < can be shown
easily. We show the remaining condition of <. Suppose that (S1;71) < (S3;73) and (S2;72) < (S3;73).
Then 73 = 71 0 01 = T3 0 02 for some non-empty sequences o; and o2. Hence either 14 = 75 0 0} or
71 0 0] = 72 holds. Using Lemma 4.8, we have either one of (S1;71) = (S2;72), (S1;71) < (S2;72) and

(S2572) < (S1571). 4
Lemma 4.15 The azioms A5, A7 and A9 are valid in K(Sp).

Proof. From Definition 4.13(2.3), the validity of A5 and A9 are clear. We show the validity of A7.
Suppose that v € W(Sp) and v = OA vV OB. If v = OA, then by Definition 4.13(2.3), we have that
v £ OB < OA implies v E OA < OB, and hence v = (DA < OB) vV (OB < OA). If v [ OA, then by
v |E OAV OB, we have v |= OB. So, we have a(= 7) € 7] such that a £ OA and a = OB, and using
Definition 4.13(2.2), v | OB < OA. Hence we obtain v |= (0A < OB) v (OB < OA). -

Lemma 4.16 Let (I' = A;7) be in W(Sy). Then for any formula D,
(1) D €T implies (I' = A;7) = D,
(2) D € A implies (I' — A;7) = D.

Proof. First, we note that I' — A is saturated, and so, every condition in Definition 4.3 holds. To prove
the lemma, we use an induction on D. Basis(D is a propositional variable) is from Definition 4.13(2.1)
and Corollary 4.11(2). For Induction Step, we only show the case that D is a <-formula and the case
that D is a <-formula.



We show the case that D = OA < OB. From Definition 4.13(2.2), (1) is clear. We show (2).
Suppose that OA < OB € A and (I' = A;7) = OA < OB. Then either one of the conditions (2.2.1),
(2.2.2) and (2.2.3) in Definition 4.13 holds. However, by OA < OB € A and Corollary 4.11(2), we
have OA < OB € Sub™(I' - A) and OA < OB ¢ I, and so, none of (2.2.1) and (2.2.3) holds. Hence
(2.2.2) holds, in other words, there exists (It = Aj;0) € (I' = A;7)] such that (It = Ag;0) E OA
and (I'y — Aj;0) £ OB. Immediately, we have A # B. Also by the induction hypothesis, we have
OB ¢ I'y and OA ¢ A;. Here we also note that I'y — A; is saturated, and so, every condition in
Definition 4.3 for I’y — A; holds. So, by OB ¢ TI';, Definition 4.3(7) and Definition 4.3(9), we have
OB < 0A ¢T; and OB < OA ¢ I';. Also by OA < OB € A C Sub™(I' » A) and Lemma 4.10(3),
OA < OB € Sub™(I'y — A;). Using A # B, OA ¢ A; and Definition 4.3(11), we have OA < OB € T';.
Using Lemma 4.10(4), we have 0A < OB € I'. This is in contradiction with A < OB ¢ T

We show the case that D = 0OA < OB. First we show (1). Suppose that 0A < OB € I' and
(T - A;7) |# OA < OB. Then by Definition 4.3(7) OA € I', and using the induction hypothesis, we
have (I' = A;7) = OA. Using (I' = A;7) £ OA < OB and Definition 4.13(2.3), we have (I' = A;7) E
OB < 0OA, and using Definition 4.13(2.2), either one of the following three holds:

(4) OB <OA€T,

(5) there exists (I'hy = Ap;7m) € (I' = A;7)J, such that (I = Ay;7) | OB and (I' = Ap; ) [ DA,

(6) OC < OA & Sub™(I' — A) for any C.

However, we have OB < 0OA € Sub™(I' = A) from OA < OB € I' C Sub(I' — A), and so, (6) does not
hold. Also by OA < OB € I" and Corollary 4.11(2), we have DA < OB ¢ A, and using Definition 4.3(9),
OB < OA ¢ T, and hence (4) does not hold. So, (5) holds. Immediately, we have A # B. Also by the
induction hypothesis, we have OB ¢ A; and OA ¢ I'y. Here we also note that I'y — A; is saturated,
and so, every condition in Definition 4.3 for I’y — A; holds. So, by OA ¢ TI'y, Definition 4.3(7) and
Definition 4.3(9), we have DA < OB ¢ I'; and A < OB ¢ I';. On the other hand, by Lemma 4.10(3),
we have OB < OA € Sub®(I' = A) C Sub™(I'; = A;). Using A # B and Definition 4.3(11), we have
OB < 0OA € I';, and using Lemma 4.10(4), OB < OA € T', which is in contradiction with OB < OA ¢ T
shown above as the negation of (4).

