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Abstract

Assuming ♦, we construct a notion of forcing which iterates Souslin trees. This iteration codes any
family of iteratively generic cofinal paths by a single real. The original construction due to R. Jensen starts
in the constructible universe.

Introduction

We are interested in iterated forcing 〈Pn, Q̇n | n < ω〉 such that for each n < ω, ‖−Pn“Q̇n is σ-Baire, i.e.
adds no new countable sequences of ordinals” and yet if Pω is any limit of the Pn, then Pω is never σ-Baire.

In [DJ], a sequence of ω-many Souslin trees are constructed in the constructible universe L. They are
connected in L so that any family of iteratively generic cofinal paths are coded by a single real.

We reformulate this construction by ♦. In doing so, we tentatively formulate a type of sequences of
projections so that this remake gets included. However, we are unable to include the semiproper iteration
of [M] which forces a stronger form of ψAC.

It appears that [DJ] constructs thin trees, while [M] does thick ones with a kind of homogenuity. A
possible common thread is that any family of iteratively generic objects 〈Gn | n < ω〉 is coded into a single
real by types of sequences of projections. Hence no matter how we force with limit, we must add this new
single real as long as 〈Gn | n < ω〉 is new.

In §1, we quickly fix our notations. In §2, we formulate a general framework which explicates how
codings take place. In §3, we carry a routine work to translate sequences of projections into the usual
context of iterated forcing. For that we make use of the idea of forcing equivalence from [S]. In §4, we review
♦ and point out that for any notion of forcing P which has the c.c.c, is σ-Baire and of size at most ω1, we
may prepare a type of ♦-sequence in the ground model so that it remains so in any generic extension of P .
In §5, we remake [JD] by ♦. In §6, we touch on our stronger form of ψAC. The principle ψAC is found in
[W].

§1. Preliminaries

1.1 Definition. For a tree S and x ∈ S, we denote the height of x in S by |x|. So |x| =the order-tye of
({x̄ ∈ S | x̄ <S x}, <S). The height of S is denoted by ht(S). So there is no element x ∈ S with |x| = ht(S).
A path b of S means that b is a <S-downward closed pairwise <S-comparable subset of S. If the order-type
of (b, <S) is α, then for β < α, b(β) denotes the β-th element of b. So b(β) ∈ Sβ , where Sβ denotes the β-th
level of S. A tree S is normal, if

(1) For any x ∈ S and |x| < α < ht(S), there exists x∗ ∈ Sα with x <S x
∗. (Dense)

(2) For any x ∈ S with |x|+ 1 < ht(S), we demand |sucS(x)| = ω. (ω-many successors)
(3) For any path b of S with no last element in b, there exists at most one element x in S which sits right

above b. (At most one)

A subtree of <ω1 ω is a downward-closed subset of <ω1 ω.

To construct limit levels of a tree, the following is basic.

1.2 Proposition. Let T be a normal subtree of <ω1 ω such that ht(T ) = α < ω1 and α be a limit. Let
{x1, · · · , xl} be a finite subset of α ω. Let y ∈ T with |y| < α. Let 〈An | n < ω〉 be a family of maximal
antichains of T indexed by ω. Then there is y∗ ∈ α ω such that y ⊂ y∗, y∗ �∈ {x1, · · ·xl}, for all β < α, we
have y∗�β ∈ T and for all n < ω, we have An ∩ {y∗�β | β < α} �= ∅.

Proof. Let 〈αn | n < ω〉 be a strictly increasing sequence of ordinals such that α0 = |y| and sup{αn | n <
ω} = α. Construct 〈yn | n < ω〉 by recursion on n as follows;
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• y0 = y, y0 ⊂ y1 ∈ T , α1 ≤ |y1| < α and y1 �∈ {x1�|y1|, . . . , xl�|y1|}.
• There exists β < |y1| such that y1�β ∈ A0.
• yn ∈ T , αn ≤ |yn| < α.
• yn ⊂ yn+1 ∈ T , αn+1 ≤ |yn+1| < α.
• There exists β < |yn+1| such that yn+1�β ∈ An.

It is straightforward to carry this construction due to (Dense) and (ω-many successor). Let

y∗ =
⋃
{yn | n < ω}.

Then this y∗ works.

The following is from [S].

1.3 Definition. Let P and Q be two notions of forcing. We say P and Q are forcing equivalent, if there
exist a P -name G̃Q and a Q-name G̃P such that

(1) V [GP ] |= “G̃Q[GP ] is a Q-generic filter over V ”.

(2) V [GQ] |= “G̃P [GQ] is a P -generic filter over V ”.

(3) V [GP ] |= “G̃P

[
G̃Q[GP ]

]
= GP ”.

(4) V [GQ] |= “G̃Q

[
G̃P [GQ]

]
= GQ”.

Where GP and GQ denote the respective generic filters over V . We denote P ≡ Q, if P and Q are
forcing equivalent.

1.4 Proposition. Let P and Q be notions of forcing such that P ≡ Q with G̃Q and G̃P . Then

(1) V [GP ] = V [G̃Q[GP ]] for all P -generic filters GP over V .

(2) V [GQ] = V [G̃P [GQ]] for all Q-generic filters GQ over V .

Proof. Suffice to deal with (1). Let GP be any P -generic filter over V and calculate G̃Q[GP ] which is
Q-generic over V . Denote GQ = G̃Q[GP ] ∈ V [GP ]. Then we have

G̃P [GQ] = G̃P

[
G̃Q[GP ]

]
= GP .

Hence GP ∈ V [GQ] and so
V [GP ] = V [GQ].

1.5 Proposition. Let P , Q and R be notions of forcing. If P ≡ Q ≡ R, then P ≡ R. And so ≡ is a
class equivalence relation on the class of notions of forcing.

Proof. Let P ≡ Q with G̃Q and G̃P . Let Q ≡ R with ḠR and ḠQ. Want to come up with a P -name
GR and an R-name GP .

Let
V [GP ] = V

[
G̃Q[GP ]

] |= “GR = ḠR

[
G̃Q[GP ]

]
”.

and
V [GR] = V

[
ḠQ[GR]

] |= “GP = G̃P

[
ḠQ[GR]

]
”.
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Then
V [GP ] |= “GR is R−generic over V ”.

