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Abstract

We investigate principles which fit between the Kurepa Hypothesis and the weak Kurepa Hypothesis.

Introduction

The Kurepa Hypothesis (KH) states that there exists a tree T such that T is of height ω1, all levels of
T are at most of size ω and T has at least ω2-many cofinal branches. The weak Kurepa Hypothesis (wKH)
states that there exists a tree T such that T is of height ω1, all levels of T are at most of size ω1 and has at
least ω2-many cofinal branches. Hence, KH requires a tree whose levels are all thinner than wKH would do.
It is known that, without loss of generality, we may assume each tree, if any, is a downward closed subtree
of the complete binary tree <ω1 2 of height ω1. In [M], we introduced and investigated principles which fit
between KH and wKH based on pp. 110-111 of [W]. This note continues our previous work [M]. We record
the following progress.

(1) We introduce two additional principles. They are the club-weak Kurepa Hypothesis relative to stationary
subsets F of ω1, denoted by club-wKH(F ) and the (∗)-wKH. We consider their implications and how
they fit between KH and wKH. Among others, we record

• KH implies club-wKH. ([M])

• For any stationary subset F of ω1, club-wKH implies club-wKH(F ).
• For any stationary subset F of ω1, club-wKH(F ) imlies (∗)-wKH.

• (∗)-wKH implies ˜̃♦ of [W].

(2) We introduce a notion of forcing R which adds a family F of almost disjoint functions from ω1 into
ω with | F | = ω2. We separate club-wKH of [M] and the Transversal Hypothesis (TH) by combining
the Levy collapse and this R. Since KH implies club-wKH, this slightly improves [B], where KH and
TH are separated. Let ZFC denote the Zermelo Frankel set theory with the Axiom of Choice. We
write Con(ZFC + statements) to indicate that the theory ZFC together with the extra statements is
consistent. We have the following.

• The club-wKH implies TH. ([M])
• Con(ZFC + there exists a strongly inaccessible cardinal) iff Con(ZFC + ¬club-wKH + TH).

(3) We also separate club-wKH(F ) and (∗)-wKH by the Levy collapse. Since club-wKH(F ) and (∗)-wKH
fit inbetween club-wKH and stat-wKH, this slightly improves [M], where club-wKH and stat-wKH are
separated. We claim

• ˜̃♦ implies stat-wKH. ([M])

• Con(ZFC + there exists a strongly inaccessible cardinal) iff Con(ZFC + ¬club-wKH + stat-wKH).
([M])
• Con(ZFC + there exists a strongly inaccessible cardinal) iff Con(ZFC + for all stationary subsets F
of ω1, ¬club-wKH(F ) + (∗)-wKH).

We are interested in separating as much principles as possible. So far, we are separating clubs and
stationary sets, so to speak. Other separations would require new ideas and techniques, if ever possible.
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§1. A list of Definitions

Let us recall a weak form of KH from [M].

1.1 Definition. The club-weak Kurepa Hypothesis (club-wKH) holds, if there exist 〈bβ | β < ω2〉,
〈Cβ | β < ω2〉 and 〈Sα | α < ω1〉 such that

• bβ is a member of ω1 2 and if β1 �= β2, then bβ1 �= bβ2 .
• Cβ is a club in ω1.
• Sα is a countable subset of α 2.
• If α ∈ Cβ, then bβ�α ∈ Sα.

We may relativize club-wKH with respect to any stationary subset of ω1 as follows:

1.2 Definition. Let F be a stationary subset of ω1. The club-weak Kurepa Hypothesis(F )
(
club-

wKH(F )
)

holds, if there exist 〈bβ | β < ω2〉, 〈Cβ | β < ω2〉 and 〈Sα | α < ω1〉 such that

• bβ is a member of ω1 2 and if β1 �= β2, then bβ1 �= bβ2 .
• Cβ is a club in ω1.
• Sα is a countable subset of α 2.
• If α ∈ F∩Cβ, then bβ�α ∈ Sα.

We may further weaken club-wKH(F ) as follows:

1.3 Definition. The (∗)-weak Kurepa hypothesis
(
(∗)-wKH

)
holds, if there exist 〈bβ | β < ω2〉 and

〈Sα | α < ω1〉 such that the following is stationary in [ω2]ω.

{X ∈ [ω2]ω | ∀β ∈ X bβ�(X ∩ ω1) ∈ S(X∩ω1)}

The following is somewhat weaker than (∗)-wKH and equivalent (see [M]) to the one introduced in [W].

1.4 Definition. ˜̃♦ holds, if there exist 〈bβ | β < ω2〉 and 〈Sα | α < ω1〉 such that the following is
stationary in [ω2]ω.

{X ∈ [ω2]ω | ∃B ⊆ X
⋃

B =
⋃

X ∀β ∈ B bβ�(X ∩ ω1) ∈ S(X∩ω1)}

Let us recall the transversal hypothesis and consider a weak form of it.