We show (2). Suppose that OA < OB € A. If A = B, then by using Definition 4.3(8), we have
OA € A, and using the induction hypothesis, (I' = A;7) & OA, moreover using Definition 4.13(2.3),
(T —- A;7) £ OA < OB. So, we assume that A # B. By OA < OB € A, Corollary 4.11(2) and Definition
4.3(9), we have OA < OB € Sub™(I' = A), DA < OB ¢ I and OA < OB ¢ I. Using Definition 4.3(11),
we have either OA € A or OB < OA € I'. Using the induction hypothesis, (I' - A;7) & OA or
(' - A;7) E OB < 0OA, and using Definition 4.13(2.3), (I' = A;7) = 0A < OB. —|

Corollary 4.17 Let A be a formula in the antecedent of Sy and let B be a formula in the succeedent of
So. Then in K(Sp), (sat(So);[]) E A and (sat(So);[]) ¥ B.

Lemma 4.18 (I' = A; 1) € W(Sy) implies DA < OA ¢ T,

Proof. First, we note that I' — A is saturated, and so, every condition in Definition 4.3 holds. Suppose
that 0A < OA € I'. Then by Definition 4.3(9), OA < OA belongs to I" and A. This is in contradiction
with Corollary 4.11(2). -

Lemma 4.19 Let v = (I' = A;7) and 72 = (T2 = Ag; 1) be in W(Sp) and let be that v < 2. Then
for any formula D,

(1) OD € A and OE, < 0D ¢ Sub™(I'y — As) for any E> imply OE < OD ¢ Sub™(I' = A) for any
E

’

(2) DeX and v = D imply v2 E D.

Proof. First, we note that I' -+ A and 'y — A, are saturated, and so, every condition in Definition 4.3
for these sequents holds.

We show (1). Suppose that

(1.1) OD ¢ A,

(1.2) OFy < OD ¢ Sub™(['y — Ay) for any Es,

(1.3) OF < OD € Sub™(I' = A) for some E.
Then by (1.3), we have wit(D, D) NSub(I' = A) # 0 for some D’. So, either wit(D,D')NSub(I’ —) # 0
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or wit(D,D') N Sub(— A) # (0 holds. If the latter holds, then using (1.1) and Definition 4.3(11), we
have the former. So, the former holds in both cases. Using Lemma 4.10(4) and 7 < 72, we have
wit(D, D) NSub(I'y =) # B, and so, DD’ < OD € Sub™ (I'y — Ay), which is in contradiction with (1.2).

We show (2). If D is a O-formula, then by the definition of |=, we have the lemma.

Suppose that D = OA < OB and v = OA < OB. Then by Definition 4.13(2.2), either one of the
conditions (2.2.1), (2.2.2) and (2.2.3) in Definition 4.13 holds. If (2.2.1) holds, then by Lemma 4.10(4),
OA < OB € I'y, and using Lemma 4.16, v |= OA < OB. If (2.2.2) holds, then by v < 72, the condition
obtained from (2.2.2) by replacing v with 7, holds, and hence v, = 0OA < OB. If (2.2.3) holds, then by
Lemma 4.10(3) and v < 72, the condition obtained from (2.2.3) by replacing I' = A and v with 'y — A,
and 2, respectively, holds, and hence v, |= 0A < OB.

Suppose that D = 0A < OB and v = 0OA < OB. Then by Definition 4.13(2.3), we have

(2.1) v = 0A and v £ OB < OA.

From the definition of |=, we have 72 |= OA. So, it is sufficient to show ~, £ OB < OA. Suppose that
72 = OB < OA. Then by Definition 4.13(2.2), either one of the following three holds:

(2.2) OB < OA €Iy,

(2.3) there exists o € y2] such that o = 0B and «a = DA,

(2.4) OF < OA ¢ Sub™(I'y — Ay) for any F and there exist a formula C and 4 (= (T, — Ab; 7)) €

2] such that OB < OC €T, 4 EOA, v = OB, 74 | OC and for any § € 74, 8 = 0OA, § =~ OB

and g £ OC.

