New reals created at limit stages of iterated forcing

Tadatoshi MIYAMOTO

5th, January, 2006

Abstract

Assuming \diamond , we construct a notion of forcing which iterates Souslin trees. This iteration codes any family of iteratively generic cofinal paths by a single real. The original construction due to R. Jensen starts in the constructible universe.

Introduction

We are interested in iterated forcing $\langle P_n, \dot{Q}_n \mid n < \omega \rangle$ such that for each $n < \omega$, $\parallel_{P_n} "\dot{Q}_n$ is σ -Baire, i.e. adds no new countable sequences of ordinals" and yet if P_{ω} is any limit of the P_n , then P_{ω} is never σ -Baire.

In [DJ], a sequence of ω -many Souslin trees are constructed in the constructible universe L. They are connected in L so that any family of iteratively generic cofinal paths are coded by a single real.

We reformulate this construction by \diamond . In doing so, we tentatively formulate a type of sequences of projections so that this remake gets included. However, we are unable to include the semiproper iteration of [M] which forces a stronger form of ψ_{AC} .

It appears that [DJ] constructs thin trees, while [M] does thick ones with a kind of homogenuity. A possible common thread is that any family of iteratively generic objects $\langle G_n \mid n < \omega \rangle$ is coded into a single real by types of sequences of projections. Hence no matter how we force with limit, we must add this new single real as long as $\langle G_n \mid n < \omega \rangle$ is new.

In §1, we quickly fix our notations. In §2, we formulate a general framework which explicates how codings take place. In §3, we carry a routine work to translate sequences of projections into the usual context of iterated forcing. For that we make use of the idea of forcing equivalence from [S]. In §4, we review \Diamond and point out that for any notion of forcing P which has the c.c.c, is σ -Baire and of size at most ω_1 , we may prepare a type of \Diamond -sequence in the ground model so that it remains so in any generic extension of P. In §5, we remake [JD] by \Diamond . In §6, we touch on our stronger form of ψ_{AC} . The principle ψ_{AC} is found in [W].

§1. Preliminaries

1.1 Definition. For a tree S and $x \in S$, we denote the *height* of x in S by |x|. So |x| = the order-tye of $(\{\bar{x} \in S \mid \bar{x} <_S x\}, <_S)$. The height of S is denoted by ht(S). So there is no element $x \in S$ with |x| = ht(S). A path b of S means that b is a $<_S$ -downward closed pairwise $<_S$ -comparable subset of S. If the order-type of $(b, <_S)$ is α , then for $\beta < \alpha$, $b(\beta)$ denotes the β -th element of b. So $b(\beta) \in S_{\beta}$, where S_{β} denotes the β -th level of S. A tree S is normal, if

- (1) For any $x \in S$ and $|x| < \alpha < \operatorname{ht}(S)$, there exists $x^* \in S_{\alpha}$ with $x <_S x^*$. (Dense)
- (2) For any $x \in S$ with |x| + 1 < ht(S), we demand $|suc_S(x)| = \omega$. (ω -many successors)
- (3) For any path b of S with no last element in b, there exists at most one element x in S which sits right above b. (At most one)

A subtree of $\langle \omega_1 \omega \rangle$ is a downward-closed subset of $\langle \omega_1 \omega \rangle$.

To construct limit levels of a tree, the following is basic.

1.2 Proposition. Let T be a normal subtree of ${}^{<\omega_1}\omega$ such that $ht(T) = \alpha < \omega_1$ and α be a limit. Let $\{x_1, \dots, x_l\}$ be a finite subset of ${}^{\alpha}\omega$. Let $y \in T$ with $|y| < \alpha$. Let $\langle A_n \mid n < \omega \rangle$ be a family of maximal antichains of T indexed by ω . Then there is $y^* \in {}^{\alpha}\omega$ such that $y \subset y^*$, $y^* \notin \{x_1, \dots, x_l\}$, for all $\beta < \alpha$, we have $y^* \lceil \beta \in T$ and for all $n < \omega$, we have $A_n \cap \{y^* \lceil \beta \mid \beta < \alpha\} \neq \emptyset$.

Proof. Let $\langle \alpha_n \mid n < \omega \rangle$ be a strictly increasing sequence of ordinals such that $\alpha_0 = |y|$ and $\sup\{\alpha_n \mid n < \omega\} = \alpha$. Construct $\langle y_n \mid n < \omega \rangle$ by recursion on n as follows;

- $y_0 = y, y_0 \subset y_1 \in T, \alpha_1 \leq |y_1| < \alpha \text{ and } y_1 \notin \{x_1 \lceil |y_1|, \dots, x_l \lceil |y_1|\}.$
- There exists $\beta < |y_1|$ such that $y_1 \lceil \beta \in A_0$.
- $y_n \in T, \, \alpha_n \leq |y_n| < \alpha.$
- $y_n \subset y_{n+1} \in T$, $\alpha_{n+1} \le |y_{n+1}| < \alpha$.
- There exists $\beta < |y_{n+1}|$ such that $y_{n+1} \lceil \beta \in A_n$.

It is straightforward to carry this construction due to (Dense) and (ω -many successor). Let

$$y^* = \bigcup \{ y_n \mid n < \omega \}.$$

Then this y^* works.

The following is from [S].

1.3 Definition. Let P and Q be two notions of forcing. We say P and Q are *forcing equivalent*, if there exist a P-name \tilde{G}_Q and a Q-name \tilde{G}_P such that

- (1) $V[G_P] \models "\tilde{G}_Q[G_P]$ is a Q-generic filter over V".
- (2) $V[G_Q] \models "\tilde{G}_P[G_Q]$ is a *P*-generic filter over *V*".
- (3) $V[G_P] \models "\tilde{G}_P[\tilde{G}_Q[G_P]] = G_P".$
- (4) $V[G_Q] \models "\tilde{G}_Q [\tilde{G}_P[G_Q]] = G_Q".$

Where G_P and G_Q denote the respective generic filters over V. We denote $P \equiv Q$, if P and Q are forcing equivalent.

1.4 Proposition. Let P and Q be notions of forcing such that $P \equiv Q$ with \tilde{G}_Q and \tilde{G}_P . Then

- (1) $V[G_P] = V[\tilde{G}_Q[G_P]]$ for all P-generic filters G_P over V.
- (2) $V[G_Q] = V[\tilde{G}_P[G_Q]]$ for all Q-generic filters G_Q over V.

Proof. Suffice to deal with (1). Let G_P be any *P*-generic filter over *V* and calculate $\tilde{G}_Q[G_P]$ which is *Q*-generic over *V*. Denote $G_Q = \tilde{G}_Q[G_P] \in V[G_P]$. Then we have

$$\tilde{G}_P[G_Q] = \tilde{G}_P[\tilde{G}_Q[G_P]] = G_P.$$

Hence $G_P \in V[G_Q]$ and so

$$V[G_P] = V[G_Q]$$

1.5 Proposition. Let P, Q and R be notions of forcing. If $P \equiv Q \equiv R$, then $P \equiv R$. And so \equiv is a class equivalence relation on the class of notions of forcing.

Proof. Let $P \equiv Q$ with \tilde{G}_Q and \tilde{G}_P . Let $Q \equiv R$ with \bar{G}_R and \bar{G}_Q . Want to come up with a *P*-name \underline{G}_R and an *R*-name \underline{G}_P .

Let

$$V[G_P] = V[G_Q[G_P]] \models "\underline{G}_R = G_R[G_Q[G_P]]"$$

and

$$V[G_R] = V\left[\bar{G}_Q[G_R]\right] \models "\underline{G}_P = \bar{G}_P\left[\bar{G}_Q[G_R]\right]"$$

Then

$$V[G_P] \models "\underline{G}_R \text{ is } R \text{-generic over } V".$$
$$V[G_R] \models "\underline{G}_P \text{ is } P \text{-generic over } V".$$

and

$$V[G_P] \models "\underline{G}_P[\underline{G}_R[G_P]] = G_P(\overline{G}_Q\overline{G}_R)G_Q[G_P] = G_PG_Q[G_P] = G_P".$$

$$V[G_R] \models "\underline{G}_R[\underline{G}_P[G_R]] = \bar{G}_R(\tilde{G}_Q\tilde{G}_P)\bar{G}_Q[G_R] = \bar{G}_R\bar{G}_Q[G_R] = G_R"$$

Hence $P \equiv R$.

1.6 Proposition. Let P and Q be notions of forcing. If $P \equiv Q$ via \tilde{G}_Q and \tilde{G}_P , then

(1) For all $p \in P$, there exists $q \in Q$ such that $q \models_Q "p \in \tilde{G}_P "$.