1.5 Definition. The Transversal Hypothesis (TH) holds, if there exists a family F of almost disjoint
functions from ω1 into ω with | F | = ω2. Namely, if F = {fβ | β < ω2}, then

• fβ is a member of ω1 ω.
• If β1 �= β2, then there exists αβ1β2 < ω1 such that for all α ∈ [αβ1β2 , ω1), we have fβ1(α) �= fβ2(α).

We may consider a weak form of TH which is sort of relativized to any given stationary subset of ω1.

1.6 Defininition. Let F be a stationary subset of ω1. The Transvesal Hypothesis (F )
(
TH(F )

)
holds,

if there exist 〈fβ | β < ω2〉 and 〈Cβ1β2 | β1, β2 < ω2〉 such that
• fβ is a member of ω1 ω.
• If β1 �= β2, then Cβ1β2 is a club in ω1 such that for any α ∈ F ∩ Cβ1β2 , we have fβ1 (α) �= fβ2(α).

We recap two forms of the Chang’s Conjecture.
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1.7 Definition. The Chang’s Conjecture (CC) holds, if for all sufficiently large regular cardinals θ
and all X ∈ [Hθ]ω, there exist elementary substructures N of Hθ such that X ⊂ N , N ∩ ω1 < ω1 and
|N ∩ ω2| = ω1.

The following is somewhat stronger than CC.

1.8 Definition. The Strong Chang’s Congecture (SCC) holds, if for all sufficiently large regular cardi-
nals θ and all countable elementary substructures N of Hθ, there exist countable elementary substructures
M of Hθ such that N ⊂ M , N ∩ ω1 = M ∩ ω1 and N ∩ ω2 �= M ∩ ω2.

§2. Easy Implications

We record implications among these weak forms of KH.

2.1 Proposition. Let F be any stationary subset of ω1. Then club-wKH implies club-wKH(F ).

Proof. Let 〈bβ | β < ω2〉, 〈Cβ | β < ω2〉 and 〈Sα | α < ω1〉 be as in club-wKH. Then it is easy to see
that they work.

Notice that club-wKH iff club-wKH(ω1).

2.2 Proposition. Let F be any stationary subset of ω1. Then club-wKH(F ) implies (∗)-wKH.

Proof. Let 〈bβ | β < ω2〉, 〈Cβ | β < ω2〉 and 〈Sα | α < ω1〉 be as in club-wKH(F ). Let ϕ : <ω ω2 −→ ω2.
Let θ be a sufficiently large regular cardinal and take a countable elementary substructure N of Hθ such
that N ∩ ω1 ∈ F and 〈Cβ | β < ω2〉, ϕ ∈ N . Let δ = N ∩ ω1.

For any β ∈ N ∩ ω2, we have Cβ ∈ N and so δ ∈ F ∩ Cβ. Hence bβ�δ ∈ Sδ. Since N ∩ ω2 is ϕ-closed,
we are done.

It is clear by definition that (∗)-wKH implies ˜̃♦. We know ([M]) that club-wKH implies TH(ω1). It is
not trival but TH iff TH(ω1) (see [M]). It is well-known that TH negates CC.

2.3 Proposition. Let F be a stationary subset of ω1. Then club-wKH(F ) implies TH(F ).

Proof. It is straightforward. Let 〈bβ | β < ω2〉, 〈Cβ | β < ω2〉 and 〈Sα | α < ω1〉 be as in club-wKH(F ).
Let Sα = {aα

m | m < ω}. Define fβ : ω1 −→ ω so that fβ(α) = m, if bβ�α ∈ Sα and m is the least with
bβ�α = aα

m.
Let β1 and β2 be given two different elements of ω2. Let α∗ < ω1 with bβ1�α∗ �= bβ2�α∗. Let

Cβ1β2 = Cβ1 ∩ Cβ2 ∩ {α < ω1 | α∗ ≤ α}.

Let α ∈ F ∩Cβ1β2 . Then bβ1�α ∈ Sα, bβ2�α ∈ Sα and bβ1�α �= bβ2�α. Hence fβ1 (α) �= fβ2(α).

2.4 Proposition. Let F be any stationary subset of ω1. Then SCC negates TH(F ).

Proof. By Contradiction. Let 〈fβ | β < ω2〉 and 〈Cβ1β2 | β1, β2 < ω2〉 be as in TH(F ). Let θ be
a sufficiently large regular cardinal and N be an elementary substructure of Hθ such that N ∩ ω1 ∈ F ,
|N ∩ω2| = ω1 and 〈Cβ1β2 | β1, β2 < ω2〉 ∈ N . This is possible by building a continuously increasing chain of
countable elementary substructures by SCC. Let δ = N ∩ ω1. We may observe 〈β �→ fβ(δ) | β ∈ N ∩ ω2〉 is
one-to-one as follows:
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Let β1, β2 ∈ N ∩ ω2 with β1 �= β2. Then Cβ1β2 ∈ N and so δ ∈ F ∩ Cβ1β2 . So fβ1 (δ) �= fβ2(δ). Hence
{fβ(δ) | β ∈ N ∩ ω2} is of size ω1 yet is a subset of ω. This is a contradiction.