If (2.2) holds, then by Lemma 4.10(3), we have OB < OA € Sub™(I' — A). Also by (2.2) and Lemma
4.18, we have A # B. On the other hand, by Lemma 4.16 and (2.1), we have A ¢ A and OB < OA ¢ I.
So, using Definition 4.3(11), we have either DA < OB or DA < OB belongs to I', and using Definition
4.3(9), we have OA < OB € T in both cases. Using Lemma 4.10(4) and Corollary 4.11(2), we have
OA <0OB €Ty and DA X OB ¢ A,. This is in contradiction with (2.2) and Definition 4.3(9).

If (2.3) holds, then by Lemma 4.14, either one of @ < 7, @ = v and v < « holds. Here by (2.3) and
(2.1), we have a = OA and v |= OA. So, using the definition of |=, we have @ < 7. So, the condition
obtained from (2.3) by replacing 2 with 7 holds, and hence v | OB < OA. This is in contradiction
with (2.1).

If (2.4) holds, then similarly to the case that (2.3) holds, we have v} < 7. Using 4 |= OA in (2.4),
we have v |z OA, and using Lemma 4.16, OA ¢ A. By (2.4), OE < OA ¢ Sub™(I'; — A,) for any E,
and using (1), we have OF < OA ¢ Sub™(I' — A) for any E. So, the condition obtained from (2.4) by
replacing 'y — Ay and 2 with I' = A and 7, respectively, holds. Hence we have v | OB < OA. This
is in contradiction with (2.1). =

Lemma 4.20 Let v be in W(Sy) and let be that either v | OA < OB or vy |= 0OA < OB. Then for any
7 € 7], 71 |E OB implies v, = OA.

Proof. We put v = (I' - A;7) and 3 = (I'h = Aj;7). We note that ' - A and I'y — A; are
saturated, and so, every condition in Definition 4.3 for these two sequents holds. By Definition 4.13(2.2)
and Definition 4.13(2.3), either one of the following four holds:

(1) v £ OB < OA,

(2) A< OB €T,

(3) there exists o € y] such that a = OA and o £ OB,

(4) there exists « € y] such that « = OA and for any 8 € al, § = OB,

If (1) holds, then by Definition 4.13(2.2), the following does not hold:

“there exists a € yJ such that  |= 0B and « £ OA”,

and the negation of the above condition is the goal of the lemma.

If (2) holds, then by Definition 4.3(9), we have OB < OA € A. Using Corollary 4.11(2) and Definition
4.3(9), we have OB < OA ¢ I’ and OB < 0OA ¢ T', and using Lemma 4.10(4), OB < OA ¢ I';. By (2)
and Lemma 4.10(3), we have OA < OB € Sub™(I'y — A;). Also by (2) and Lemma 4.18, we have A # B.
So, using Definition 4.3(11), we have either one of OB € A, 0A < OB € I'; and 0A < OB € I';. Using
Definition 4.3(9) and Definition 4.3(7), we have either OB € A; or OA € I';. Using Lemma 4.16, we
have either v; £ OB or v, |= OA.
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If (3) or (4) holds, then by Lemma 4.19(2), 71 F OA if 3 € at U{a}; and 71 £ OB if 1 € al.
By 11 € 7], @ € yJ and Lemma 4.14, we have either v; € a1 U{a} or 71 € al. Hence we have either
7 OB or v = OA. 4

Lemma 4.21 The aziom A8 is valid in IC(Sp).