(2) For all $q \in Q$, there exists $p \in P$ such that $p \Vdash_P ``q \in \tilde{G}_Q$ ".

Proof. Suffice to show (1). Let $p \in G_P$. Then calculate $\tilde{G}_Q[G_P]$ and denote $G_Q = \tilde{G}_Q[G_P]$. Then

$$\tilde{G}_P[G_Q] = \tilde{G}_P[\tilde{G}_Q[G_P]] = G_P$$

Hence

$$V[G_Q] \models "p \in \tilde{G}_P[G_Q]."$$

So $q \models_Q p \in \tilde{G}_P$ for some $q \in G_Q$.

1.7 Proposition. Let P and Q be notions of forcing with $P \equiv Q$. Then

- (1) If P has the c.c.c, then so does Q.
- (2) If P is σ -Baire, then so is Q.

Proof. For (1): Want to show Q has the c.c.c. Let $\langle q_i \mid i < \omega_1 \rangle$ be given. For each $i < \omega_1$, take $p_i \in P$ such that $p_i \models_P ``q_i \in \tilde{G}_Q$ ''. Since P has the c.c.c, there are i, j such that $i \neq j$ and p_i and p_j are compatible. Let $p \leq p_i, p_j$ in P. Then $p \models_P ``q_i, q_j \in \tilde{G}_Q$ '' and so q_i and q_j are compatible in Q.

For (2): Want to show Q is σ -Baire. Namely, no new countable sequences of ordinals are added. But $V[G_Q] = V[\tilde{G}_P[G_Q]]$ and P is σ -Baire. Hence Q is σ -Baire.

1.8 Question. Let P and Q be two notions of forcing. We denote P < Q, if there exists a Q-name \tilde{G}_P such that $||_{-Q} \tilde{G}_P$ is P-generic over V and for any $p \in P$, there exists $q \in Q$ such that $q ||_{-Q} p \in \tilde{G}_P$. We have seen that if $P \equiv Q$, then P < Q holds. Is it the case that if P < Q and Q < P hold, then $P \equiv Q$?

§2. General Framework

We formulate a type of sequences of projections. This is sufficient to cover the construction in this note.

2.1 Definition. Let S and T be trees of height ω_1 such that

(0) The 0-th levels consist of their roots. Denote $\{\operatorname{root}_S\} = S_0$ and $\{\operatorname{root}_T\} = T_0$. (Root)

(1) For all $x \in S$ and $\alpha < \omega_1$ with $|x| < \alpha$, there exists $x^* \in S$ s.t. $x <_S x^*$ and $|x^*| = \alpha$. Similarly for T, where |x| and $|x^*|$ denote the height of x and x^* respectively. (Dense)

-	τ.
_	1

We say a triple (S, h, T) is a *step*, if h is a projection from T into S, i.e,

- (1) $h(y_2) \ge_S h(y_1)$, if $y_2 \ge_T y_1$ for all $y_1, y_2 \in T$. (Order-preserving)
- (2) If $x \ge_S h(y)$, then there exists $y' \in T$ s.t. $y' \ge_T y$ and $h(y') \ge_S x$ for all $y \in T$ and $x \in S$. (Reduction) and h satisfies
- (3) $h(\operatorname{root}_T) = \operatorname{root}_S$ and for all $y \in T$ with $|y| \ge 1$, it holds that |h(y)| = |y| + 1. (Ahead)

In the sequel, we write $y_2 \leq y_1$ to mean $y_2 \geq_T y_1$. We also denote $x_2 \leq x_1$ to mean $x_2 \geq_S x_1$ for S. This conforms to the usual convention in forcing arguments. And there should be no confusions. To explain the meaning of (Ahead), let b_T be a T-generic filter over the ground model V indexed by ω_1 . So $b_T : \omega_1 \longrightarrow T$ and $b_T(\alpha) \in T_\alpha$. This makes sense by (Dense) on T. Let b_S be the induced S-generic filter from b_T by h. Then (Ahead) is a device to recover b_S from b_T in such a way that $b_S(\alpha + 1) = h(b_T(\alpha))$. We intend to provide details to this and other standard facts related to the projections for the sake of completeness.

2.2 Proposition. Let (S, h, T) be a step.

- (1) The image of T under h, denoted by $h^{"T}$, is dense in S.
- (2) If b_S is an S-generic filter over V, then b_S is a cofinal path through S. We refere to this path as a generic cofinal path and denote the α -th element of b_S by $b_S(\alpha)$. So $b_S(\alpha) \in S_{\alpha}$, where S_{α} denotes the α -level of S.

Proof. For (1): Let $x \in S$. Since $x \leq \operatorname{root}_S = h(\operatorname{root}_T)$, we have $y \in T$ such that $h(y) \leq x$. Hence $h^{\mu}T$ is dense in S.

For (2): Since b_S is directed, it holds that every element of b_S is comparable. Since b_S is upward-closed in the notion of forcing S, we have that b_S is a downward-closed subset of the tree S. Hence b_S is a path. For any $\alpha < \omega_1$, $\{x \in S \mid \alpha < |x|\}$ is dense in S by (Dense). Hence b_S is cofinal through S.

We deal with the quotients.

2.3 Proposition. Let (S, h, T) be a step. Let b_S be an S-generic filter over V. In $V[b_S]$, let

$$T/b_S = \{ y \in T \mid h(y) \in b_S \}.$$

Then T/b_S is a tree of height ω_1^V and satisfies (Dense). We simply denote T/b_S by \hat{T} .

Proof. Since $root_S \in b_S$, we have $root_T \in T/b_S$.

 $(T/b_S \text{ is downward-closed in } T)$ Let $y_1 \in T/b_S$ and $y_2 \leq_T y_1$. Then $h(y_2) \leq_S h(y_1)$. But $h(y_1) \in b_S$ and so $h(y_2) \in b_S$. Hence $y_2 \in T/b_S$.

 $(T/b_S \text{ is dense})$ Let $y \in T/b_S$. So $h(y) \in b_S$. Fix any $\alpha < \omega_1$ and let $D = \{h(z) \in S \mid y <_T z, \alpha < |z| \text{ in } T \}$. Then this D is dense below h(y) in S. This makes use of (projection) and (Dense). Hence there exists $z \in T/b_S$ such that $y <_T z$ and $|z| > \alpha$ in T/b_S . In particular, the height of T/b_S is ω_1^V .

2.4 Proposition. $S * \hat{T} \equiv T$ holds by an $S * \hat{T}$ -name \tilde{b}_T , T-names \tilde{b}_S and $\tilde{b}_{\hat{T}}$ defined as follows;

$$V[b_S][b_{\hat{T}}] \models "\tilde{b}_T = b_{\hat{T}}".$$

 $V[b_T] \models \tilde{b}_S =$ the downward closure of $\{h(b_T(\alpha)) \mid \alpha < \omega_1^V\}, \ \tilde{b}_{\hat{T}} = b_T$ ".

Namely,

- (1) $V[b_S][b_{\hat{T}}] \models "\tilde{b}_T$ is T-generic over V".
- (2) $V[b_T] \models \tilde{b}_S$ is S-generic over V and $\tilde{b}_{\hat{T}}$ is $\hat{T}[\tilde{b}_S] = T/\tilde{b}_S$ -generic over $V[\tilde{b}_S]^n$.
- (3) $V[b_S][b_{\hat{T}}] \models \tilde{b}_S[\tilde{b}_T] = b_S \text{ and } \tilde{b}_{\hat{T}}[\tilde{b}_T] = b_{\hat{T}}$ ".
- (4) $V[b_T] \models \tilde{b}_T[\tilde{b}_S * \tilde{b}_{\hat{T}}] = b_T$ ".

Proof. For (1): Since $\hat{T} = T/b_S$ is a tree of height ω_1^V and satisfies (Dense), we conclude $b_{\hat{T}}$ is a cofinal path through \hat{T} . So $b_{\hat{T}}$ is a cofinal path through T, too. Hence $b_{\hat{T}}$ is a directed and upward-closed subset of the notion of forcing T. It remains to observe that for any dense subset $D \in V$ of T, it holds that $D \cap b_{\hat{T}} \neq \emptyset$. To see this, it suffices to see $D \cap \hat{T}$ is dense in \hat{T} . To this end, let $y \in \hat{T}$. We have $h(y) \in b_S$. Let $D' = \{h(z) \mid z \in D, y \leq_T z\}$. Then this D' is dense below h(y) in S. Hence we have $z \in D \cap \hat{T}$ with $z \leq y$ in \hat{T} .