§3. Not club-wKH and TH

It is mentioned on p. 211 in [Ka] that an unpublished work of [B] shows that KH implies TH but that
the converse does not hold. (Note: The weak Kurepa Hypothesis (wKH) in [Ka] is different from our weak
Kurepa Hypothesis. The wKH in [Ka] states that there exists a family F of almost disjoint functions from
ω1 into ω with | F | = ω2. So it is our TH. On the other hand, our wKH states that there exists a downward
closed substree T of <ω1 2 such that T is of size ω1 and has at least ω2-many cofinal branches as in p. 111
of [W].)

We reformulate [B] and separate club-wKH and TH. Namely, club-wKH implies TH but the converse
does not hold. Note that KH implies club-wKH and the converse does not hold ([M]).

3.1 Theorem. Let κ be a strongly inaccessible cardinal. Then there exists a notion of forcing P such
that P is σ-closed, has the κ-c.c. and so preserves both ω1 and κ to be cardinals. If we extend the ground
model V via this P , then in the generic extensions V [P ], the cardinals in V which are strictly greater than
ω1 and strictly less than κ are all collapsed to be of size ω1, κ is the new ω2, club-wKH does not hold yet TH
holds.

Proof. We just out-line here. Details are provided in the next sections.

(Out-line) Let Lv(κ, ω1) denote the Levy collapse which is σ-closed, has the κ-c.c. and the cardinals
which are strictly greater than ω1 and strictly less than κ are all collapsed to be of size ω1. Let R denote
a notion of forcing which adds a family of almost disjoint functions 〈gβ | β < κ〉 from ω1 into ω. Let P be
the forcing product Lv(κ, ω1)× R. We claim this P works. Both Lv(κ, ω1) and R satisfy a stronger form of
κ-c.c. By absoluteness, we may view P as two stage iterations R ∗ Lv(κ, ω1) and Lv(κ, ω1) ∗R which are all
forcing equivalent, σ-closed, have the κ-c.c.

To see TH in V [P ], we view

V [P ] = V [Lv(κ, ω1)][R].

To see club-wKH gets negated in V [P ], let 〈bβ | β < κ〉, 〈Cβ | β < κ〉 and 〈Sα | α < ω1〉 be a possible
combination to club-wKH in V [P ]. Then by the κ-c.c, there exists ω1 ≤ ξ < κ such that we may factor

V [P ] = V [Lv(ξ, ω1)][Rξ][Rξ][Lv
(
[ξ, κ), ω1

)
]

and
〈Sα | α < ω1〉 ∈ V [Lv(ξ, ω1)][Rξ].

The p.o. sets Rξ and Rξ are defined and studied in detail later.
In V [Lv(ξ, ω1)][Rξ], κ remains strongly inaccessible and Rξ× Lv

(
[ξ, κ), ω1

)
is Eξ-complete and has the

κ-c.c. for some Eξ ⊂ [ξ]ω stationary. Therefore we may modify the Silver’s original argument (see [Si] or [M])
in this context to conclude all bβ ∈ ω1 2 are in this intermediate stage. But this would be a contradiction.

This out-lines the proof.

According to this out-line, the main point is to factor the relevant p.o. sets. This takes a careful
treatment of the quotients, in particular.
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§4. Notions of forcing which are E-complete and F -complete

In this section we deal with notions of forcing which are E-complete and F -complete. Our treatment
of E-completeness is an example of a more general notion found in [S].

4.1 Definition. ([S]) Let ξ be an ordinal with ω1 ≤ ξ and let E ⊆ [ξ]ω be stationary in [ξ]ω. A
notion of forcing Q is E-complete, if for all sufficiently large regular cardinals θ and all countable elementary
substructures N of Hθ with E, Q ∈ N and N ∩ ξ ∈ E, if 〈qn | n < ω〉 is any (Q, N)-generic sequence, then
there exists q ∈ Q such that for all n < ω, it holds that q ≤ qn in Q.

Note that if F is a stationary subset of ω1, then F is stationary in [ω1]≤ω. Hence it makes sence that a
notion of forcing Q to be F -complete.

4.2 Proposition. ([S]) If Q is E-compltete, then Q is σ-Baire and E remains stationary in the generic
extensions V [Q].

Proof. Let 〈Dn | n < ω〉 be a sequence of open dense subsets of Q. We need to show that
⋂{Dn | n < ω}

is dense in Q. To this end, let q ∈ Q and θ be a sufficiently large regular cardinal and N be a countable
elementary substructure of Hθ with E, Q ∈ N and N ∩ ξ ∈ E. We may assume q, 〈Dn | n < ω〉 ∈ N and so
Dn ∈ N for all n < ω. Let 〈qn | n < ω〉 be a (Q, N)-generic sequence with q0 = q. Then we have a lower
bound q∗ ∈ Q of the qn’s. Since qm ∈ Dn for some m, we conclude q∗ ∈ ⋂{Dn | n < ω}.