Proof. Let v = (I' = A;7) be in W(Sp). We note that I' — A is saturated, and so, every condition in
Definition 4.3 holds. Suppose that

(1) Y |= 0A < OB.
Then either one of the conditions (2.2.1), (2.2.2) and (2.2.3) in Definition 4.13 holds. If (2.2.1) holds,
then Definition 4.3(9) and Definition 4.3(7), we have OA € I', and using Lemma 4.16, v = OA. If either
(2.2.2) or (2.2.3) holds, then there exists @ € yJ such that « = 0A, and using Lemma 4.19(2), v = OA.
Hence in any case, we have v = OA. Hence by Definition 4.13(2.3), it is sufficient to show v £ OB < OA.
Suppose that

(2) Y |= OB < OA.
Then by Definition 4.13(2.2), either one of the following three holds:

(2a) OB <OA €T,

(2b) there exists a € yJ such that o = OB and « [~ OA,

(2¢c) OD < OA ¢ Sub™(T' — A) for any D.
Here we note that (2b) is in contradiction with (1) and Lemma 4.20. Hence we have either (2a) or (2c).
On the other hand, by (1) and Definition 4.13(2.2), either one of the following three holds:

(la) OA < OB €T,

(1b) there exists o € y] such that « = 0A4 and « = OB,

(Ic) OD < OB ¢ Sub(I' — A) for any D and there exist C' and (I'1 — Aj;71) € 7] such that

0A<0Celh.
We note that (1a) is in contradiction with (2a), Definition 4.3(9) and Corollary 4.11(2) and that (1a) is in
contradiction with (2c). Also we note that (1b) is in contradiction with (2) and Lemma 4.20. Moreover,
we note that (1c) is in contradiction with (2a) and that OA < OC € T’y of (1¢) is in contradiction with
(2¢) and Lemma 4.10(4). =

Lemma 4.22 The azxiom A6 is valid in K(Sp).

Proof. Let v = (I' = A;7) be in W(Sp). We note that I' = A is saturated, and so, every condition in
Definition 4.3 holds. Suppose that

(1) v |- 04 < OB,

(2) v £ OB =0OC

(3) v £ OA = 0OC.
If A = B, then (2) is in contradiction with (3). If B = C, then (1) is in contradiction with (3). So, we
assume that A # B and B # C.

By (1) and Definition 4.13(2.3), we have v |= OA. So, using (3) and Definition 4.13(2.3), we have
v | OC < OA, and using Definition 4.13(2.2), either one of the following three holds:

(3a) OC <OA €T,

(3b) there exists o € yJ such that o = 0OC and o [~ OA,

(3¢c) OE < OA ¢ Sub™(I' — A) for any E and there exist a formula D and /(= (I" — A';7')) € 77

such that OC < OD € IV, v E0A4, v =04C, v = OD and for any g € +'|, 8 = OA, 8 |~ OC and

B} OD.
By (1), (2) and Lemma 4.20, we have that « = OC implies « |= OA for any a € 7J. So, (3b) does not
hold. We have either (3a) or (3c).

Suppose that (3a) holds. Then by Lemma 4.18, we have A # C.

If OF < OB € Sub™(I' = A) for some E, then by (3a), we have {0A < OB,0B < 0OC} C Sub™ (T —
A). Using Definition 4.3(10), either one of DA < OB € A, OB X 0OC € A and OA < 0OC € T holds, but
this is in contradiction with (1), (2), (3) and Lemma 4.16.

We assume that OF < OB ¢ Sub™(I' = A) for any E. By (2) and Definition 4.13(2.3), we have
v = OC < OB. So, it is sufficient to show v = OC < OB. To show this, we will show the condition
corresponding to Definition 4.13(2.2.3).
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By (3a), Definition 4.3(9) and Corollary 4.11(2), OA < OC belongs to A, but to I', moreover,
OA < OC ¢7T. Let v(= (I'1 = Ap;71)) be in v, Here we note that I'y — A; is saturated, and so,
every condition in Definition 4.3 for I’y — A; holds. By Lemma 4.10(4), we have OA < 0OC ¢ I'y and
OA < OC ¢ T';. Also by Lemma 4.10(3), we have OA < OC € Sub™(I'y — A;). Using A # C and
Definition 4.3(11), we have

(4) either OC < OA € T’y or OA € A;.

Using Definition 4.3(9) and Definition 4.3(7), we have either OC € I'y or OA € A;. Using Lemma 4.16,
we have either y; = 0OC or v, = OA. Using (1),(2) and Lemma 4.20, we have

(5) all of v1 |=0A, 1 = OB and 71 |= 0OC hold or none of them holds.

