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Abstract

A domain in which recombination does not often occur, but in which linkage disequilib-
rium is present, is known as a “haplotype block” or “LD block”. There are many methods
for identifying haplotype blocks using disequilibrium parameters, particularly, the method of
Kamatani et al. . Although their method has a high calculation time requirement, it is advan-
tageous among current methods when we analyzeing large amounts of genotype data. We
thought that the cause of the extended calculation time lies in the threshold of D′ in the initial
condition to identify haplotype blocks. Therefore, here, we report on a method for identifying
a more appropriate a haplotype block, which greatly shortens the calculation time by setting
the optimal threshold of D′.

1 Introduction

Linkage disequilibrium analysis is one method in statistical genetics. In this method, “linkage”
refers to the state of the relationship among loci accumulating over 2-3 generations in a biallelic
model, two alleles inherited from one parent show a strong tendency to stay together, as do those
from the other parent and “linkage disequilibrium” describes the state in which the alleles in the
last generation have a distribution reflecting ancestral recombination events
Methods of trait-mapping based on theories of linkage disequilibrium analysis have developed
quickly in recent years. For DNA sequences, there are domain “hotspot” where recombination
events occurred often. On the other hand, there are domains where recombination does not often
occur, and yet maintained linkage disequilibrium is present, a phenomenon known as “haplotype
block”, or “LD block”. Determining the value of D′, a disequilibrium parameter, has been an
important step in identifying the haplotype block, up until now. However, D′ is supported
better supported experientially than it is theoretically. In this report, we consider the relationship
between the identification of haplotype block and D′.

1.1 Recent studies

Gabriel et al. (2002) defined “strong linkage disequilibrium” as the state where the upper bound
of 95% confidence interval of D′ exceeds 0.95. Zhu et al. (2003) evaluated haplotypes in which
each relative frequency is more than 0.04.

Furthermore, the ideas of Gabriel’s and Zhu’s methods were combined to identify haplotype
blocks in another paper (Kamatani et al. 2004). Their detailed procedures are as follows.
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Step 1 Since the loci with minor allele frequencies of less than 0.1 are likely to have been generated
by recent mutations, they were excluded from the genotype data for the determination of
haplotype blocks.

Step 2 Initial satellites of a block were constructed using a pair of adjacent SNPs with D′ ≥ 0.9 for
all pairs. This is designated as the “minimal block”.

Step 3 Using the satellite block, possible extension of the block to an adjacent SNP in ether of
direction is examined. If haplotype heterozygosity is unchanged by the extension in one
direction, then the block is extended to that direction. If the extension increases the hap-
lotype heterozygosity, then the SNP before the extension is considered as the end of that
block. Judging by whether or not to add a locus into a block, it is possible to estimate
whether a haplotype has a cumulative relative frequency of 0.95 (or 0.9), constituting a
major haplotype.

1.2 Problem of threshold

In the above system for the identification of haplotype blocks, the initial conditions for satellite
blocks are D′ ≥ 0.9 as determined by experimental instinct. Alternative conditions also should
be considered. The initial conditions are understood to be considerably severe. Therefore, short
mininum blocks may be identified in Step 2, but based on these strict conditions, the calculation
time for the identification of blocks may become large since the satellite blocks are very short.
We therefore examined alternative thresholds for the construction of initial satellite blocks in the
following section.

2 Using a threshold of disequilibrium parameters

Imagine that there are 2 linked biallelic loci. Let the major and the minor alleles at locus 1 be
1 and 2 with relative frequencies of p1 and p2, respectively, and let those at locus 2 be 3 and 4
with relative frequencies of p3 and p4, respectively. Without losing generality, we can assume that
p1 ≥ p3 ≥ 0.5. Under these conditions, p1 ≥ p2, p3 ≥ p4. Let haplotype frequencies concerning the
two loci be as follows.

locus 2
allele 3 allele 4

locus 1
allele 1 p13 p23
allele 2 p14 p24

Table 1: 4 haplotypes on 2 loci.

Linkage disequilibrium parameter D is defined by the following equation.

D = p13 − p1p3

The following equations hold.

p13 = p1p3 +D, (2.1)
p14 = p1p4 −D,
p23 = p2p3 −D,
p24 = p2p4 +D (2.2)

Here, we propose f = p13 + p24 as a parameter to measure the linkage disequilibrium.
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From equations (2.1) and (2.2), we get

f = p13 + p24 = p1p3 + p2p4 + 2D.

Since, p2 = 1 − p1 and p4 = 1 − p3,

f = p1p3 + (1 − p1)(1 − p3) + 2D.

From above equation, we get

D =
p1(1 − p3) + (1 − p1)p3 + f − 1

2
. (2.3)

Since the range of D changes with allele frequencies, the parameter D′ = D/Dmax is used,
where

Dmax =

min[p1(1 − p3), (1 − p1)p3] if D ≥ 0
max[−p1p3,−(1 − p1)(1 − p3)] otherwise

The above equations can easily be written as

Dmax =

(1 − p1)p3 D ≥ 0
−(1 − p1)(1 − p3) D < 0

since p1(1 − p3) ≥ (1 − p1)p3 and −p1p3 ≤ −(1 − p1)(1 − p3) if p1 > p3 > 0.5.
Then,

D′ =
p1(1 − p3) + (1 − p1)p3 + f − 1

2Dmax
. (2.4)

There is a very close relationship between the cumulative relative frequency f of haplotypes
(equation (2.4)) and the value of D′. For example, when D′ = 0.9 and each allele relative frequency
is 0.5, then f = 0.95 analytically. The similarity between p1 and p3 when f = 0.95, D′ is close to 1.
Moreover, when p1 and p3 are not similarity, this relationship also collapses. (See Figure 1)