To show that E remains stationary in V [Q], let ϕ̇ be a Q-name such that q ‖−Q“ϕ̇ : <ω ξ −→ ξ”. Take a
sufficiently large regular cardinal θ and a countable elementary substructure N of θ such that ξ, Q ∈ N and
N ∩ ξ ∈ E. We may assume that q, ϕ̇ ∈ N . Let 〈qn | n < ω〉 be a (Q, N)-generic sequence with q0 = q and
q∗ be a lower bound of the qn’s. Then q∗ ‖−Q“N ∩ ξ = N [ĠQ] ∩ ξ is ϕ̇-closed”. Hence E remains stationary
in V [Q].

4.3 Proposition. Let Q be a notion of forcing which is σ-Baire. If p ‖−Q“ ḃ : ω1 −→ 2, ḃ �∈ V ”, then

∀α < ω1 ∀ q ≤ p ∃β α ≤ β < ω1 ∃ r1, r2 ≤ q ∃σ1, σ2 ∈ β 2 such that

r1 ‖−Q “ḃ�β = σ1”,

r2 ‖−Q “ḃ�β = σ2”,

σ1 �= σ2.

Proof. By contradiction. Suppose not and fix α0 < ω1 and q0 ∈ Q such that q0 ≤ p and that

∀β α0 ≤ β < ω1 ∀ r1, r2 ≤ q0 ∀σ1, σ2 ∈ β 2,

If r1 ‖−Q “ḃ�β = σ1” and r2 ‖−Q “ḃ�β = σ2”, then σ1 = σ2.

Since Q is σ-Baire, for each β ∈ [α0, ω1), may fix qβ ≤ q0 and σβ such that qβ ‖−Q“ḃ�β = σβ”.

4.3.1 Claim. If α0 ≤ β1 < β2 < ω1, then σβ1 ⊂ σβ2 .

Proof. Take r ≤ qβ1 in Q and σ ∈ β2 2 such that r ‖−Q“ḃ�β2 = σ”. Then r, qβ2 ≤ q0, qβ2 ‖−Q“ḃ�β2 =
σβ2”. Therefore, σβ1 ⊂ σ = σβ2 holds.

Let b =
⋃{σβ | α0 ≤ β < ω1}. Then b : ω1 −→ 2 and

4.3.2 Claim. q0 ‖−Q“ḃ = b” and so this is a contradiction.

Proof. Fix any β with α0 ≤ β < ω1. Take any d ≤ q0 in Q. Take d′ ≤ d and σ ∈ β 2 such that
d′ ‖−Q“ḃ�β = σ”. Since d′, qβ ≤ q0, we have σ = σβ and so d′ ‖−Q“ḃ�β = b�β”. Since β and d are arbitrary,
we conclude q0 ‖−Q“ḃ = b”.
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4.4 Lemma. Let Q be E-complete and q ‖−Q“ ḃ : ω1 −→ 2, ḃ �∈ V ”. Then for all sufficiently large regular
cardinals θ and all countable elementary substructures N of Hθ such that q, Q, E, ḃ ∈ N and N ∩ ξ ∈ E,
we may construct a map 〈f �→ σf | f ∈ ω 2〉 from ω 2 into (N∩ω1) 2 which is one-to-one and an associated
qf ≤ q such that qf is (Q, N)-generic and qf ‖−Q“ ḃ�(N ∩ ω1) = σf”.

Proof. The following is routine.

Let us first denote δ = N ∩ ω1. Let 〈Dn | n < ω〉 enumerate the open dense subsets D ∈ N of Q. Fix a
strictly increasing sequence 〈δn | n < ω〉 of ordinals such that δ0 = 0 and sup{δn | n < ω} = δ.

Then construct 〈s �→ (qs, σs) | s ∈ <ω 2〉 such that

• q∅ = q, σ∅ = ∅,
• qs ∈ Q ∩ N , σs ∈ (|σs | 2) ∩N and δ|s| ≤ |σs|,
• qs ≤ q and qs ‖−Q“ḃ�|σs| = σs”,
• qs�〈0〉, qs�〈1〉 ≤ qs and qs�〈0〉, qs�〈1〉 ∈ Dn ∩ N ,
• | σs�〈0〉 | = | σs�〈1〉 | but σs�〈0〉 �= σs�〈1〉.

For f ∈ ω 2, 〈qf�n | n < ω〉 is a (Q, N)-generic sequence and N ∩ ξ ∈ E. Hence we may take a lower
bound qf ∈ Q of the {qf�n | n < ω}. Let σf =

⋃{σf�n | n < ω}. Then qf ‖−Q“ḃ�δ = σf” holds. By
construction, we see that f �→ σf is one-to-one.