V [GR] |= “GP is P−generic over V ”.

and
V [GP ] |= “GP

[
GR[GP ]

]
= G̃P (ḠQḠR)G̃Q[GP ] = G̃P G̃Q[GP ] = GP ”.

V [GR] |= “GR

[
GP [GR]

]
= ḠR(G̃QG̃P )ḠQ[GR] = ḠRḠQ[GR] = GR”.

Hence P ≡ R.

1.6 Proposition. Let P and Q be notions of forcing. If P ≡ Q via G̃Q and G̃P , then

(1) For all p ∈ P , there exists q ∈ Q such that q ‖−Q“p ∈ G̃P”.

(2) For all q ∈ Q, there exists p ∈ P such that p ‖−P“q ∈ G̃Q”.

Proof. Suffice to show (1). Let p ∈ GP . Then calculate G̃Q[GP ] and denote GQ = G̃Q[GP ]. Then

G̃P [GQ] = G̃P

[
G̃Q[GP ]

]
= GP .

Hence
V [GQ] |= “p ∈ G̃P [GQ].”

So q ‖−Q“p ∈ G̃P ” for some q(∈ GQ).

1.7 Proposition. Let P and Q be notions of forcing with P ≡ Q. Then

(1) If P has the c.c.c, then so does Q.
(2) If P is σ-Baire, then so is Q.

Proof. For (1): Want to show Q has the c.c.c. Let 〈qi | i < ω1〉 be given. For each i < ω1, take pi ∈ P
such that pi ‖−P “qi ∈ G̃Q”. Since P has the c.c.c, there are i, j such that i �= j and pi and pj are compatible.
Let p ≤ pi, pj in P . Then p ‖−P “qi, qj ∈ G̃Q” and so qi and qj are compatible in Q.

For (2): Want to show Q is σ-Baire. Namely, no new countable sequences of ordinals are added. But
V [GQ] = V

[
G̃P [GQ]

]
and P is σ-Baire. Hence Q is σ-Baire.

1.8 Question. Let P and Q be two notions of forcing. We denote P < Q, if there exists a Q-name G̃P

such that ‖−Q“G̃P is P -generic over V ” and for any p ∈ P , there exists q ∈ Q such that q ‖−Q“p ∈ G̃P ”. We
have seen that if P ≡ Q, then P < Q holds. Is it the case that if P < Q and Q < P hold, then P ≡ Q ?

§2. General Framework

We formulate a type of sequences of projections. This is sufficient to cover the construction in this note.

2.1 Definition. Let S and T be trees of height ω1 such that

(0) The 0-th levels consist of their roots. Denote {rootS} = S0 and {rootT } = T0. (Root)
(1) For all x ∈ S and α < ω1 with |x| < α, there exists x∗ ∈ S s.t. x <S x

∗ and |x∗| = α. Similarly for T ,
where |x| and |x∗| denote the height of x and x∗ respectively. (Dense)
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We say a triple (S, h, T ) is a step, if h is a projection from T into S, i.e,

(1) h(y2) ≥S h(y1), if y2 ≥T y1 for all y1, y2 ∈ T . (Order-preserving)
(2) If x ≥S h(y), then there exists y′ ∈ T s.t. y′ ≥T y and h(y′) ≥S x for all y ∈ T and x ∈ S. (Reduction)

and h satisfies

(3) h(rootT ) = rootS and for all y ∈ T with |y| ≥ 1, it holds that |h(y)| = |y|+ 1. (Ahead)

In the sequel, we write y2 ≤ y1 to mean y2 ≥T y1. We also denote x2 ≤ x1 to mean x2 ≥S x1 for S. This
conforms to the usual convention in forcing arguments. And there should be no confusions. To explain the
meaning of (Ahead), let bT be a T -generic filter over the ground model V indexed by ω1. So bT : ω1 −→ T
and bT (α) ∈ Tα. This makes sense by (Dense) on T . Let bS be the induced S-generic filter from bT by h.
Then (Ahead) is a device to recover bS from bT in such a way that bS(α + 1) = h

(
bT (α)

)
. We intend to

provide details to this and other standard facts related to the projections for the sake of completeness.

2.2 Proposition. Let (S, h, T ) be a step.

(1) The image of T under h, denoted by h“T , is dense in S.
(2) If bS is an S-generic filter over V , then bS is a cofinal path through S. We refere to this path as a

generic cofinal path and denote the α-th element of bS by bS(α). So bS(α) ∈ Sα, where Sα denotes the
α-level of S.

Proof. For (1): Let x ∈ S. Since x ≤ rootS = h(rootT ), we have y ∈ T such that h(y) ≤ x. Hence h“T
is dense in S.

For (2): Since bS is directed, it holds that every element of bS is comparable. Since bS is upward-closed
in the notion of forcing S, we have that bS is a downward-closed subset of the tree S. Hence bS is a path.
For any α < ω1, {x ∈ S | α < |x|} is dense in S by (Dense). Hence bS is cofinal through S.

We deal with the quotients.

2.3 Proposition. Let (S, h, T ) be a step. Let bS be an S-generic filter over V . In V [bS], let

T/bS = {y ∈ T | h(y) ∈ bS}.

Then T/bS is a tree of height ωV
1 and satisfies (Dense). We simply denote T/bS by T̂ .

Proof. Since rootS ∈ bS , we have rootT ∈ T/bS .

(T/bS is downward-closed in T ) Let y1 ∈ T/bS and y2 ≤T y1. Then h(y2) ≤S h(y1). But h(y1) ∈ bS
and so h(y2) ∈ bS. Hence y2 ∈ T/bS.

(T/bS is dense) Let y ∈ T/bS. So h(y) ∈ bS . Fix any α < ω1 and let D = {h(z) ∈ S | y <T z, α < |z| in
T }. Then this D is dense below h(y) in S. This makes use of (projection) and (Dense). Hence there exists
z ∈ T/bS such that y <T z and |z| > α in T/bS . In particular, the height of T/bS is ωV

1 .

2.4 Proposition. S ∗ T̂ ≡ T holds by an S ∗ T̂ -name b̃T , T -names b̃S and b̃T̂ defined as follows;

V [bS][bT̂ ] |= “b̃T = bT̂ ”.

V [bT ] |= “b̃S = the downward closure of {h(
bT (α)

) | α < ωV
1 }, b̃T̂ = bT ”.

Namely,
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(1) V [bS ][bT̂ ] |= “b̃T is T -generic over V ”.