For (2): In $V[b_T]$, let

$$b_S = \tilde{b}_S[b_T] = \{ x \in S \mid x \leq_S h(b(\alpha)), \alpha < \omega_1^V \}.$$

 $(b_S \text{ is an } S \text{-generic filter over } V)$: Want to show that this b_S is S -generic over V. Since b_S is a filter in S, it suffices to show that for any dense subset D of S, we have $D \cap b_S \neq \emptyset$.

Since h is a projection, we have $D' = \{y \in T \mid h(y) \leq d \text{ in } S, d \in D\}$ is dense in T. Hence we have $y \in b_T$ such that $h(y) \geq_S d$ for some $d \in D$. Hence $d \in D \cap b_S$.

 $(b_T \subseteq T/b_S)$: For any $y \in b_T$, we have $h(y) \in b_S$ by the definition of b_S . So $y \in T/b_S$ by the definition of T/b_S . Hence b_T is a filter in T/b_S .

It suffices to show for any dense subset $\tilde{D} \in V[b_S]$ of T/b_S , we have $\tilde{D} \cap b_T \neq \emptyset$. Take $x \in b_S$ so that $x \models_S \tilde{D} \subseteq T/b_S$ is dense". Since $x \in b_S$, may take $y \in b_T$ such that $x \leq_S h(y)$. So $h(y) \models_S \tilde{D} \subseteq T/b_S$ is dense". We see $\{z \in T \mid d \geq z \text{ in } T, h(z) \models_S d \in \tilde{D}^*\}$ is dense below y in T. Hence we have $z \in b_T$ and d such that $d \geq z$ in T and $h(z) \models_S d \in \tilde{D}^*$. Hence $h(z) \in b_S$ and $d \in \tilde{D} \cap b_T$.

For (3):

$$V[b_S][b_{\hat{T}}] \models ``\tilde{b}_S[\tilde{b}_T[b_S * b_{\hat{T}}]] = \tilde{b}_S[b_{\hat{T}}] = \{x \in S \mid x \leq_S h(y), y \in b_{\hat{T}}\} = b_S".$$

For the last equation, it suffices to see \subseteq . But $b_{\hat{T}} \subset T/b_S$ and so $h(y) \in b_S$ for all $y \in b_{\hat{T}}$.

$$V[b_S][b_{\hat{T}}] \models ``\tilde{b}_{\hat{T}}\big[\tilde{b}_T[b_S * b_{\hat{T}}]\big] = \tilde{b}_T[b_S * b_{\hat{T}}] = b_{\hat{T}}``.$$

For (4):

$$V[b_T] \models ``\tilde{b}_T \left[\tilde{b}_S[b_T] * \tilde{b}_{\hat{T}}[b_T] \right] = \tilde{b}_T \left[\tilde{b}_S[b_T] * b_T \right] = b_T".$$

Hence $S * (T/b_S) \equiv T$ holds.

We record useful facts. Since h satisfies (Ahead), we further conclude (3) below.

2.5 Proposition. (1) $h(y) \models_S "y \in \hat{T}$ ".

(2) $y \Vdash_T ``h(y) \in \tilde{b}_S ".$

(3) If
$$1 < \alpha = |y|$$
, then $y \models_T h(y) = \tilde{b}_S(\alpha + 1)$, the $\alpha + 1$ -st element of the induced generic path \tilde{b}_S ".

(4) In particular, $\parallel_T \tilde{\mathfrak{b}}_S(\alpha+1) = h(b_T(\alpha))$ " for $\alpha \ge 1$.

Proof. For (1): Let $y \in T$.

$$h(y) \in b_S \Longrightarrow T/b_S = \hat{T} = \{z \in T \mid h(z) \in b_S\} \Longrightarrow y \in \hat{T}.$$

For (2): Let $y \in T$.

$$y \in b_T \Longrightarrow h(y) \in \tilde{b}_S[b_T] = \{x \in S \mid x \leq_S h(z), z \in b_T\}.$$

For (3): Let $y \in T$ with $|y| = \alpha \ge 1$.

$$y \in b_T \Longrightarrow |h(y)| = |y| + 1 \Longrightarrow h(y) = b_S[b_T](\alpha + 1).$$

For (4): Let $\omega_1 > \alpha \ge 1$.

$$V[b_T] \models ``b_S[b_T](\alpha + 1) = h(b_T(\alpha))'$$

2.6 Lemma. Let
$$(T_n, h_n)$$
 $(n = 1, 2, \dots)$ satisfy

- (T_n, h_n, T_{n+1}) are steps.
- The T_n 's satisfy the following;

If $\alpha < \omega_1$ is any limit ordinal and b is any path of length α , then there exists at most one element at $(T_n)_{\alpha}$ above every member of b. (At most one)

Let, in any generic extension over V, b_n $(n = 1, 2, \dots)$ be a generic cofinal path through T_n over V such that for all $\alpha \ge 1$,

$$b_n(\alpha+1) = h_n(b_{n+1}(\alpha)).$$

Then we have

$$V[\langle b_n \mid n = 1, 2, \cdots \rangle] = V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle].$$

Proof. We construct $\langle d_n [\alpha \mid n = 1, 2, \cdots \rangle$ by recursion on α in $V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle]$. We then show

$$d_n \lceil \alpha = b_n \lceil \alpha \pmod{n} = 1, 2, \cdots$$

by induction on α . Hence $\langle b_n \mid n = 1, 2, \dots \rangle \in V[\langle b_n(1) \mid n = 1, 2, \dots \rangle].$

(Construction) Let us define

$$\langle d_n(0), d_n(1) \rangle = \langle \operatorname{root}_{T_n}, b_n(1) \rangle = \langle b_n(0), b_n(1) \rangle.$$

(Successor stage) Suppose $\alpha \ge 1$ and we have constructed $\langle d_n(0), d_n(1), \cdots, d_n(\alpha) \rangle$. Want $d_n(\alpha + 1)$.

 $d_n(\alpha + 1) = h_n(d_{n+1}(\alpha)), \text{ if } d_{n+1}(\alpha) \in (T_{n+1})_{\alpha}.$

Otherwise, $d_n(\alpha + 1)$ is undefined.

(Limit stage) Suppose α is a limit and we have constructed $d_n [\alpha]$. Want $d_n(\alpha)$. Let

 $d_n(\alpha)$ = the unique element of $(T_n)_{\alpha}$ which sits above every element of the path $d_n \lceil \alpha$, if this is possible.

Otherwise $d_n(\alpha)$ is undefined.

This completes the construction.

(Induction) It is clear that

 $d_n [2 = b_n [2 \text{ (for all } n = 1, 2, \cdots).$

Suppose $\alpha \ge 1$ and we have seen $d_n \lceil (\alpha + 1) = b_n \rceil (\alpha + 1)$ (for all $n = 1, 2, \cdots$). Want $d_n(\alpha + 1) = b_n(\alpha + 1)$. Since $d_{n+1}(\alpha) = b_{n+1}(\alpha) \in (T_{n+1})_{\alpha}$, we have

$$d_n(\alpha + 1) = h_n(d_{n+1}(\alpha)) = h_n(b_{n+1}(\alpha)) = b_n(\alpha + 1).$$

Let

Suppose α is a limit and we have seen $d_n \lceil \alpha = b_n \lceil \alpha \pmod{n} = 1, 2, \cdots$. Want $d_n(\alpha) = b_n(\alpha)$. But $b_n(\alpha)$ is the unique element of $(T_n)_{\alpha}$ which sits above every element of the path $b_n \lceil \alpha = d_n \lceil \alpha$. We conclude that $d_n(\alpha) = b_n(\alpha)$.

This completes the induction.

Given a nice tree S, we want to define a nice tree T and h so that (S, h, T) is a step. For this, we list necessities on the steps. We build T and h via some $\langle x \mapsto t_x | x \in S \rangle$ which satisfies the listed properties and more.

2.7 Proposition. Let (S, h, T) be a step. Then for each $x \in h^{*}T \setminus {\text{root}_{S}}$, we may define

 $t_x =$ the downward closure of $\{y \in T \mid h(y) = x\}$.

Then we have

(1) t_x is a tree of height |x|, the height of x in S.

- (2) If $x_1 <_S x_2$, then t_{x_1} gets end-extended to t_{x_2} . (Coherence)
- (3) If $x_1 \neq x_2$ in $S_{\alpha+1} \cap h^{\mu}T$ with $1 \leq \alpha$, then

$$(t_{x_1})_{\alpha} \cap (t_{x_2})_{\alpha} = \emptyset.$$

(Forking)

Proof. For (1): Let h(y) = x. Then |y| + 1 = |x|. Hence t_x is a tree with $ht(t_x) = |x|$.