Here is our main lemma.

4.5 Lemma. Let ξ be an ordinal with ω1 ≤ ξ and E ⊆ [ξ]ω be stationary in [ξ]ω. Let 〈Sα | α < ω1〉 be
a sequence such that each Sα is countable and Sα ⊆ α 2. Let Q be a notion of forcing which is E-complete.
Then we have ‖−Q“ if ḃ : ω1 −→ 2, Ċ ⊆ ω1 is a club and for all α ∈ Ċ, ḃ�α ∈ Sα, then ḃ ∈ V ”.

Proof. Suppose not. Then we have q ∈ Q such that q ‖−Q“ḃ : ω1 −→ 2, Ċ ⊆ ω1 is a club and for all
α ∈ Ċ, ḃ�α ∈ Sα, yet ḃ �∈ V ”. Let θ be a sufficiently large regular cardinal and N be a countable elementary
substructure of Hθ with N ∩ ξ ∈ E. Let δ = N ∩ ω1. We may assume relevant parameters are all in N . In
particular, Ċ ∈ N . By 4.4 Lemma, we have a one-to-one map 〈f �→ σf | f ∈ ω 2〉 from ω 2 into δ 2 and the
associated qf ≤ q such that qf ‖−Q“ḃ�δ = σf”.

Since qf is (Q, N)-generic, we have qf ‖−Q“δ ∈ Ċ and so ḃ�δ ∈ Sδ”. Therefore we have σf ∈ Sδ. Since
Sδ is countable, this is a contradiction.

Here is a related lemma.

4.6 Lemma. Let F be a stationary subset of ω1. Let 〈Sα | α < ω1〉 be a sequence such that each Sα is
countable and Sα ⊆ α 2. Let Q be a notion of forcing which is F -complete. Then we have ‖−Q“ if ḃ : ω1 −→ 2,
Ċ ⊆ ω1 is a club and for all α ∈ F∩Ċ, ḃ�α ∈ Sα, then ḃ ∈ V ”.

Proof. Similar. Since qf ‖−Q“δ ∈ F ∩ Ċ”, we would be done.

In closing this section, we record two additional lemmas for later use.

Suppose we have a p.o. set P and want to show it is E-complete. Then it would be sufficient to find a
large regular cardinal θ and club-many N ’s such that every (P, N)-generic sequence has a lower bound in P .

4.7 Lemma. Let P be a p.o. set and let E ⊆ [ξ]ω be stationary with ω1 ≤ ξ. Then the following are
equivalent.
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(1) P is E-complete.
(2) The following set contains a club in [ ξ ∪ P(P ) ∪ P ]ω.

{X ∈ [ ξ ∪ P(P ) ∪ P ]ω | X ∩ ξ ∈ E ⇒ ∀〈pn | n < ω〉 (P, X) − generic sequence∃ p ∈ P ∀n < ω p ≤ pn}

Proof. The point here is definabilities with the parameters E and P .

The notions of forcing which are E-complete iterates under the countable support ([S], in a more general
setting). We also pay attention to the following.

4.8 Lemma. Let P and Q be p.o. sets and let E ⊆ [ξ]ω be stationary with ω1 ≤ ξ. Then the following
are equivalent.

(1) Both P and Q are E-complete.
(2) The product P × Q is E-complete.
(3) The two stage iteration P ∗ Q̌ is E-complete.
(4) P is E-complete and ‖−P“ Q̌ is E-complete”.

Proof. It is mostly routine. We just note that if 〈pn | n < ω〉 is a (P, N)-generic sequence, then there
exist a descending sequence 〈qk | k < ω〉 of conditions from Q and a strictly increasing sequence 〈nk | k < ω〉
of natural numbers such that 〈(pnk , qk) | k < ω〉 is a (P × Q, N)-generic sequence.

Even if P ∗ Q̇ is E-complete, we may not have ‖−P “Q̇ is E-complete”. (A good example to try to look at
is; P = Adding a Sousline tree T by its initial segments and force with ω2-many copies of T under countable
support product. Then force with T , again. Namely, Q̇ = T . Then P ∗ Q̇ would be ω1-complete but Q̇ would
kill a stationary subset of [ω2]ω and so not proper. In particular, Q̇ is never ω1-complete in V [P ].) So it is
important that the Q above is a fixed one in the ground model V .

§5. Forcing a family of almost disjoint functions

In this section, we introduce our notion of forcing which adds a family 〈gβ | β < κ〉 of almost disjoint
functions from ω1 into ω, where κ is a strongly inaccessible cardinal. The main point here is to understand
the quotients with respect to this notion of forcing. Namely, we consider how does 〈gβ | β < ξ〉 get lengthened
to acquire 〈gβ | ξ ≤ β < κ〉 for any ξ with ω1 ≤ ξ < κ. This section is hinted on and reformulates [B].