Figure 1: A behavior of D′ ( f = 0.95)

Here, let f0 as a following equation,

f0 = max(p13 + p24, p14 + p23). (2.5)

Then, we want to think the range f that can be taken on the condition with enough linkage
disequilibrium. The proportion w2 of haplotypes {1-3, 2-4} is a parameter that we want to give.
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It’s assumed that above haplotypes are following a uniform distribution with each allele relative
frequancy. Then we get

p13 = p1w2, (2.6)
p24 = (1 − p3)w2, (2.7)

when f0 = p13+p24. Let f2 = (p1+1−p3)w2 we want to set a parameter. (e.g. w2=0.95) We want
to take D′( f2) as the threshold of D′ as in Step 2 of Section 1.1. This means that we do not take the
condition D′ ≥ 0.9, but that we take the condition (we call this “unit of haplotype block”.)

|D′| ≥ |D′( f2)| (2.8)

where, D′ = p13p24 − p14p23 is given by observed data.

However, based on the conditions in Figure 1, where ( f2 = 0.95), it is understood that there is
a range of D′ that is not the gain according to major allele frequencies. We think that f2 = 0.95
or 0.9 constitutes an appropriate condition because 0.95 is a cumulative relative frequency of
major haplotypes based on Step 3 of Section 1.1. Thus, adding not only two haplotypes {1-3, 2-4},
but another one haplotype {2-3 or 1-4} as a cumulative relative frequency of haplotypes. After a
similar process, the condition is described by the following equation where f2 is added to p23 or
p14 ,then let f3 = max(1 − p23, 1 − p14). (We call this “deviation of haplotype”.)

|D′| ≥
∣∣∣∣∣p1(1 − p3) + f3 − 1

Dmax

∣∣∣∣∣ (2.9)

where, D′ given by observed data, f3 is set by user.

Therefore, we think that an optimal initial satellite of a block can be constructed when equa-
tions (2.8) and (2.9) for pairwise D′ are satisfied for all pairs of loci. Constructing an optimal
initial satellite of a block leads to the greatest decrease in estimation time for haplotype in Step
3 of Section 1.1. Consequently, this results in a decrease in the calculation time for identifying
haplotype blocks.

2.1 Calculation time

Finally, we considered how calculation time differs in total. We assume that a function indicating
the calculation time of inferring the haplotype frequencies is represented by an algorithm linking
k loci as T(k). The calculation time of the block identification with the data linked by n loci by the
method of Kamatani et al. is represented by the following equation

fk(n) = T(n)2 + (n − s)T(n)n, (2.10)

where s denotes the number of pairs next to each other that are D′ > 0.9, and s does not
depend on n. The calculation time of of our method is given by the following equation

fo(n) = T(n)2 + g(n), (2.11)

where g(n) denotes a function of time for calculating the threshold value for each pair of loci,
and it is clearly influenced by the property of the algorithms such that T(n)2 > g(n).

In order to evaluate the time complexity, equations (2.10) and (2.11) can be rewritten as follows.

O( fk(n)) = nT(n)n (2.12)
O( fo(n)) = T(n)2 (2.13)

We then compare equations (2.12) with (2.13);

O( fk(n)) > O( fo(n)). (2.14)
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Therefore, the longer the haplotype block becomes, the calculation time by our method is
understood to be shortened greatly compared to that of Kamatani et al. .

3 Numerical examples and results

The data of International HapMap Project is then analyzed herein. Three (3) actual data sets
were downloaded and regenerated by Furihata et al.(2004). A region of the X chromosome is
analyzed for 43 or 44 subjects (29 mothers and 15 virtual daughters). The data are unphased data
regenerated by them. Figure 2 shows the loci and LD(D′) map for data1, Figure 3 shows that for
data2. LD maps have been made using the GUI software “Integrated Environmental System for
SNPs Data Analysis” (Tomita et al., 2004). Data3 comprises 83 loci ranging from from rs845127
to rs756384; this set was prepared prepared to develop a large data for the purposes of making
time comparisons. (The LD map was omitted because it was very large.) The haplotype-block
identification was performed on the data by the methods shown in Section 1.1 and our method.
The same calculations were run using three versions: our method the method of Kamtani et al., and
that of Haploview (Barrett et al., 2005). Figure 2 and Figure 3 show the results of the identifying
blocks, as well, and the calculation time of our method was shorter than that of Section 1.1. (See
a next section.)

Figure 2: Identifing haplotype blocks on data1

Figure 3: Identifing haplotype blocks on data2
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Haploview The method of Kamatani et al. Ours
data1 2.145 1.725 0.105
data2 1.763 1.830 0.090
data3 3.434 14.509 2.043

Table 2: Real calculation times by each programs. (seconds)

4 Discussion

The results of the block identification were obtained by each method for three sets of actual data.
When the results were obtained, blocks where our method, the method of Kamawani et al. and
that of Haploview were the identical or differed little were identified. Because it appears to be
possible to use the optimized threshold of D′, even for data points that differ slightly, this method
is convincing.

Next, we compare the calculation time of each program. Table 3 shows the calculation time
of each program performed on LapTop (Pentium 600MHz, VineLinux OS). It is understood that
there are clear differences in the calculation time as shown in Table 3. When loci become longer,
differences in calculation time can be expected to become considerably longer, as shown by
calculations using these data sets.

In conclusion, it is understood that almost the same block can be identified by any of these
methods, but our proposed method rapidly shortens the calculation time compared with that of
Kamatani et al. It is expected that not only the calculation time, but also more appropriate block
identification, can be accomplished by optimizing the threshold of D′.
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