For (2): Let $x_1 <_S x_2$, $|x_1| = \alpha_1 + 1$, $|x_2| = \alpha_2 + 1$. We first observe $(t_{x_2})_{\alpha_1} \subseteq (t_{x_1})_{\alpha_1}$. To this end, let $h(y_2) = x_2$ and $y_1 <_T y_2$ with $|y_1| = \alpha_1$ so that $y_1 \in (t_{x_2})_{\alpha_1}$. Then $h(y_1) <_S h(y_2) = x_2$ with $|h(y_1)| = \alpha_1 + 1$. Hence $h(y_1) = x_1$ and so $y_1 \in (t_{x_1})_{\alpha_1}$.

Conversely, we show $(t_{x_2})_{\alpha_1} \supseteq (t_{x_1})_{\alpha_1}$. Let $y_1 \in (t_{x_1})_{\alpha_1}$. So $h(y_1) = x_1$. Take $z \in T$ such that $x_2 \leq_S h(z)$ and $y_1 <_T z$. Let $y_2 \leq_T z$ with $|y_2| = \alpha_2$. Then $|h(y_2)| = \alpha_2 + 1$ and $h(y_2), x_2 \leq_S h(z)$. Hence $h(y_2) = x_2$ and so $y_2 \in t_{x_2}$. Hence $y_1 \in (t_{x_2})_{\alpha_1}$.

For (3): Let $h(y_1) = x_1$ and $h(y_2) = x_2$. Since $x_1 \neq x_2$, we have $y_1 \neq y_2$. Hence $(t_{x_1})_{\alpha} \cap (t_{x_2})_{\alpha} = \emptyset$.

We record is a sufficient condition to get a step. However the T below does not satisfy (At most one) at all, we see no use of this observation.

2.8 Proposition. Let S be a tree such that S satisfies $\operatorname{root}_S = \emptyset$, (Dense) and is of height ω_1 . Let \dot{T} be an S-name such that in V^S , $\dot{T} \subset {}^{<\omega_1^V}V$ is a tree such that \dot{T} satisfies $\operatorname{root}_{\dot{T}} = \emptyset$, ${}_{\dot{T}}$ is the strict inclusion \subset , (Dense) and is of height ω_1^V . We further assume that

- If $w \parallel_{-S} "t \in \dot{T}_{\alpha} "$, $|w| \ge \alpha + 1$ and $\alpha \ge 1$, then $w' \parallel_{-S} "t \in \dot{T}_{\alpha} "$, where $w' \in S_{\alpha+1}$ with $w' \le_{S} w$.
- If $a \models_S "t \in \dot{T}_{\alpha}$ ", then a decides $\{y \in \dot{T} \mid y \subset t\}$.

Let $T = \{(s,\check{t}) \mid 1 \leq \alpha < \omega_1, s \in S_{\alpha+1}, s \models_S ``\check{t} \in \dot{T}_{\alpha}" \} \cup \{(\emptyset,\emptyset)\}$. Then T is dense in $S * \dot{T}$ and define $h: T \longrightarrow S$ by $h(s,\check{t}) = s$. Then (S,h,T) is a step such that $\models_S ``T/b_S$ is isomorphic to $\dot{T}"$.

Proof. For (s_1, \check{t}_1) , $(s_2, \check{t}_2) \in T$, get the ordering $(s_2, \check{t}_2) <_T (s_1, \check{t}_1)$ iff $s_1 <_S s_2$ and $t_1 \subset t_2$. So $(s_2, \check{t}_2) \leq_T (s_1, \check{t}_1)$ iff $s_1 \leq_S s_2$ and $t_1 \subseteq t_2$. Notice that neither $(s_1 = s_2 \text{ and } t_1 \subset t_2)$ nor $(s_1 <_S s_2 \text{ and } t_1 = t_2)$ do not occure due to their heights.

It is easy to see that T is a tree which satisfies (Root), (Dense) and is of height ω_1 . Note that T may not satisfy (At most one). We observe h is a projection.

(Order-preserving) Let $(s_2, \check{t}_2) \leq_T (s_1, \check{t}_1)$. Then $s_2 \leq_S s_1$.

(Reduction) Let $s \leq_S s'$ and $s = h(s, \check{t})$. Since T is a dense subset in $S * \check{T}$, get $(s'', \check{t}'') \in T$ such that $(s'', \check{t}'') \leq (s', \check{t})$ in $S * \check{T}$. So $s' \leq_S s'', h(s'', \check{t}'') = s''$ and $(s'', \check{t}'') \leq (s, \check{t})$ in T.

(Ahead) $h(\emptyset, \emptyset) = \emptyset$ and for all $(s, \check{t}) \in T$ with $|(s, \check{t})| \ge 1$ in T, we have $|s| = |(s, \check{t})| + 1$. This is because

$$\left\{ (s', \check{t}') \in T \mid (s', \check{t}') <_T (s, \check{t}) \right\} = \left\{ (s_{\beta+1}, \check{t}_{\beta}) \mid 1 \le \beta < \alpha \right\} \cup \left\{ (\emptyset, \emptyset) \right\}$$

where $|s| = \alpha + 1$ in S with necessarily $\alpha \ge 1$, $s_{\beta+1}$ denotes the element in $S_{\beta+1}$ below s and $t_{\beta} = \beta$ -th element in \dot{T} below t (in V^S). Hence $|(s, \check{t})|$ in T is $1 + (\alpha - 1) = \alpha$. Since |s| in S is $\alpha + 1$, we are done.

Lastly, let b_S be S-generic over V. In $V[b_S]$, we have

$$T/b_S = \left\{ (s,\check{t}) \in T \mid h(s,\check{t}) = s \in b_S \right\} = \left\{ (b_S(\alpha+1),\check{t}) \mid 1 \le \alpha < \omega_1, t \in \dot{T}_\alpha \right\} \cup \left\{ (\emptyset,\emptyset) \right\}.$$

Hence T/b_S and \dot{T} are isomorphic.

§3. Routine Translations

We turn everything so far developed into the context of ordinary iterated forcing construction. Therefore, we expect lots of straightforward routines.

3.1 Lemma. Let P be a p.o. set and (S, h, T) be a step. Let $P \equiv S$ via an S-name \underline{G}_P and a P-name \underline{b}_S and $S * (T/b_S) \equiv T$ via an $S * (T/b_S)$ -name \tilde{b}_T and T-names \tilde{b}_S and $\tilde{b}_{\hat{T}}$, where \hat{T} denotes T/b_S . Let $\dot{T} = T/\underline{b}_S$ in $V[G_P]$, where G_P be any P-generic filter over V. Then

$$P * T \equiv T$$

via a $P * \dot{T}$ -name \bar{b}_T and T-names \bar{G}_P and $\bar{b}_{\dot{T}}$, where we set

$$V[G_P][b_{\dot{T}}] \models "\bar{b}_T = b_{\dot{T}}".$$
$$V[b_T] \models "\bar{G}_P = \underline{G}_P[\tilde{b}_S], \ \bar{b}_{\dot{T}} = b_T".$$

In particular, we have the following for $\alpha \geq 1$.

$$V[G_P][\dot{b}_T] \models "\underline{b}_S[G_p](\alpha+1) = h(\bar{b}_T(\alpha))"$$

Proof.

$$V[G_P][b_{\dot{T}}] = V[\underline{b}_S[G_P]][b_{\dot{T}}] \models "\bar{b}_T = b_{\dot{T}} \text{ is } T \text{-generic over } V".$$

Hence $V[G_P][b_{\dot{T}}] \models "\bar{b}_T$ is *T*-generic over *V*.

$$V[b_T] = V[\tilde{b}_S[b_T]][\tilde{b}_{\hat{T}}[b_T]] = V[\tilde{b}_{\hat{T}}[b_T]] \models "\bar{G}_P = \underline{G}_P[\tilde{b}_S[b_T]] \text{ is } P \text{-generic over } V".$$

and

$$V[b_T] \models ``\bar{b}_{\dot{T}} = \tilde{b}_{\hat{T}}[b_T] = b_T \text{ is } \dot{T} \big[\bar{G}_P[b_T] \big] = T/\underline{b}_S \big[\bar{G}_P[b_T] \big] = T/\tilde{b}_S[b_T] - \text{generic over } V \big[\tilde{b}_S[b_T] \big] ".$$

and

$$V\big[\tilde{b}_S[b_T]\big] = V\big[\underline{G}_P\big[\tilde{b}_S[b_T]\big]\big] = V\big[\overline{G}_P[b_T]\big]^*.$$

Hence $V[b_T] \models "\bar{G}_P * \bar{b}_{\dot{T}}$ is $P * \dot{T}$ -generic over V".