(2) V [bT ] |= “b̃S is S-generic over V and b̃T̂ is T̂ [b̃S] = T/b̃S-generic over V [b̃S]”.

(3) V [bS ][bT̂ ] |= “b̃S [b̃T ] = bS and b̃T̂ [b̃T ] = bT̂ ”.

(4) V [bT ] |= “b̃T [b̃S ∗ b̃T̂ ] = bT ”.

Proof. For (1): Since T̂ = T/bS is a tree of height ωV
1 and satisfies (Dense), we conclude bT̂ is a cofinal

path through T̂ . So bT̂ is a cofinal path through T , too. Hence bT̂ is a directed and upward-closed subset
of the notion of forcing T . It remains to observe that for any dense subset D ∈ V of T , it holds that
D ∩ bT̂ �= ∅. To see this, it suffices to see D ∩ T̂ is dense in T̂ . To this end, let y ∈ T̂ . We have h(y) ∈ bS.
Let D′ = {h(z) | z ∈ D, y ≤T z}. Then this D′ is dense below h(y) in S. Hence we have z ∈ D ∩ T̂ with
z ≤ y in T̂ .

For (2): In V [bT ], let
bS = b̃S [bT ] = {x ∈ S | x ≤S h

(
b(α)

)
, α < ωV

1 }.
(bS is an S-generic filter over V ): Want to show that this bS is S-generic over V . Since bS is a filter in S, it
suffices to show that for any dense subset D of S, we have D ∩ bS �= ∅.

Since h is a projection, we have D′ = {y ∈ T | h(y) ≤ d in S, d ∈ D} is dense in T . Hence we have
y ∈ bT such that h(y) ≥S d for some d ∈ D. Hence d ∈ D ∩ bS.

(bT ⊆ T/bS): For any y ∈ bT , we have h(y) ∈ bS by the definition of bS . So y ∈ T/bS by the definition
of T/bS . Hence bT is a filter in T/bS.

It suffices to show for any dense subset D̃ ∈ V [bS ] of T/bS, we have D̃ ∩ bT �= ∅. Take x ∈ bS so that
x ‖−S“D̃ ⊆ T/bS is dense”. Since x ∈ bS , may take y ∈ bT such that x ≤S h(y). So h(y) ‖−S“D̃ ⊆ T/bS is
dense”. We see {z ∈ T | d ≥ z in T , h(z) ‖−S“d ∈ D̃”} is dense below y in T . Hence we have z ∈ bT and d
such that d ≥ z in T and h(z) ‖−S“d ∈ D̃”. Hence h(z) ∈ bS and d ∈ D̃ ∩ bT .

For (3):

V [bS][bT̂ ] |= “b̃S
[
b̃T [bS ∗ bT̂ ]

]
= b̃S[bT̂ ] = {x ∈ S | x ≤S h(y), y ∈ bT̂ } = bS”.

For the last equation, it suffices to see ⊆. But bT̂ ⊂ T/bS and so h(y) ∈ bS for all y ∈ bT̂ .

V [bS][bT̂ ] |= “b̃T̂
[
b̃T [bS ∗ bT̂ ]

]
= b̃T [bS ∗ bT̂ ] = bT̂ ”.

For (4):
V [bT ] |= “b̃T

[
b̃S [bT ] ∗ b̃T̂ [bT ]

]
= b̃T

[
b̃S [bT ] ∗ bT

]
= bT ”.

Hence S ∗ (T/bS) ≡ T holds.

We record useful facts. Since h satisfies (Ahead), we further conclude (3) below.

2.5 Proposition. (1) h(y) ‖−S“y ∈ T̂”.

(2) y ‖−T “h(y) ∈ b̃S”.

(3) If 1 ≤ α = |y|, then y ‖−T “h(y) = b̃S(α+ 1), the α+ 1-st element of the induced generic path b̃S”.

(4) In particular, ‖−T “b̃S(α+ 1) = h
(
bT (α)

)
” for α ≥ 1.

Proof. For (1): Let y ∈ T .

h(y) ∈ bS =⇒ T/bS = T̂ = {z ∈ T | h(z) ∈ bS} =⇒ y ∈ T̂ .
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For (2): Let y ∈ T .

y ∈ bT =⇒ h(y) ∈ b̃S [bT ] = {x ∈ S | x ≤S h(z), z ∈ bT }.

For (3): Let y ∈ T with |y| = α ≥ 1.

y ∈ bT =⇒ |h(y)| = |y|+ 1 =⇒ h(y) = b̃S [bT ](α + 1).

For (4): Let ω1 > α ≥ 1.
V [bT ] |= “b̃S[bT ](α + 1) = h

(
bT (α)

)
”.

2.6 Lemma. Let (Tn, hn) (n = 1, 2, · · ·) satisfy

• (Tn, hn, Tn+1) are steps.
• The Tn’s satisfy the following;

If α < ω1 is any limit ordinal and b is any path of length α, then there exists at most one element at
(Tn)α above every member of b. (At most one)

Let, in any generic extension over V , bn (n = 1, 2, · · ·) be a generic cofinal path through Tn over V such
that for all α ≥ 1,

bn(α+ 1) = hn

(
bn+1(α)

)
.

Then we have
V

[〈bn | n = 1, 2, · · ·〉] = V
[〈bn(1) | n = 1, 2, · · ·〉].

Proof. We construct 〈dn�α | n = 1, 2, · · ·〉 by recursion on α in V [〈bn(1) | n = 1, 2, · · ·〉]. We then show

dn�α = bn�α (for all n = 1, 2, · · ·)

by induction on α . Hence 〈bn | n = 1, 2, · · ·〉 ∈ V [〈bn(1) | n = 1, 2, · · ·〉].
(Construction) Let us define

〈dn(0), dn(1)〉 = 〈rootTn , bn(1)〉 = 〈bn(0), bn(1)〉.

(Successor stage) Suppose α ≥ 1 and we have constructed 〈dn(0), dn(1), · · · , dn(α)〉. Want dn(α+ 1).
Let

dn(α+ 1) = hn

(
dn+1(α)

)
, if dn+1(α) ∈ (Tn+1)α.

Otherwise, dn(α+ 1) is undefined.

(Limit stage) Suppose α is a limit and we have constructed dn�α. Want dn(α). Let

dn(α) = the unique element of (Tn)α which sits above every element of the path dn�α, if this is possible.