5.1 Definition. Let κ be a strongly inaccessible cardinal and let ξ be an ordinal with ω1 ≤ ξ ≤ κ. We
define Rξ as follows:

p ∈ Rξ, if p = 〈gp
β | β ∈ Xp〉 such that

• Xp ∈ [ξ]≤ω,
• There exists a unique ordinal αp < ω1 such that for all β ∈ Xp, it holds that gp

β is a function from αp

into ω.

We set R = Rκ. It is clear that Rξ ⊂ R holds.

For q, p ∈ Rξ, we define q ≤ξ p, if

• Xq ⊇ Xp,
• For all β ∈ Xp, it holds that gq

β�αp = gp
β,
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• The maps 〈β �→ gq
β(α) | β ∈ Xp〉 are all one-to-one for all α with αp ≤ α < αq.

We write Rξ for (Rξ,≤ξ) and ≤ for ≤ξ . There is no confusion. We may draw pictures to observe the
following.

5.2 Lemma. Rξ is a p.o. set.

We make important remarks.

5.3 Note. (1) If p ∈ Rξ and α0 < αp, then 〈gp�α0 | β ∈ Xp〉 ∈ Rξ. But this condition may not be
extended to p in Rξ.
(2) If p ∈ R and ω1 ≤ ξ ≤ κ, then 〈gp

β | β ∈ Xp ∩ ξ〉 ∈ Rξ and if we denote this condition by p�ξ, then
p ≤ p�ξ holds in R.

(3) The Rξ are upward-absolute as long as extensions are by notions of forcing which are σ-Baire.

We begin our analysis of this Rξ.

5.4 Lemma. Rξ is σ-closed.

Proof. Let 〈pn | n < ω〉 be descending in Rξ. To define a lower bound p of the pn, let Xp =
⋃{Xpn | n <

ω} and for each β ∈ Xp, let gp
β =

⋃{gpn

β | β ∈ Xpn , n < ω}.
Then we may check p ∈ Rξ with αp = sup{αpn | n < ω} and that for all n < ω, we have p ≤ pn.

5.5 Lemma. (1) (CH) Rξ has the ω2-c.c.

(2) Rξ has the κ-c.c.

Proof. The point here is that if p, q ∈ Rξ are two conditions such that αp = αq and gp
β = gq

β for all
β ∈ Xp ∩ Xq , then p ∪ q is a common extension of p, q in Rξ. The rest is either by the ∆-system Lemma
under CH or by the assumption that κ is strongly inacccessible.

5.6 Corollary. (CH) Rξ preserves the cofinalities and so the cardinalities.

We observe Rξ indeed adds what we intend.

5.7 Lemma. Let Gξ be Rξ-generic over the ground model V . For each β < ξ, let

gβ =
⋃

{gp
β | β ∈ Xp, p ∈ Gξ}.

Then the gβ’s are almost disjoint functions from ω1 into ω. In particular, the map 〈β �→ gβ | β < ξ〉 is
one-to-one. Hence, 2ω1 ≥ |ξ| holds in V [Gξ].

Proof. By genericities. In particular, we have p ‖−Rξ“the maps 〈β �→ ġβ(α) | β ∈ Xp〉 are one-to-one for
all α with αp ≤ α < ω1”.

We observe Gξ gets recovered from 〈gβ | β < ξ〉.
5.8 Lemma. Let Gξ be Rξ-generic over the ground model V and define 〈gβ | β < ξ〉 as above. Then

for any p ∈ Rξ, we have p ∈ Gξ iff the following (1)-(2) hold.

(1) For all β ∈ Xp, we have gβ�αp = gp
β,

(2) For all α with αp ≤ α < ω1, the maps 〈β �→ gβ(α) | β ∈ Xp〉 are one-to-one.

In particular, we have V [Gξ] = V [〈gβ | β < ξ〉].
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Proof. We explicitly observe one direction. Suppose (1) and (2) hold. We take w ∈ Gξ such that
w ‖−Rξ“(1)-(2)”. We may assume that Xw ⊇ Xp and αw ≥ αp. Then we may check that w ≤ p in Rξ.
Hence p ∈ Gξ.

5.9 Note. Even if we had p, q ∈ Gξ and αp = αq, it does not automatically imply p ∪ q ∈ Gξ.

We now pay attention to a stationary subset of [ξ]ω forced. This stationarity reflects the genericity of
the gβ’ s to some extent. We make heavy use of this property to analyze the quotients R/Gξ in the next
section. ([B])

5.10 Lemma. Let Gξ and gβ be as above. Let Eξ ⊆ [ξ]ω be defined as follows:
X ∈ Eξ, if the following (1)-(3) are satisfied.

(1) X ∈ [ξ]ω and X ∩ ω1 < ω1,
(2) If X ∩ ω1 ≤ α < ω1, then |ω \ {gβ(α) | β ∈ X} | = ω,
(3) If X ∩ ω1 ≤ α < ω1, then the map 〈β �→ gβ(α) | β ∈ X〉 is one-to-one.