Next, we first observe

$$V[G_P][b_{\dot{T}}] \models ``\tilde{b}_S[b_{\dot{T}}] = \underline{b}_S[G_P]"$$

This is because $b_{\dot{T}}$ is $T/\underline{b}_S[G_P]$ -generic over $V[G_P]$. In particular, $b_{\dot{T}} \subseteq T/\underline{b}_S[G_P]$. Hence

$$\{h(y) \mid y \in b_{\dot{T}}\} \subseteq \underline{b}_S[G_P].$$

On the other hand,

$$b_S[b_{\dot{T}}] = \{x \in S \mid x \leq_S h(y), y \in b_{\dot{T}}\}$$

Both $\tilde{b}_S[b_{\dot{T}}]$ and $\underline{b}_S[G_P]$ are S-generic over V. Hence $\tilde{b}_S[b_{\dot{T}}] \subseteq \underline{b}_S[G_P]$ implies they must be identical. Now,

$$V[G_P][b_{\dot{T}}] \models "\bar{G}_P \left[\bar{b}_T [G_P * b_{\dot{T}}] \right] = \bar{G}_P [b_{\dot{T}}] = \underline{G}_P \left[\tilde{b}_S [b_{\dot{T}}] \right] = \underline{G}_P \left[\underline{b}_S [G_P] \right] = G_P".$$

$$V[G_P][b_{\dot{T}}] \models "\bar{b}_{\dot{T}} \left[\bar{b}_T [G_P * b_{\dot{T}}] \right] = \bar{b}_{\dot{T}} [b_{\dot{T}}] = b_{\dot{T}}".$$

And

$$V[b_T] \models "\bar{b}_T \left[\bar{G}_P[b_T] * \bar{b}_{\dot{T}}[b_T] \right] = \bar{b}_{\dot{T}}[b_T] = b_T".$$

Finally, for $\alpha \geq 1$

$$V[G_P][b_{\dot{T}}] \models "\underline{b}_S[G_P](\alpha+1) = \tilde{b}_S[b_{\dot{T}}](\alpha+1) = h\big(b_{\dot{T}}(\alpha)\big) = h\big(\bar{b}_T(\alpha)\big)"$$

3.2 Lemma. Let (T_n, h_n) $(n = 1, 2, \dots)$ be given such that

$$(T_n, h_n, T_{n+1})$$

are steps. Then we may construct an ω -stage iterated forcing $\langle P_n \mid n < \omega \rangle$ as follows;

- (0) $P_0 = \{\emptyset\}.$
- (1) $P_1 \equiv T_1$ via the P_1 -name \bar{b}_1 and the T_1 -name \bar{G}_1 .
- (2) $P_n \equiv T_n$ via the P_n -name \overline{b}_n and the T_n -name \overline{G}_n for $n \ge 1$.

(3) $P_{n+1} \equiv P_n * T_{n+1} / \bar{b}_n[G_n] \equiv T_{n+1}.$

Let G_n $(n = 0, 1, 2, \cdots)$ be P_n -generic filters such that $G_{n+1} \lceil n = G_n$ and for $n \ge 1$, let

$$b_n = b_n[G_n].$$

Then we have

- (4) $b_n(0) = \operatorname{root}_{T_n} and b_n(\alpha + 1) = h_n(b_{n+1}(\alpha)) \text{ for } n \ge 1 \text{ and } \alpha \ge 1.$
- (5) $G_0 = \{\emptyset\}$ and $G_n = \bar{G}_n[b_n]$ for $n \ge 1$.

Hence if the T_n further satisfy (At most one), then we have

$$V[\langle G_n \mid n < \omega \rangle] = V[\langle b_n \mid n = 1, 2, \cdots \rangle] = V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle].$$

Proof. Construct $\langle P_n \mid n < \omega \rangle$ by recursion on n. Let

$$P_0 = \{\emptyset\} \text{ and } P_1 \equiv T_1.$$

Suppose $n \ge 1$ and have constructed P_n such that $P_n \equiv T_n$ with \bar{b}_n and \bar{G}_n . Then apply 3.1 Lemma to get

$$P_{n+1} \equiv P_n * \dot{T}_{n+1} = P_n * T_{n+1} / \bar{b}_n[G_n] \equiv T_{n+1}.$$

with \bar{b}_{n+1} and \bar{G}_{n+1} . For $\alpha \geq 1$, we have

$$V[G_{n+1}] \models "\bar{b}_n[G_{n+1}[n](\alpha+1) = h_n(\bar{b}_{n+1}[G_{n+1}](\alpha))".$$

Next, let G_n be P_n -generic and $G_{n+1} \lceil n = G_n$ for all $n < \omega$. Let $b_n = \overline{b}_n[G_n]$ for $n \ge 1$. Then for $\alpha \ge 1$,

$$b_n(\alpha+1) = h_n(b_{n+1}(\alpha)).$$

and

$$G_n = \bar{G}_n \left[\bar{b}_n [G_n] \right] = \bar{G}_n [b_n].$$

Therefore

$$V[\langle G_n \mid n < \omega \rangle] = V[\langle b_n \mid n = 1, 2, \cdots \rangle].$$

Finally, if (At most one) gets satisfied for all T_n , then by 2.6 Lemma, we have

$$V[\langle b_n \mid n = 1, 2, \cdots \rangle] = V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle].$$

Hence

$$V[\langle G_n \mid n < \omega \rangle] = V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle]$$

§4. Diamond

We prepare a suitable form of \diamond -sequence. Let us begin with a recap.

4.1 Definition. We denote \diamondsuit to mean that there exists $\langle A_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $A_{\alpha} \subseteq \alpha$ and for any $A \subseteq \omega_1$, we demand $\{\alpha < \omega_1 \mid A \cap \alpha = A_{\alpha}\}$ is stationary.

We make use of reformulations.

4.2 Lemma. Let us assume \Diamond . Then

- (1) There exists $\langle f_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $f_{\alpha} : \alpha \longrightarrow H_{\omega_1}$ and for any $f : \omega_1 \longrightarrow H_{\omega_1}$, we have $\{\alpha < \omega_1 \mid f \mid \alpha = f_{\alpha}\}$ is stationary.
- (2) Let $\langle Z_{\alpha} \mid \alpha < \omega_1 \rangle$ be any continuously \subseteq -increasing countable subsets of $\langle \omega_1 \omega \rangle$ with $\bigcup \{Z_{\alpha} \mid \alpha < \omega_1\} = \langle \omega_1 \omega \rangle$. Then there exists $\langle B_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $B_{\alpha} \subseteq Z_{\alpha}$ and for any $B \subseteq \langle \omega_1 \omega \rangle$, we have $\{\alpha < \omega_1 \mid B \cap Z_{\alpha} = B_{\alpha}\}$ is stationary.

Proof. For (1): Let $\langle A_{\alpha} | \alpha < \omega_1 \rangle$ be a \diamond -sequence. Fix a bijection $\pi : \omega_1 \longrightarrow \omega_1 \times H_{\omega_1}$. Define $f_{\alpha} : \alpha \longrightarrow H_{\omega_1}$ such that

$$f_{\alpha} = \begin{cases} \pi^{*}A_{\alpha}, & \text{if } \pi^{*}A_{\alpha} : \alpha \longrightarrow H_{\omega_{1}} \\ \text{any function, } & \text{otherwise.} \end{cases}$$

We claim this $\langle f_{\alpha} \mid \alpha < \omega_1 \rangle$ works. To this end, let

 $f: \omega_1 \longrightarrow H_{\omega_1}.$

Since $f \subset \omega_1 \times H_{\omega_1}$, we may define $A \subset \omega_1$ so that

 π "A = f.

Let

$$C = \{ \alpha < \omega_1 \mid \pi^{"}(A \cap \alpha) = f \lceil \alpha \}.$$

Then this C is a club. Let

$$S = \{ \alpha < \omega_1 \mid A \cap \alpha = A_\alpha \}$$

Then this S is stationary. Since

$$S \cap C \subseteq \{ \alpha < \omega_1 \mid f_\alpha = f[\alpha] \}.$$

holds, we are done.