Otherwise dn(α) is undefined.

This completes the construction.

(Induction) It is clear that
dn�2 = bn�2 (for all n = 1, 2, · · ·).

Suppose α ≥ 1 and we have seen dn�(α+1) = bn�(α+1) (for all n = 1, 2, · · ·). Want dn(α+1) = bn(α+1).
Since dn+1(α) = bn+1(α) ∈ (Tn+1)α, we have

dn(α+ 1) = hn

(
dn+1(α)

)
= hn

(
bn+1(α)

)
= bn(α + 1).
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Suppose α is a limit and we have seen dn�α = bn�α (for all n = 1, 2, · · ·). Want dn(α) = bn(α). But
bn(α) is the unique element of (Tn)α which sits above every element of the path bn�α = dn�α. We conclude
that dn(α) = bn(α).

This completes the induction.

Given a nice tree S, we want to define a nice tree T and h so that (S, h, T ) is a step. For this, we list
necessities on the steps. We build T and h via some 〈x �→ tx | x ∈ S〉 which satisfies the listed properties
and more.

2.7 Proposition. Let (S, h, T ) be a step. Then for each x ∈ h“T \ {rootS}, we may define

tx = the downward closure of {y ∈ T | h(y) = x}.

Then we have

(1) tx is a tree of height |x|, the height of x in S.
(2) If x1 <S x2, then tx1 gets end-extended to tx2 . (Coherence)
(3) If x1 �= x2 in Sα+1 ∩ h“T with 1 ≤ α, then

(tx1)α ∩ (tx2)α = ∅.

(Forking)

Proof. For (1): Let h(y) = x. Then |y|+ 1 = |x|. Hence tx is a tree with ht(tx) = |x|.
For (2): Let x1 <S x2, |x1| = α1 + 1, |x2| = α2 + 1. We first observe (tx2)α1 ⊆ (tx1 )α1 . To this

end, let h(y2) = x2 and y1 <T y2 with |y1| = α1 so that y1 ∈ (tx2)α1 . Then h(y1) <S h(y2) = x2 with
|h(y1)| = α1 + 1. Hence h(y1) = x1 and so y1 ∈ (tx1)α1 .

Conversely, we show (tx2)α1 ⊇ (tx1)α1 . Let y1 ∈ (tx1)α1 . So h(y1) = x1. Take z ∈ T such that
x2 ≤S h(z) and y1 <T z. Let y2 ≤T z with |y2| = α2. Then |h(y2)| = α2 + 1 and h(y2), x2 ≤S h(z). Hence
h(y2) = x2 and so y2 ∈ tx2 . Hence y1 ∈ (tx2)α1 .

For (3): Let h(y1) = x1 and h(y2) = x2. Since x1 �= x2, we have y1 �= y2. Hence (tx1 )α ∩ (tx2)α = ∅.

We record is a sufficient condition to get a step. However the T below does not satisfy (At most one)
at all, we see no use of this observation.

2.8 Proposition. Let S be a tree such that S satisfies rootS = ∅, (Dense) and is of height ω1. Let Ṫ be
an S-name such that in V S, Ṫ ⊂ <ωV

1 V is a tree such that Ṫ satisfies rootṪ = ∅, <Ṫ is the strict inclusion
⊂, (Dense) and is of height ωV

1 . We further assume that

• If w ‖−S“t ∈ Ṫα”, |w| ≥ α+ 1 and α ≥ 1, then w′ ‖−S“t ∈ Ṫα”, where w′ ∈ Sα+1 with w′ ≤S w.
• If a ‖−S“t ∈ Ṫα”, then a decides {y ∈ Ṫ | y ⊂ t}.

Let T = {(s, ť) | 1 ≤ α < ω1, s ∈ Sα+1, s ‖−S“ť ∈ Ṫα” } ∪ {(∅, ∅)}. Then T is dense in S ∗ Ṫ and define
h : T −→ S by h(s, ť) = s. Then (S, h, T ) is a step such that ‖−S“T/bS is isomorphic to Ṫ”.

Proof. For (s1, ť1), (s2, ť2) ∈ T , get the ordering (s2, ť2) <T (s1, ť1) iff s1 <S s2 and t1 ⊂ t2. So
(s2, ť2) ≤T (s1, ť1) iff s1 ≤S s2 and t1 ⊆ t2. Notice that neither (s1 = s2 and t1 ⊂ t2) nor (s1 <S s2 and
t1 = t2) do not occure due to their heights.

It is easy to see that T is a tree which satisfies (Root), (Dense) and is of height ω1. Note that T may
not satisfy (At most one). We observe h is a projection.

(Order-preserving) Let (s2, ť2) ≤T (s1, ť1). Then s2 ≤S s1.
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(Reduction) Let s ≤S s′ and s = h(s, ť). Since T is a dense subset in S ∗ Ṫ , get (s′′, ť′′) ∈ T such that
(s′′, ť′′) ≤ (s′, ť) in S ∗ Ṫ . So s′ ≤S s

′′, h(s′′, ť′′) = s′′ and (s′′, ť′′) ≤ (s, ť) in T .

(Ahead) h(∅, ∅) = ∅ and for all (s, ť) ∈ T with |(s, ť)| ≥ 1 in T , we have |s| = |(s, ť)|+ 1. This is because

{
(s′, ť′) ∈ T | (s′, ť′) <T (s, ť)

}
=

{
(sβ+1, ťβ) | 1 ≤ β < α

} ∪ {
(∅, ∅)}

where |s| = α + 1 in S with necessarily α ≥ 1, sβ+1 denotes the element in Sβ+1 below s and tβ = β-th
element in Ṫ below t (in V S). Hence |(s, ť)| in T is 1 + (α− 1) = α. Since |s| in S is α+ 1, we are done.

Lastly, let bS be S-generic over V . In V [bS], we have

T/bS =
{
(s, ť) ∈ T | h(s, ť) = s ∈ bS

}
=

{
(bS(α+ 1), ť) | 1 ≤ α < ω1, t ∈ Ṫα

} ∪ {
(∅, ∅)}.

Hence T/bS and Ṫ are isomorphic.

§3. Routine Translations

We turn everything so far developed into the context of ordinary iterated forcing construction. Therefore,
we expect lots of straightforward routines.