We put W' = {6 € vJ| ¢ E OA}. By v |E OA, we have W’ # (. Also by Lemma 4.14, (W', <) is
linear(i.e., either one of § < ¢, § = ¢ and ¢ < J holds for any §,( € W') and finite. So, there exists
the minimum element 2 (= (I'y = Ay; 7)) of W'. By Lemma 4.16, we have OA ¢ A,, and using (4),
OC < OA € T'y. Also by (5), we have 7, |= OA, 72 |= OB and vy = OC. Since 72 is minimum, by (5),
for any ¢ € 2], 6 £ OA, § = OB and 6 = OC. Using Definition 4.13(2.2), we obtain v = OC < OB.

Suppose that (3c) holds. We note that IV — A’ is saturated, and so, every condition in Definition 4.3
for I — A’ holds. By (1), (2) and Definition 4.13(2.3), we have v £ OB < OA and v = OC < OB. So,
it is sufficient to show one of the following two:

(6) v = OB < OA,

(7) v = 0C < OB.

We show (7) if OE < OB ¢ Sub™ (I' = A) for any E; and (6) if not.

Suppose that OF < OB ¢ Sub™(I' = A) for any E. To show (7), we show the condition corresponding
to Definition 4.13(2.2.3), namely, the condition obtained from (3c) by replacing all the occurrences of
A with B. There are three occurrences of A in (3c). By OE < OB ¢ Sub™(I' — A) for any E, the
condition obtained from (3c) by replacing the first occurrence holds. Using (2) and Lemma 4.20, the
condition obtained from (3c) by replacing the first two occurrences holds. Using (1) and Lemma 4.20,
we obtain the condition that we wanted to show.

Suppose that OE < OB € Sub™ (I' — A) for some E. To show (6), we show the condition correspond-
ing to Definition 4.13(2.2.3), namely, the condition obtained from (3c) by replacing all the occurrences of
C with B. There are three occurrences of C in (3c). Similarly to the above case, by (1), (2) and Lemma
4.20, the condition obtained from (3c) by replacing the last two occurrences holds.

So, we have only to show OB < OD € . By (3c), we have

(8) OC <UD eI".

So, OC < OD € Sub®(I" — A’). Also, by Lemma 4.10(3), we have OF < OB € Sub®(I' — A) C
Sub™ (I — A’). Hence we have

(9) {0B < OC,0B <0C,0C <0D,0D < 0OB,0B < 0D} C Sub™(I" — A).

By (2) and Lemma 4.16, we have OB < 0OC ¢ A, and using Definition 4.3(7) and Lemma 4.10(4),
OC < OB ¢ T and OC < OB ¢ I'. By (3c), we have ' &= OC, and using Lemma 4.16, we have
OC ¢ A'. Using (9) and Definition 4.3(11), either OB < OC or OB = OC belongs to I', and using
Definition 4.3(7), we have

(10) OB < 0OC e I
in both cases. By (8) and Lemma 4.18, we have C' # D. Also by (8) and OC < OB ¢ I, we
have B # D. Using (9) and Definition 4.3(10), either one of OB < OC € A/, OC < 0D € A’ and
OB < OD € I' holds. However, the first one is in contradiction with (10) and Corollary 4.11(2). Also
the second one is in contradiction with (8), Definition 4.3(9) and Corollary 4.11(2). Hence we have the
third one, OB < OD € I'. Using Corollary 4.11(2) and Definition 4.3(7), we have OB < OD ¢ A’
and OD < OB ¢ I''. By v/ = 0OC of (3c), (2) and Lemma 4.20, we have 7' |= OB, and using Lemma
4.16, OB ¢ A’. Using (9) and Definition 4.3(11), we have either OB < OD € IV or OD < OB € I'". If
0D < OB € I", then by (10), (9), Corollary 4.11(2) and Definition 4.3(10), we have 0D < 0OC € I/, and
using Corollary 4.11(2), OD < OC ¢ A’. This is in contradiction with (8) and Definition 4.3(7). Hence
we obtain OB < OD € I'. —|

By Lemma 4.14, Lemma 4.15, Lemma 4.19(2), Lemma 4.21 and Lemma 4.22, we obtain

Corollary 4.23 K(So) is a Kripke model for R™.
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From Corollary 4.17 and Corollary 4.24, we obtain Theorem 4.1.
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