For (2): Let $\langle f_{\alpha} \mid \alpha < \omega_1 \rangle$ be as in (1). Fix any continuously \subseteq -increasing countable subsets Z_{α} of ${}^{<\omega_1}\omega$ such that $\bigcup \{Z_{\alpha} \mid \alpha < \omega_1\} = {}^{<\omega_1}\omega$. Let us define $B_{\alpha} \subseteq Z_{\alpha}$ by

$$B_{\alpha} = (f_{\alpha} \, ``\alpha) \cap Z_{\alpha}.$$

We claim this $\langle B_{\alpha} \mid \alpha < \omega_1 \rangle$ works. To this end, let

$$B \subset {}^{<\omega_1}\omega.$$

Let $f: \omega_1 \longrightarrow B$ be an enumeration. Let

$$C = \{ \alpha < \omega_1 \mid f``\alpha = B \cap Z_\alpha \}.$$

Then this C is a club. Let

$$S = \{ \alpha < \omega_1 \mid f \lceil \alpha = f_\alpha \}.$$

Then this S is stationary. Since

$$C \cap S \subseteq \{ \alpha < \omega_1 \mid B \cap Z_\alpha = B_\alpha \}$$

holds, we are done.

4.3 Lemma. (\$\\$) Let P be any p.o. set such that P has the c.c.c, is σ -Baire and $P \subseteq H_{\omega_1}$ and so $|P| \leq \omega_1$. Let Z_{α} be as above. Then we may construct $\langle \mathcal{A}_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $\mathcal{A}_{\alpha} = \{a^n_{\alpha} \mid n < \omega\}, a^n_{\alpha} \subseteq Z_{\alpha}$ and $||_{-P}$ "for any $\dot{A} \subseteq {}^{<\omega_1}\omega$, we have $\{\alpha < \omega_1 \mid \dot{A} \cap Z_{\alpha} \in \mathcal{A}_{\alpha}\}$ is stationary".

Proof. (Step 1) ([K]) Since P has the c.c.c. and $|P| \leq \omega_1$, \Diamond implies $||-P" \Diamond$ ".

Proof. By \diamond , we have a fixed $\langle f_{\alpha} \mid \alpha < \omega_1 \rangle$ such that for any $f : \omega_1 \longrightarrow H_{\omega_1}$,

$$\{\alpha < \omega_1 \mid f \lceil \alpha = f_\alpha\}$$

is stationary. Let us define A_{α} by $\parallel P$ " $A_{\alpha} = \{\xi < \alpha \mid f_{\alpha}(\xi) \cap G_P \neq \emptyset\}$ ".

We claim $\|-P``(\dot{A}_{\alpha} \mid \alpha < \omega_1)$ is a \diamond -sequence". To this end, let \dot{A} be a P-name such that $\|-P``\dot{A} \subseteq \omega_1$ ". We represent \dot{A} as a sequence $\langle A_{\xi} \mid \xi < \omega_1 \rangle$ such that $\|-P``\xi \in \dot{A}$ iff $A_{\xi} \cap G_P \neq \emptyset$ " $(\xi < \omega_1)$. Since P has the c.c.c, we may assume A_{ξ} is a countable subset of $P \subseteq H_{\omega_1}$ and so $A_{\xi} \in H_{\omega_1}$. Let $f : \omega_1 \longrightarrow H_{\omega_1}$ be defined by $f(\xi) = A_{\xi}$. Then

$$S = \{ \alpha < \omega_1 \mid f \lceil \alpha = f_\alpha \}$$

is stationary. Since P has the c.c., this S remains stationary in V^P . For $\alpha \in S$, we have $\parallel_{-P} ``\dot{A} \cap \alpha = \{\xi < \alpha \mid f(\xi) \cap G_P \neq \emptyset\} = \{\xi < \alpha \mid f_\alpha(\xi) \cap G_P \neq \emptyset\}$ ". Hence $\parallel_{-P} ``S \subseteq \{\alpha < \omega_1 \mid \dot{A} \cap \alpha = \dot{A}_\alpha\}$ " and so we are done.

(Step 2) Fix any Z_{α} 's. Since P has the c.c.c. and is σ -Baire, they have the same properties in V^{P} . Apply 4.2 Lemma (2) in V^P . In V^P , we have $\langle \dot{B}_{\alpha} \mid \alpha < \omega_1 \rangle$ such that $\dot{B}_{\alpha} \subseteq Z_{\alpha}$ and for any $\dot{B} \subseteq {}^{<\omega_1}\omega$, it holds that $\{\alpha < \omega_1 \mid \dot{B} \cap Z_\alpha = \dot{B}_\alpha\}$ is stationary.

Now in V, let

$$\mathcal{A}_{\alpha} = \{ a \subset Z_{\alpha} \mid 0 < ||a = B_{\alpha}|| \}$$

Then by c.c.c, \mathcal{A}_{α} is countable.

We claim $\parallel_{P}``\langle \mathcal{A}_{\alpha} \mid \alpha < \omega_1 \rangle$ is a \diamond -sequence". To this end, let $\parallel_{P}``B \subseteq \langle \omega_1 \omega \rangle$. Since P is σ -Baire, we have \Vdash_P "{ $\alpha < \omega_1 \mid \dot{B} \cap Z_\alpha = \dot{B}_\alpha$ } $\subseteq \{\alpha < \omega_1 \mid \dot{B} \cap Z_\alpha \in \mathcal{A}_\alpha\}$ ". Hence we are done.

We use this last type of \diamondsuit to construct a step (S, h, T).

§5. Construction

This section is a remake of [DJ]. We make use of \Diamond rather than starting in the constructible universe. We consider Souslin trees which are normal and subtrees of $\langle \omega_1 \omega \rangle$.

5.1 Lemma. (\Diamond) Let $S \subset {}^{<\omega_1}\omega$ be a Souslin tree and $\langle \mathcal{A}_{\alpha} \mid \alpha < \omega_1 \rangle$ be a \Diamond -sequence such that

• We have a fixed continuously \subseteq -increasing countable subsets $\langle Z_{\alpha} \mid \alpha < \omega_1 \rangle$ of $\langle \omega_1 \omega \rangle$ such that

$$\bigcup \{ Z_{\alpha} \mid \alpha < \omega_1 \} = {}^{<\omega_1} \omega.$$

- $\mathcal{A}_{\alpha} = \{a_{\alpha}^n \mid n < \omega\}$ and $a_{\alpha}^n \subseteq Z_{\alpha}$.
- \Vdash_S "For any $\dot{A} \subseteq {}^{<\omega_1}\omega$, $\{\alpha < \omega_1 \mid \dot{A} \cap Z_\alpha \in \mathcal{A}_\alpha\}$ is stationary".

Then we have a map $\langle x \mapsto t_x \mid x \in S \rangle$ such that

- (1) t_x is a normal subtree of $\langle \omega_1 \omega \rangle$, the height of t_x is |x|, the height of x in S. (Height)
- (2) If $x_1 <_S x_2$, then t_{x_1} gets end-extended to t_{x_2} . (Coherence)
- (3) $t_{\emptyset} = \emptyset$ and for $\langle i \rangle \in S$, $t_{\langle i \rangle} = \{\emptyset\}$.
 - If $\langle i, j \rangle \neq \langle i', j' \rangle$ in S, then $(t_{\langle i, j \rangle})_1 \cap (t_{\langle i', j' \rangle})_1 = \emptyset$.
 - If $|x| \ge 1$ and $x^{\frown}\langle i \rangle \neq x^{\frown}\langle i' \rangle$ in S, then $(t_{x^{\frown}\langle i \rangle})_{|x|} \cap (t_{x^{\frown}\langle i' \rangle})_{|x|} = \emptyset$. (Forking)
- (4) If $|x| = \alpha$ is a limit and $a^n_{\alpha} \subseteq t_x$ is a maximal antichain in t_x , then for any $i < \omega$ with $x^{\frown} \langle i \rangle \in S$, a^n_{α} remains a maximal antichain in $t_{x \frown \langle i \rangle}$. (Diamond)

Proof. Let us partition ω into $B_{\langle i,j \rangle}$'s so that each $B_{\langle i,j \rangle}$ is infinite for $i,j \in \omega$. So we have fixed a pairwise disjoint union.

$$\omega = \bigcup \{ B_{\langle i,j \rangle} \mid i,j \in \omega \}.$$

We define $\langle x \mapsto t_x \mid x \in S \rangle$ by recursion on |x|.