3.1 Lemma. Let P be a p.o. set and (S, h, T ) be a step. Let P ≡ S via an S-name GP and a P -name
bS and S ∗ (T/bS) ≡ T via an S ∗ (T/bS)-name b̃T and T -names b̃S and b̃T̂ , where T̂ denotes T/bS. Let
Ṫ = T/bS in V [GP ], where GP be any P -generic filter over V . Then

P ∗ Ṫ ≡ T

via a P ∗ Ṫ -name b̄T and T -names ḠP and b̄Ṫ , where we set

V [GP ][bṪ ] |= “b̄T = bṪ ”.

V [bT ] |= “ḠP = GP [b̃S], b̄Ṫ = bT ”.

In particular, we have the following for α ≥ 1.

V [GP ][ḃT ] |= “bS [Gp](α+ 1) = h
(
b̄T (α)

)
”.

Proof.

V [GP ][bṪ ] = V
[
bS [GP ]

]
[bṪ ] |= “b̄T = bṪ is T−generic over V ”.

Hence V [GP ][bṪ ] |= “b̄T is T -generic over V .

V [bT ] = V
[
b̃S [bT ]

][
b̃T̂ [bT ]

]
= V

[
b̃T̂ [bT ]

] |= “ḠP = GP

[
b̃S [bT ]

]
is P−generic over V ”.

and

V [bT ] |= “b̄Ṫ = b̃T̂ [bT ] = bT is Ṫ
[
ḠP [bT ]

]
= T/bS

[
ḠP [bT ]

]
= T/b̃S [bT ]−generic over V

[
b̃S[bT ]

]
”.

and
V

[
b̃S [bT ]

]
= V

[
GP

[
b̃S [bT ]

]]
= V

[
ḠP [bT ]

]
”.

Hence V [bT ] |= “ḠP ∗ b̄Ṫ is P ∗ Ṫ -generic over V ”.
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Next, we first observe
V [GP ][bṪ ] |= “b̃S[bṪ ] = bS [GP ]”.

This is because bṪ is T/bS [GP ]-generic over V [GP ]. In particular, bṪ ⊆ T/bS [GP ]. Hence

{h(y) | y ∈ bṪ } ⊆ bS [GP ].

On the other hand,
b̃S[bṪ ] = {x ∈ S | x ≤S h(y), y ∈ bṪ }.

Both b̃S [bṪ ] and bS [GP ] are S-generic over V . Hence b̃S [bṪ ] ⊆ bS [GP ] implies they must be identical.

Now,

V [GP ][bṪ ] |= “ḠP

[
b̄T [GP ∗ bṪ ]

]
= ḠP [bṪ ] = GP

[
b̃S [bṪ ]

]
= GP

[
bS [GP ]

]
= GP ”.

V [GP ][bṪ ] |= “b̄Ṫ
[
b̄T [GP ∗ bṪ ]

]
= b̄Ṫ [bṪ ] = bṪ”.

And
V [bT ] |= “b̄T

[
ḠP [bT ] ∗ b̄Ṫ [bT ]

]
= b̄Ṫ [bT ] = bT ”.

Finally, for α ≥ 1

V [GP ][bṪ ] |= “bS [GP ](α + 1) = b̃S [bṪ ](α + 1) = h
(
bṪ (α)

)
= h

(
b̄T (α)

)
”.

3.2 Lemma. Let (Tn, hn) (n = 1, 2, · · ·) be given such that

(Tn, hn, Tn+1)

are steps. Then we may construct an ω-stage iterated forcing 〈Pn | n < ω〉 as follows;

(0) P0 = {∅}.
(1) P1 ≡ T1 via the P1-name b̄1 and the T1-name Ḡ1.
(2) Pn ≡ Tn via the Pn-name b̄n and the Tn-name Ḡn for n ≥ 1.
(3) Pn+1 ≡ Pn ∗ Tn+1/b̄n[Gn] ≡ Tn+1.

Let Gn (n = 0, 1, 2, · · ·) be Pn-generic filters such that Gn+1�n = Gn and for n ≥ 1, let

bn = b̄n[Gn].

Then we have

(4) bn(0) = rootTn and bn(α+ 1) = hn

(
bn+1(α)

)
for n ≥ 1 and α ≥ 1.

(5) G0 = {∅} and Gn = Ḡn[bn] for n ≥ 1.

Hence if the Tn further satisfy (At most one), then we have

V
[〈Gn | n < ω〉] = V

[〈bn | n = 1, 2, · · ·〉] = V
[〈bn(1) | n = 1, 2, · · ·〉].

Proof. Construct 〈Pn | n < ω〉 by recursion on n. Let

P0 = {∅} and P1 ≡ T1.
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Suppose n ≥ 1 and have constructed Pn such that Pn ≡ Tn with b̄n and Ḡn. Then apply 3.1 Lemma to get

Pn+1 ≡ Pn ∗ Ṫn+1 = Pn ∗ Tn+1/b̄n[Gn] ≡ Tn+1.

with b̄n+1 and Ḡn+1. For α ≥ 1, we have

V [Gn+1] |= “b̄n[Gn+1�n](α+ 1) = hn

(
b̄n+1[Gn+1](α)

)
”.

Next, let Gn be Pn-generic and Gn+1�n = Gn for all n < ω. Let bn = b̄n[Gn] for n ≥ 1. Then for α ≥ 1,

bn(α+ 1) = hn

(
bn+1(α)

)
.

and
Gn = Ḡn

[
b̄n[Gn]

]
= Ḡn[bn].

Therefore
V [〈Gn | n < ω〉] = V [〈bn | n = 1, 2, · · ·〉].

Finally, if (At most one) gets satisfied for all Tn, then by 2.6 Lemma, we have

V [〈bn | n = 1, 2, · · ·〉] = V [〈bn(1) | n = 1, 2, · · ·〉].

Hence
V [〈Gn | n < ω〉] = V [〈bn(1) | n = 1, 2, · · ·〉].

§4. Diamond

We prepare a suitable form of ♦-sequence. Let us begin with a recap.

4.1 Definition. We denote ♦ to mean that there exists 〈Aα | α < ω1〉 such that Aα ⊆ α and for any
A ⊆ ω1, we demand {α < ω1 | A ∩ α = Aα} is stationary.

We make use of reformulations.

4.2 Lemma. Let us assume ♦. Then

(1) There exists 〈fα | α < ω1〉 such that fα : α −→ Hω1 and for any f : ω1 −→ Hω1 , we have {α <
ω1 | f�α = fα} is stationary.