Then this Eξ is a stationary subset of [ξ]ω in V [Gξ].

Proof. Suppose p ‖−Rξ“ϕ̇ : <ω ξ −→ ξ”. Let θ be a sufficiently large regular cardinal and N be
a countable elementary substructure of Hθ with p, Rξ, ϕ̇ ∈ N . Let q ≤ p be (Rξ, N)-generic such that
αq = N ∩ ω1 and Xq = N ∩ ξ. Since ω1 ≤ ξ and Xq is countable, we may fix q+ ∈ Rξ such that αq+

= αq

but Xq ⊂ Xq+
and |Xq+ \ Xq | = ω. And so q+ ≤ q in Rξ. Then

• q+ ‖−Rξ“N ∩ ξ = N [Ġξ] ∩ ξ is ϕ̇-closed”,

• q+ ‖−Rξ“ω \ {ġβ(α) | β ∈ N ∩ ξ} ⊇ {ġβ(α) | β ∈ Xq+ \ Xq} for all α with αq ≤ α < ω1”
• q+ ‖−Rξ“〈β �→ ġβ(α) | β ∈ N ∩ ξ〉 are one-to-one for all α with αq ≤ α < ω1”.

Hence q+ ‖−Rξ“N ∩ ξ ∈ Ėξ”. Therefore, Eξ is a stationary subset of [ξ]ω in V [Gξ].

§6. Viewing R as two stage iterations Rξ ∗ Ṙξ

We factor R and examine the quotients. This analysis closely follows [B].

6.1 Lemma. The identity map p �→ p from Rξ into R is a complete embedding. Namely,

(1) If q ≤ p in Rξ, then so in R.
(2) If p and q are incompatible in Rξ, then so are in R.

(3) For any p ∈ R, there exists a ∈ Rξ such that for any b ≤ a in Rξ, it holds that b and q are compatible
in R.

Proof. For (1): We actually have q ≤ p in Rξ iff q ≤ p in R.

For (2): Suppose p, q ∈ Rξ and there exists r ∈ R such that r ≤ p, q in R. Then r�ξ = 〈gr
β | β ∈

Xr ∩ ξ〉 ≤ p, q in Rξ.

For (3): Let c : Xp \ ξ −→ Y be a bijection such that Y ⊂ ξ is disjoint with Xp ∩ ξ. This is possible, as
ω1 ≤ ξ and Xp ∩ ξ is countable. Let a = p�ξ ∪ {(c(β), gp

β

) | β ∈ Xp \ ξ}. Then it is not hard to show that
this a works.
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The following are routine (see pp. 243-244 in [Ku]).

6.2 Definition. Let Gξ be Rξ-generic over V . Define a suborder Rξ of R as follows;
p ∈ Rξ, if the following two are satisfied.

• p ∈ R,
• For all w ∈ Gξ, it holds that w and p are compatible in R.

So the quotient R/Gξ is simply denoted by Rξ. Let Ṙξ denote the canonical Rξ-name of Rξ.

6.3 Lemma. R and Rξ ∗ Ṙξ are forcing equivalent. More precisely, we have

(1) If G is R-generic over V , then G ∩ Rξ is Rξ-generic over V and the G itself is Ṙξ
(G∩Rξ)-generic over

V [G ∩ Rξ]. In particular, we have V [G] = V [G ∩ Rξ][G].

(2) If Gξ is Rξ-generic over V and G is Ṙξ
Gξ

-generic over V [Gξ], then G is R-generic over V and G∩Rξ =
Gξ holds. In particular, we have V [Gξ][G] = V [G].

We identify Rξ in V [Gξ].

6.4 Lemma. Let p ∈ R. Then p ∈ Rξ iff the following (1) and (2) hold.

(1) p�ξ ∈ Gξ. Namely,
(1.1) ∀β ∈ Xp ∩ ξ gβ�αp = gp

β,
(1.2) ∀α ∈ [αp, ω1) 〈β �→ gβ(α) | β ∈ Xp ∩ ξ〉 is one-to-one.

(2) ∀α ∈ [αp, ω1) |ω \ {gβ(α) | β ∈ Xp ∩ ξ} | ≥ |Xp \ ξ |.
Proof. Suppose p ∈ Rξ. Take a Rξ-generic filter G over V [Gξ] with p ∈ G. Then it is rather easy to see

that (1) and (2) hold in V [G]. Then in turn, by absoluteness, (1) and (2) hold in V [Gξ].

Conversely, suppose (1) and (2). We want to show p ∈ Rξ. To this end, let a ∈ Gξ. We may assume
that Xa ⊃ Xp ∩ ξ and αa > αp. Then it is straightforward to construct r ∈ R such that αr = αa, r�ξ = a
and r ≤ a, p in R.