 $(\underline{|x|=0 \text{ and } |x|=0+1})$ Let

$$t_{\emptyset} = \emptyset, \quad t_{\langle i \rangle} = \{\emptyset\} \text{ (for } \langle i \rangle \in S_1).$$

 $\frac{(|x^{\frown}\langle i,j\rangle| \text{ is a successor } +1)}{\text{Suppose } t_x \text{ and } t_{x^{\frown}\langle i\rangle} \text{ have been constructed. Let } |x| = \alpha. \text{ So } x^{\frown}\langle i\rangle \in S_{\alpha+1} \text{ holds.}$

Now let

$$t_{x^{\frown}\langle i,j\rangle} = t_{x^{\frown}\langle i\rangle} \cup \{y^{\frown}\langle k\rangle \mid y \in (t_{x^{\frown}\langle i\rangle})_{\alpha}, k \in B_{\langle i,j\rangle}\}$$

 $(|x^{\frown}\langle i\rangle| \text{ is a limit } +1)$

Suppose $\alpha = |x|$ is a limit and t_x have been constructed.

For each $i < \omega$ with $x^{\frown} \langle i \rangle \in S_{\alpha+1}$, we construct

$$B^{x^{\frown}\langle i\rangle} = \{b_l^{x^{\frown}\langle i\rangle} \mid l < \omega\}$$

and set

$$t_{x \frown \langle i \rangle} = t_x \cup B^{x \frown \langle i \rangle}$$

Where

- Each member of $B^{x \frown \langle i \rangle}$ is identified with a path through t_x and in ${}^{\alpha} \omega$.
- If $x^{\langle i \rangle} \neq x^{\langle i' \rangle}$ in $S_{\alpha+1}$, then $B^{x^{\langle i' \rangle}} \cap B^{x^{\langle i' \rangle}} = \emptyset$.
- For each $\sigma \in t_x$, there exists $l < \omega$ such that $\sigma \subset b_l^{x \frown \langle i \rangle}$. (Dense)
- For each maximal antichain a_{α}^{n} in t_{x} and each $l < \omega$, there exists $\sigma \in a_{\alpha}^{n}$ such that $\sigma \subset b_{l}^{x \frown \langle i \rangle}$. (Diamond) Hence a_{α}^{n} remains maximal in $t_{x \frown \langle i \rangle}$.

More details to follow. Let

$$t_x = \{ \sigma_l \mid l < \omega \}.$$

We assume that $\operatorname{suc}_S(x) = \{x \land \langle i \rangle \mid i < \omega\}$ for a simpler notation. We construct

$$\left\langle B^{x^{\frown}\langle 0\rangle}\left[l+1,\cdots,B^{x^{\frown}\langle l\rangle}\left[l+1\right.\right.\right.$$

by recursion on l so that

- $\sigma_l \subset b_l^{x \frown \langle i \rangle}$ and for all $\beta < \alpha$, we demand $b_l^{x \frown \langle i \rangle} [\beta \in t_x.$
- If $(l,i) \neq (l',i')$, then $b_l^{x \frown \langle i \rangle} \neq b_{l'}^{x \frown \langle i' \rangle}$.
- If a_{α}^{n} is a maximal antichain in t_{x} , then there exists $\sigma \in a_{\alpha}^{n}$ with $\sigma \subset b_{l}^{x^{\frown}\langle i \rangle}$.
- (l=0) Want $\langle B^{x^{\frown}\langle 0\rangle} [1\rangle = \langle \{b_0^{x^{\frown}\langle 0\rangle}\} \rangle$ so that
- $\sigma_0 \subset b_0^{x \frown \langle 0 \rangle} \in {}^{\alpha} \omega.$
- For each maximal antichain a_n^{α} in t_x , there exists $\sigma \in a_{\alpha}^n$ with $\sigma \subset b_0^{x^{\frown}\langle 0 \rangle}$. This is carried out by 1.2 Proposition.

(l+1) Suppose we have constructed

$$\langle B^{x^{\frown}\langle 0\rangle} \lceil l+1,\cdots,B^{x^{\frown}\langle l\rangle} \lceil l+1 \rangle$$

Want

$$\langle B^{x^{\frown}\langle 0\rangle} \lceil l+2,\cdots,B^{x^{\frown}\langle l\rangle} \lceil l+2,B^{x^{\frown}\langle l+1\rangle} \lceil l+2 \rangle$$

Namely,

$$b_{l+1}^{x^{\frown}\langle 0 \rangle}, \cdots, b_{l+1}^{x^{\frown}\langle l \rangle} \text{ and } b_0^{x^{\frown}\langle l+1 \rangle}, \cdots, b_{l+1}^{x^{\frown}\langle l+1 \rangle}.$$

This construction is done by a repeated use of 1.2 Proposition.

(|x| is a limit)

Suppose α is a limit and $x \in S_{\alpha}$. Suppose we have constructed $t_{x \restriction \beta}$ for all $\beta < \alpha$. Then let

$$t_x = \bigcup \{ t_x \lceil \beta \mid \beta < \alpha \}.$$

This completes the construction. It is straightforward to check that this $\langle x \mapsto t_x \mid x \in S \rangle$ works.

5.2 Lemma. (\diamondsuit) Let $\langle x \mapsto t_x \mid x \in S \rangle$ be as above. Let

$$T = \bigcup \{ t_x \mid x \in S \}.$$

Then T is a normal subtree of $\langle \omega_1 \omega \rangle$ such that the height of T is ω_1 . For each $y \in T$ with $1 \leq |y|$, there exists a unique $x \in S$ such that

- |x| = |y| + 1.
- $y \in t_x$.

Proof. We first mention that T is a normal subtree of $\langle \omega_1 \omega \rangle$ such that the height is ω_1 . This is because each t_x is a normal subtree of $\langle \omega_1 \omega \rangle$ and so their union T is a downward-closed subset and satisfies (ω -many successors). The t_x enjoy (Coherence) and the heights of $t_{x'}$ ($x \langle S x' \rangle$) get higher, so T is (Dense) and the height of T is ω_1 .

Let $y \in T$ with $|y| \ge 1$. We show the existence and uniqueness of x as claimed.

(Existence) Then there exists $x' \in S$ with $y \in t_{x'}$. Notice that $|y| < \operatorname{ht}(t_{x'}) = |x'|$ and so $|y| + 1 \le |x'|$ holds. Let $x = x' \lceil |y| + 1$. Then t_x is an initial segment of $t_{x'}$ and so $y \in (t_{x'})_{|y|} = (t_x)_{|y|}$. Hence this x works.

(Uniqueness) Suppose |x| = |x'| = |y| + 1 and $y \in t_x \cap t_{x'}$. Want to show x = x'. Suppose $x \neq x'$ to the contrary. We have two cases.

Case 1. x[|y| = x'[|y|: Since we assume $1 \le |y|$, we may apply (Forking). By (Forking), we have $y \in (t_x)_{|y|} \cap (t_{x'})_{|y|} = \emptyset$. This is a contradiction.

Case 2. $x \lceil |y| \neq x' \lceil |y|$: Let $\beta < |y|$ be such that $x \lceil \beta = x' \lceil \beta$ and $x(\beta) \neq x'(\beta)$.

Subcase 2.1 $\beta \geq 1$: By (Forking), we have $y \lceil \beta \in (t_x \lceil \beta + 1)_\beta \cap (t_{x' \lceil \beta + 1})_\beta = \emptyset$. This is a contradiction.

Subcase 2.2 $\beta = 0$: Since $x \lceil 2 \neq x' \rceil 2$, we have $y \lceil 1 \in (t_x \rceil_2)_1 \cap (t_{x' \rceil_2})_1 = \emptyset$. This is a contradiction.

5.3 Lemma. Define $h: T \longrightarrow S$ by $h(\operatorname{root}_T) = \operatorname{root}_S = \emptyset$ and for $y \in T$ with $|y| \ge 1$, let h(y) = x so that

- |h(y)| = |y| + 1 for $|y| \ge 1$.
- $y \in t_{h(y)}$.

Then (S, h, T) is a step such that both S and T satisfy (At most one).

Proof. Define $S \leftarrow T : h$ by

$$h(y) = \begin{cases} x, & \text{if } |y| \ge 1 \text{ and } |x| = |y| + 1, y \in t_x \\ \emptyset \ (= \text{root}_S), & \text{if } y = \emptyset \ (= \text{root}_T) \end{cases}$$

(Order-preserving) Let $y_1 \leq_T y_2$. If $y_1 = \emptyset$, then $\emptyset = h(y_1) \leq_S h(y_2)$. If $|y_1| \geq 1$, then let $h(y_1) = x_1$, $h(y_2) = x_2$, $|y_1| = \alpha_1$ and $|y_2| = \alpha_2$. Since $y_1 \leq_T y_2 \in t_{x_2}$, we have $y_1 \in (t_{x_2})_{\alpha_1} = (t_{x_2 \lceil \alpha_1 + 1 \rceil})_{\alpha_1}$ by (Coherence). Hence $x_1 = x_2 \lceil \alpha_1 + 1$. So $x_1 \leq_S x_2$ holds.