(2) Let 〈Zα | α < ω1〉 be any continuously ⊆-increasing countable subsets of <ω1 ω with
⋃{Zα | α <

ω1} = <ω1 ω. Then there exists 〈Bα | α < ω1〉 such that Bα ⊆ Zα and for any B ⊆ <ω1 ω, we have
{α < ω1 | B ∩ Zα = Bα} is stationary.

Proof. For (1): Let 〈Aα |α < ω1〉 be a ♦-sequence. Fix a bijection π : ω1 −→ ω1 × Hω1 . Define
fα : α −→ Hω1 such that

fα =
{
π“Aα, if π“Aα : α −→ Hω1

any function, otherwise.

We claim this 〈fα | α < ω1〉 works. To this end, let

f : ω1 −→ Hω1 .
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Since f ⊂ ω1 ×Hω1, we may define A ⊂ ω1 so that

π“A = f.

Let
C = {α < ω1 | π“(A ∩ α) = f�α}.

Then this C is a club. Let
S = {α < ω1 | A ∩ α = Aα}.

Then this S is stationary. Since
S ∩ C ⊆ {α < ω1 | fα = f�α}.

holds, we are done.

For (2): Let 〈fα | α < ω1〉 be as in (1). Fix any continuously ⊆-increasing countable subsets Zα of
<ω1 ω such that

⋃{Zα | α < ω1} = <ω1 ω. Let us define Bα ⊆ Zα by

Bα = (fα“α) ∩Zα.

We claim this 〈Bα | α < ω1〉 works. To this end, let

B ⊆ <ω1 ω.

Let f : ω1 −→ B be an enumeration. Let

C = {α < ω1 | f“α = B ∩ Zα}.

Then this C is a club. Let
S = {α < ω1 | f�α = fα}.

Then this S is stationary. Since
C ∩ S ⊆ {α < ω1 | B ∩ Zα = Bα}.

holds, we are done.

4.3 Lemma. (♦) Let P be any p.o. set such that P has the c.c.c, is σ-Baire and P ⊆ Hω1 and so
|P | ≤ ω1. Let Zα be as above. Then we may construct 〈Aα | α < ω1〉 such that Aα = {an

α | n < ω}, an
α ⊆ Zα

and ‖−P“for any Ȧ ⊆ <ω1 ω, we have {α < ω1 | Ȧ ∩ Zα ∈ Aα} is stationary”.

Proof. (Step 1) ([K]) Since P has the c.c.c. and |P | ≤ ω1, ♦ implies ‖−P “♦”.

Proof. By ♦, we have a fixed 〈fα | α < ω1〉 such that for any f : ω1 −→ Hω1 ,

{α < ω1 | f�α = fα}

is stationary. Let us define Ȧα by ‖−P “Ȧα = {ξ < α | fα(ξ) ∩GP �= ∅}”.

We claim ‖−P “〈Ȧα | α < ω1〉 is a ♦-sequence”. To this end, let Ȧ be a P -name such that ‖−P “Ȧ ⊆ ω1”.
We represent Ȧ as a sequence 〈Aξ | ξ < ω1〉 such that ‖−P “ξ ∈ Ȧ iff Aξ ∩ GP �= ∅” (ξ < ω1). Since P has
the c.c.c, we may assume Aξ is a countable subset of P ⊆ Hω1 and so Aξ ∈ Hω1 . Let f : ω1 −→ Hω1 be
defined by f(ξ) = Aξ. Then

S = {α < ω1 | f�α = fα}
is stationary. Since P has the c.c.c, this S remains stationary in V P . For α ∈ S, we have ‖−P “Ȧ∩α = {ξ <
α | f(ξ) ∩ GP �= ∅} = {ξ < α | fα(ξ) ∩GP �= ∅}”. Hence ‖−P “S ⊆ {α < ω1 | Ȧ ∩ α = Ȧα}” and so we are
done.
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(Step 2) Fix any Zα’s. Since P has the c.c.c. and is σ-Baire, they have the same properties in V P .
Apply 4.2 Lemma (2) in V P . In V P , we have 〈Ḃα | α < ω1〉 such that Ḃα ⊆ Zα and for any Ḃ ⊆ <ω1 ω, it
holds that {α < ω1 | Ḃ ∩ Zα = Ḃα} is stationary.

Now in V , let
Aα = {a ⊂ Zα | 0 < ||a = Ḃα||}.

Then by c.c.c, Aα is countable.
We claim ‖−P “〈Aα | α < ω1〉 is a ♦-sequence”. To this end, let ‖−P “Ḃ ⊆ <ω1 ω”. Since P is σ-Baire,

we have ‖−P “{α < ω1 | Ḃ ∩ Zα = Ḃα} ⊆ {α < ω1 | Ḃ ∩ Zα ∈ Aα}”. Hence we are done.

We use this last type of ♦ to construct a step (S, h, T ).

§5. Construction

This section is a remake of [DJ]. We make use of ♦ rather than starting in the constructible universe.
We consider Souslin trees which are normal and subtrees of <ω1 ω.

5.1 Lemma. (♦) Let S ⊂ <ω1 ω be a Souslin tree and 〈Aα | α < ω1〉 be a ♦-sequence such that

• We have a fixed continuously ⊆-increasing countable subsets 〈Zα | α < ω1〉 of <ω1 ω such that

⋃
{Zα |α < ω1} = <ω1 ω.

• Aα = {an
α | n < ω} and an

α ⊆ Zα.
• ‖−S“For any Ȧ ⊆ <ω1 ω, {α < ω1 | Ȧ ∩ Zα ∈ Aα} is stationary”.

Then we have a map 〈x �→ tx | x ∈ S〉 such that

(1) tx is a normal subtree of <ω1 ω, the heigth of tx is |x|, the height of x in S. (Height)
(2) If x1 <S x2, then tx1 gets end-extended to tx2 . (Coherence)
(3) • t∅ = ∅ and for 〈i〉 ∈ S, t〈i〉 = {∅}.
• If 〈i, j〉 �= 〈i′, j′〉 in S, then (t〈i,j〉)1 ∩ (t〈i′,j′〉)1 = ∅.
• If |x| ≥ 1 and x�〈i〉 �= x�〈i′〉 in S, then (tx�〈i〉)|x| ∩ (tx�〈i′〉)|x| = ∅. (Forking)

(4) If |x| = α is a limit and an
α ⊆ tx is a maximal antichain in tx, then for any i < ω with x�〈i〉 ∈ S, an

α

remains a maximal antichain in tx�〈i〉. (Diamond)

Proof. Let us partition ω into B〈i,j〉’s so that each B〈i,j〉 is infinite for i, j ∈ ω. So we have fixed a
pairwise disjoint union.

ω =
⋃
{B〈i,j〉 | i, j ∈ ω}.

We define 〈x �→ tx | x ∈ S〉 by recursion on |x|.
(|x| = 0 and |x| = 0 + 1)

Let
t∅ = ∅, t〈i〉 = {∅} (for 〈i〉 ∈ S1).

(|x�〈i, j〉| is a successor + 1)
Suppose tx and tx�〈i〉 have been constructed. Let |x| = α. So x�〈i〉 ∈ Sα+1 holds.

Now let
tx�〈i,j〉 = tx�〈i〉 ∪ {y�〈k〉 | y ∈ (tx�〈i〉)α, k ∈ B〈i,j〉}.

(|x�〈i〉| is a limit + 1)
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Supoose α = |x| is a limit and tx have been constructed.

For each i < ω with x�〈i〉 ∈ Sα+1, we construct

Bx�〈i〉 = {bx�〈i〉
l | l < ω}

and set
tx�〈i〉 = tx ∪Bx�〈i〉.

Where

• Each member of Bx�〈i〉 is identified with a path through tx and in α ω.

• If x�〈i〉 �= x�〈i′〉 in Sα+1, then Bx�〈i〉 ∩Bx�〈i′〉 = ∅.
• For each σ ∈ tx, there exists l < ω such that σ ⊂ bx�〈i〉

l . (Dense)
• For each maximal antichain an

α in tx and each l < ω, there exists σ ∈ an
α such that σ ⊂ bx�〈i〉

l . (Diamond)

Hence an
α remains maximal in tx�〈i〉.

More details to follow. Let
tx = {σl | l < ω}.

We assume that sucS(x) = {x�〈i〉 | i < ω} for a simpler notation. We construct
〈
Bx�〈0〉�l + 1, · · · , Bx�〈l〉�l + 1

〉

by recursion on l so that

• σl ⊂ bx
�〈i〉

l and for all β < α, we demand bx
�〈i〉

l �β ∈ tx.

• If (l, i) �= (l′, i′), then b
x�〈i〉
l �= b

x�〈i′〉
l′ .

• If an
α is a maximal antichain in tx, then there exists σ ∈ an

α with σ ⊂ bx�〈i〉
l .

(l = 0) Want
〈
Bx�〈0〉�1〉 =

〈{bx�〈0〉
0 }〉 so that

• σ0 ⊂ bx
�〈0〉

0 ∈ α ω.

• For each maximal antichain aα
n in tx, there exists σ ∈ an

α with σ ⊂ bx�〈0〉
0 .

This is carried out by 1.2 Proposition.

(l + 1) Suppose we have constructed
〈
Bx�〈0〉�l + 1, · · · , Bx�〈l〉�l + 1

〉

Want 〈
Bx�〈0〉�l + 2, · · · , Bx�〈l〉�l + 2, Bx�〈l+1〉�l + 2

〉
Namely,

b
x�〈0〉
l+1 , · · · , bx�〈l〉

l+1 and bx
�〈l+1〉

0 , · · · , bx�〈l+1〉
l+1 .

This construction is done by a repeated use of 1.2 Proposition.

(|x| is a limit)
Suppose α is a limit and x ∈ Sα. Suppose we have constructed tx�β for all β < α. Then let

tx =
⋃
{tx�β | β < α}.

This completes the construction. It is straightforward to check that this 〈x �→ tx | x ∈ S〉 works.
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5.2 Lemma. (♦) Let 〈x �→ tx | x ∈ S〉 be as above. Let

T =
⋃
{tx | x ∈ S}.

Then T is a normal subtree of <ω1 ω such that the height of T is ω1. For each y ∈ T with 1 ≤ |y|, there
exists a unique x ∈ S such that

• |x| = |y|+ 1.
• y ∈ tx.

Proof. We first mention that T is a normal subtree of <ω1 ω such that the height is ω1. This is because
each tx is a normal subtree of <ω1 ω and so their union T is a downward-closed subset and satisfies (ω-many
successors). The tx enjoy (Coherence) and the heights of tx′ (x <S x′) get higher, so T is (Dense) and the
height of T is ω1.

Let y ∈ T with |y| ≥ 1. We show the existence and uniqueness of x as claimed.

(Existence) Then there exists x′ ∈ S with y ∈ tx′ . Notice that |y| < ht(tx′ ) = |x′| and so |y| + 1 ≤ |x′|
holds. Let x = x′�|y| + 1. Then tx is an initial segment of tx′ and so y ∈ (tx′ )|y| = (tx)|y|. Hence this x
works.

(Uniqueness) Suppose |x| = |x′| = |y|+ 1 and y ∈ tx ∩ tx′ . Want to show x = x′. Suppose x �= x′ to the
contrary. We have two cases.

Case 1. x�|y| = x′�|y|: Since we assume 1 ≤ |y|, we may apply (Forking). By (Forking), we have
y ∈ (tx)|y| ∩ (tx′)|y| = ∅. This is a contradiction.

Case 2. x�|y| �= x′�|y|: Let β < |y| be such that x�β = x′�β and x(β) �= x′(β).

Subcase 2.1 β ≥ 1: By (Forking), we have y�β ∈ (tx�β+1)β ∩ (tx′�β+1)β = ∅. This is a contradiction.

Subcase 2.2 β = 0: Since x�2 �= x′�2, we have y�1 ∈ (tx�2)1 ∩ (tx′�2)1 = ∅. This is a contradiction.

5.3 Lemma. Define h : T −→ S by h(rootT ) = rootS = ∅ and for y ∈ T with |y| ≥ 1, let h(y) = x so
that

• |h(y)| = |y| + 1 for |y| ≥ 1.
• y ∈ th(y).

Then (S, h, T ) is a step such that both S and T satisfy (At most one) .