(Reduction) Let $h(y) \leq_S x$. Want y' such that $y \leq_T y'$ with $x \leq_S h(y')$. To this end, take x' such that $x <_S x'$ and $|x'| = \alpha' + 1$. Then $t_{h(y)}$ gets end-extended by $t_{x'}$. Let us choose $y' \in (t_{x'})_{\alpha'}$ with $y <_T y'$. Then $x <_S x' = h(y')$ and so this y' works.

(Ahead) This is clear by definition.

We conclude (S, h, T) is a step. We have observed that T is a normal subtree of $\langle \omega_1 \omega \rangle$. In particular, both S and T satisfy (At most one).

5.4 Lemma. Let (S, h, T) be the step as above. Then $\parallel_{-S} "T/b_S = \{y \in T \mid h(y) \in b_S\} = \bigcup \{t_x \mid x \in b_S\}$ is a Souslin tree" and so the normal tree $T \equiv S * (T/b_S)$ is a Souslin tree.

Proof. Let b_S be any generic cofinal path through the Souslin tree S over V. We argue in the generic extension V[S] for the rest.

We first observe $T/b_S = \bigcup \{t_x \mid x \in b_S\}$. Let us simply denote $T' = \bigcup \{t_x \mid x \in b_S\}$. Let $y \in T/b_S$. Then $y \in T$ with $h(y) = x \in b_S$. If $y = \emptyset$, then $y \in T'$. If $|y| \ge 1$, then $y \in t_x$ with $x \in b_S$. Hence $y \in T'$.

Conversely, let $y \in t_x$ for some $x \in b_S$. If $y = \emptyset$, then $h(y) = \emptyset \in b_S$. Hence $y \in T/b_S$. If $|y| \ge 1$, then we may assume that |x| = |y| + 1 by considering an initial segment of x. This is possible, since b_S is downward-closed. Then $h(y) = x \in b_S$. So $y \in T/b_S$.

(C.C.C.) We show that $T/b_S = T'$ is a Souslin tree. However, it is straightforward to see that T' is a subtree of $\langle \omega_1 \omega \rangle$ such that T' satisfies (Dense), (ω -many successors), (At most one) and is of height ω_1 .

Let A be any maximal antichain of T'. We want to show A is countable. Since $\langle \mathcal{A}_{\alpha} \mid \alpha < \omega_1 \rangle$ is the specified \diamond -sequence, we have

$$E = \{ \alpha < \omega_1 \mid A \cap Z_\alpha \in \mathcal{A}_\alpha \}$$

is stationary. For all limit α , since $T' \lceil \alpha + 1 = t_{b_S(\alpha+1)}$, we have T'_{α} are all countable. Hence

$$C = \{ \alpha < \omega_1 \mid A \cap (T' \lceil \alpha) \text{ is maximal in } T' \lceil \alpha \}$$

$$D = \{ \alpha < \omega_1 \mid T' \cap Z_\alpha = T' \lceil \alpha \}$$

are clubs.

Let α be a limit with $\alpha \in E \cap C \cap D$. Then there exists n such that $a_{\alpha}^n = A \cap Z_{\alpha} = A \cap T' \lceil \alpha \subseteq t_{b_S(\alpha)}$ is a maximal antichain in $T' \lceil \alpha = t_{b_S(\alpha)}$. By construction a_{α}^n remains maximal in $t_{b_S(\alpha+1)} = T' \lceil \alpha + 1$ regard less of the actual value $b_S(\alpha+1)(\alpha) < \omega$. Hence so does in the whole T'. Therefore $A = A \cap Z_{\alpha}$ is countable.

Since S has the c.c.c. and $\parallel g T/b_S$ has the c.c.c.", so does $T \equiv S * T/b_S$ by 1.7 Proposition. Hence T is a Souslin tree.

Here is our main observation.

5.5 Theorem. (\Diamond) There exists an ω -stage iteration $\langle P_n, \dot{Q}_n \mid n < \omega \rangle$ such that $\parallel_{P_n} "\dot{Q}_n$ is a Souslin tree" and so $\parallel_{P_n} "\dot{Q}_n$ has the c.c.c. and is σ -Baire" and for any $\langle G_n \mid n < \omega \rangle$ such that G_n is P_n -generic over V and $G_{n+1} \lceil n = G_n$, we have

$$V[\langle G_n \mid n < \omega \rangle] = V[\langle b_n(1) \mid n = 1, 2, \cdots \rangle].$$

where b_{n+1} is the $Q_n[G_n]$ -generic cofinal path over $V[G_n]$ induced by G_{n+1} . In particular, if P_{ω} is any limit of the P_n , then P_{ω} is never σ -Baire.

Proof. Construct T_n , h_n $(n = 1, 2, \cdots)$ by recursion so that (T_n, h_n, T_{n+1}) are steps and T_n are Souslin trees. Then by 3.2 Lemma, get $\langle P_n, \dot{Q}_n | n < \omega \rangle$ such that if $n \ge 1$, then \dot{Q}_n forces a generic cofinal path b_{n+1} through T_{n+1}/b_n over $V[b_n] = V[G_n]$ and \dot{Q}_0 does b_1 through T_1 over $V = V[G_0]$.

§6. A Strong Form of ψ_{AC}

The combinatorial principle ψ_{AC} related to the size of the reals is found by [W]. We reformulate a stronger ψ_{AC}^+ from [M].

6.1 Definition. ψ_{AC}^+ holds, if for any sequence of stationary subsets $\langle E_\alpha \mid \alpha < \omega_1 \rangle$ of ω_1 , there exists γ with $\omega_1 < \gamma < \omega_2$ and a continuously \subseteq -increasing sequence of countable subsets $\langle X_\alpha \mid \alpha < \omega_1 \rangle$ of γ such that $\bigcup \{X_\alpha \mid \alpha < \omega_1\} = \gamma$ and for all $\alpha < \omega_1$, o.t. $(X_\alpha) \in E_\alpha$ hold.

To force ψ_{AC}^+ , we may iteratively force with the following notions of semiproper forcing.

6.2 Definition. Let κ be a measurable cardinal and $\langle E_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of stationary subsets of ω_1 . Let $p = \langle X^p_{\alpha} \mid \alpha \le \alpha^p \rangle \in P(\kappa, \langle E_{\alpha} \mid \alpha < \omega_1 \rangle)$, if $p = \emptyset$ and otherwise

- (1) $\alpha^p < \omega_1$.
- (2) The X^p_{α} are continuously \subseteq -increasing countable subsets of κ .
- (3) o.t. $(X^p_{\alpha}) \in E_{\alpha}$.

For $p, q \in P(\kappa, \langle E_{\alpha} \mid \alpha < \omega_1 \rangle)$, let $q \leq p$, if q end-extends p.

6.3 Proposition. Let $S = P(\kappa, \langle E_{\alpha} \mid \alpha < \omega_1 \rangle)$ be as above. Then (S, \subset) is a tree which satisfies (Root), (Dense), (At most one) and is of height ω_1 .

6.4 Question. Formulate a general theory which would encompass the iteration of Souslin trees in this note and the iteration for ψ_{AC}^+ as outlined above. Then apply your theory to iterated forcing constructions for the saturation of the non-stationary ideal on ω_1 . Do you see any real coded ?

References

[DJ] K. Devlin, H. Johnsbråten, The Souslin Problem, *Lecture Notes in Mathematics*, Vol. 405, Springerverlag, Berlin · Heidelberg · New York, 1974.

[K] K. Kunen, Set Theory, An Introduction to Independence Proofs, Studies in Logic and the foundations of mathematics, Vol 102, North-Holland, 1980.

[M] T. Miyamoto, A view of a semiproper iterated forcing which adds new reals only at limit stages, Computational Prospects of Infinity, Institute for Mathematical Sciences, NUS, Singapore, June, 2005.

[S] S. Shelah, Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer, 1998.

[W] H. Woodin, *The Axiom of Determinacy, Forcing Axioms, and Nonstationary Ideal*, de Gruyter Series in Logic and its Applications 1, 1999.

Mathematics Nanzan University 27 Seirei-cho, Seto-shi 489-0863 Japan miyamoto@nanzan-u.ac.jp