Proof. Define S ←− T : h by

h(y) =
{
x, if |y| ≥ 1 and |x| = |y|+ 1, y ∈ tx
∅ (= rootS), if y = ∅ (= rootT )

(Order-preserving) Let y1 ≤T y2. If y1 = ∅, then ∅ = h(y1) ≤S h(y2). If |y1| ≥ 1, then let h(y1) = x1,
h(y2) = x2, |y1| = α1 and |y2| = α2. Since y1 ≤T y2 ∈ tx2 , we have y1 ∈ (tx2)α1 = (tx2�α1+1)α1 by
(Coherence). Hence x1 = x2�α1 + 1. So x1 ≤S x2 holds.

(Reduction) Let h(y) ≤S x. Want y′ such that y ≤T y′ with x ≤S h(y′). To this end, take x′ such that
x <S x′ and |x′| = α′ + 1. Then th(y) gets end-extended by tx′ . Let us choose y′ ∈ (tx′ )α′ with y <T y′.
Then x <S x

′ = h(y′) and so this y′ works.

(Ahead) This is clear by definition.

We conclude (S, h, T ) is a step. We have observed that T is a normal subtree of <ω1 ω. In particular,
both S and T satisfy (At most one).
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5.4 Lemma. Let (S, h, T ) be the step as above. Then ‖−S“T/bS = {y ∈ T | h(y) ∈ bS} =
⋃{tx | x ∈ bS}

is a Souslin tree” and so the normal tree T ≡ S ∗ (T/bS) is a Souslin tree.

Proof. Let bS be any generic cofinal path through the Souslin tree S over V . We argue in the generic
extension V [S] for the rest.

We first observe T/bS =
⋃{tx | x ∈ bS}. Let us simply denote T ′ =

⋃{tx | x ∈ bS}. Let y ∈ T/bS.
Then y ∈ T with h(y) = x ∈ bS . If y = ∅, then y ∈ T ′. If |y| ≥ 1, then y ∈ tx with x ∈ bS . Hence y ∈ T ′.

Conversely, let y ∈ tx for some x ∈ bS . If y = ∅, then h(y) = ∅ ∈ bS . Hence y ∈ T/bS . If |y| ≥ 1,
then we may assume that |x| = |y| + 1 by considering an initial segment of x. This is possible, since bS is
downward-closed. Then h(y) = x ∈ bS . So y ∈ T/bS .

(C.C.C.) We show that T/bS = T ′ is a Souslin tree. However, it is straightforward to see that T ′ is a
subtree of <ω1 ω such that T ′ satisfies (Dense), (ω-many successors), (At most one) and is of height ω1.

Let A be any maximal antichain of T ′. We want to show A is countable. Since 〈Aα | α < ω1〉 is the
specified ♦-sequence, we have

E = {α < ω1 | A ∩ Zα ∈ Aα}
is stationary. For all limit α, since T ′�α+ 1 = tbS(α+1), we have T ′

α are all countable. Hence

C = {α < ω1 | A ∩ (T ′�α) is maximal in T ′�α}

D = {α < ω1 | T ′ ∩ Zα = T ′�α}
are clubs.

Let α be a limit with α ∈ E ∩C ∩D. Then there exists n such that an
α = A∩Zα = A∩ T ′�α ⊆ tbS(α) is

a maximal antichain in T ′�α = tbS(α). By construction an
α remains maximal in tbS(α+1) = T ′�α + 1 regard

less of the actual value bS(α+1)(α) < ω. Hence so does in the whole T ′. Therefore A = A∩Zα is countable.

Since S has the c.c.c. and ‖−S“T/bS has the c.c.c.”, so does T ≡ S ∗T/bS by 1.7 Proposition. Hence T
is a Souslin tree.

Here is our main observation.

5.5 Theorem. (♦) There exists an ω-stage iteration 〈Pn, Q̇n | n < ω〉 such that ‖−Pn“Q̇n is a Souslin
tree” and so ‖−Pn“Q̇n has the c.c.c. and is σ-Baire” and for any 〈Gn | n < ω〉 such that Gn is Pn-generic
over V and Gn+1�n = Gn, we have

V
[〈Gn | n < ω〉] = V

[〈bn(1) | n = 1, 2, · · ·〉].
where bn+1 is the Q̇n[Gn]-generic cofinal path over V [Gn] induced by Gn+1. In particular, if Pω is any limit
of the Pn, then Pω is never σ-Baire.

Proof. Construct Tn, hn (n = 1, 2, · · ·) by recursion so that (Tn, hn, Tn+1) are steps and Tn are Souslin
trees. Then by 3.2 Lemma, get 〈Pn, Q̇n | n < ω〉 such that if n ≥ 1, then Q̇n forces a generic cofinal path
bn+1 through Tn+1/bn over V [bn] = V [Gn] and Q̇0 does b1 through T1 over V = V [G0].

§6. A Strong Form of ψAC

The combinatorial principle ψAC related to the size of the reals is found by [W]. We reformulate a
stronger ψ+

AC from [M].
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6.1 Definition. ψ+
AC holds, if for any sequence of stationary subsets 〈Eα | α < ω1〉 of ω1, there exists

γ with ω1 < γ < ω2 and a continuously ⊆-increasing sequence of countable subsets 〈Xα | α < ω1〉 of γ such
that

⋃{Xα | α < ω1} = γ and for all α < ω1, o.t.(Xα) ∈ Eα hold.

To force ψ+
AC, we may iteratively force with the following notions of semiproper forcing.

6.2 Definition. Let κ be a measurable cardinal and 〈Eα | α < ω1〉 be a sequence of stationary subsets
of ω1. Let p = 〈Xp

α | α ≤ αp〉 ∈ P (
κ, 〈Eα | α < ω1〉

)
, if p = ∅ and otherwise

(1) αp < ω1.
(2) The Xp

α are continuously ⊆-increasing countable subsets of κ.
(3) o.t.(Xp

α) ∈ Eα.

For p, q ∈ P (
κ, 〈Eα | α < ω1〉

)
, let q ≤ p, if q end-extends p.

6.3 Proposition. Let S = P
(
κ, 〈Eα | α < ω1〉

)
be as above. Then (S,⊂) is a tree which satisfies

(Root), (Dense), (At most one) and is of height ω1.

6.4 Question. Formulate a general theory which would encompass the iteration of Souslin trees in this
note and the iteration for ψ+

AC as outlined above. Then apply your theory to iterated forcing constructions
for the saturation of the non-stationary ideal on ω1. Do you see any real coded ?
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