We study the quotients Rξ in V [Gξ]. Howerver, rather than directly making use of the genericity of Gξ,
we may formulate the current universe of set theory as follows;

(1) We have a family of almost disjoint functions 〈gβ | β < ξ〉 with ω1 ≤ ξ.
(2) Eξ is stationary in [ξ]ω, where Eξ is defined from 〈gβ | β < ξ〉 as in 5.10 Lemma.
(3) Rξ is explicitly defined from 〈gβ | β < ξ〉 as in the equivalent manner of 6.4 Lemma.

Notice that (1) does not imply (2) in general. Now (1)-(3) suffice to investigate the properties of Rξ,
possibly except the chain conditions.

6.5 Lemma. The p.o. set Rξ enjoys the following density. For any p ∈ Rξ, any α0 < ω1 and any
Y ∈ [κ]ω, there exists r ∈ Rξ such that r ≤ p in Rξ (namely, as in R), αr > α0 and Xr ⊃ Y .

Proof. Given p ∈ Rξ, α0 < ω1 and Y ∈ [κ]ω. Take X ∈ Eξ such that (Y ∪ Xp) ∩ ξ ⊂ X and
α0 < X ∩ ω1 < ω1. Construct r ∈ R such that αr = X ∩ ω1, Xr ∩ ξ = X, Xr ⊃ (Xp ∪ Y ), r�ξ = 〈β �→
gβ�(X ∩ ω1) | β ∈ Xr ∩ ξ〉 and 〈β �→ gr

β | β ∈ Xp \ ξ〉 can be constructed so that r�Xp ≤ p in R. Since
X ∈ Eξ, the maps 〈β �→ gβ(α) | β ∈ X〉 are one-to-one and |ω \ {gβ(α) | β ∈ X} | = ω ≥ |Xr \ ξ | for all α
with X ∩ ω1 ≤ α < ω1. Therefore, we conclude r ∈ Rξ.

6.6 Lemma. The p.o. set Rξ is Eξ-complete. Namely, for all sufficiently large regular cardinals θ and
all countable elementary substructures N of Hθ such that Eξ, R

ξ ∈ N and N ∩ ξ ∈ Eξ, if 〈pn | n < ω〉 is a
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(Rξ, N)-generic sequence, then there exists p ∈ Rξ such that for all n < ω, we have p ≤ pn. In addition to
this, we may construct p with αp = N ∩ ω1 and Xp = N ∩ κ.

Proof. Let θ be a regular cardinal with θ ≥ κ+ so that Rξ ∈ Hθ. Let N and pn be as in the hypothesis.
To define p ∈ Rξ, let Xp =

⋃{Xpn | n < ω}. For β ∈ Xp, let gp
β =

⋃{gpn

β | β ∈ Xpn , n < ω}. Then by
the density of Rξ, we indeed have p ∈ R with Xp = N ∩ κ and αp = N ∩ ω1. Since N ∩ ξ ∈ Eξ, the maps
〈β �→ gβ(α) | β ∈ Xp ∩ ξ〉 are one-to-one and |ω \ {gβ(α) | β ∈ Xp ∩ ξ} | = ω ≥ |Xp \ ξ | for all α with
Xp ∩ ω1 ≤ α < ω1. Therefore, we conclude p ∈ Rξ and p ≤ pn for all n < ω.

Suppose we have two conditions p1 and p2 in Rξ such that αp1 = αp2 and for all β ∈ Xp1 ∩ Xp2 , we
have gp1

β = gp2
β . Let p = p1 ∪ p2, then p ∈ R and is a common extension of p1 and p2. But we can not

expect p ∈ Rξ in general, as it may not hold that |ω \ {gβ(α) | β ∈ Xp ∩ ξ} | ≥ |Xp \ ξ |. The maps
〈β �→ gβ(α) | β ∈ Xp ∩ ξ〉 may not be one-to-one, either. However the following is handy, when we establish
the chain condition of Rξ under the ∆-system Lemma.

6.7 Corollary. For any p ∈ Rξ, there exists q ≤ p in Rξ such that for all α with αq ≤ α < ω1, we have
|ω \ {gβ(α) | β ∈ Xq ∩ ξ} | = ω.

Proof. For p, take q ≤ p which is (Rξ, N)-generic as in 6.6 Lemma.

We show that Rξ has the κ-c.c., assuming that κ is strongly inaccessible. This would be sufficient for
our purposes. However, since R has the ω2-c.c. (under CH) and R, Rξ ∗ Ṙξ are forcing equivalent, we may
improve it to the ω2-c.c. in the extension V [Gξ].

6.8 Lemma. Let us recall κ is assumed strongly inaccessible. Then Rξ has the κ-c.c. More precisely,
given 〈pi | i < κ〉, there exists 〈qi | i ∈ I〉 such that I ∈ [κ]κ, for all i ∈ I, qi ≤ pi in Rξ and the qi’s are
pairwise compatible in Rξ.

Proof. If two conditions q1, q2 in Rξ satisfy the following, then q1 ∪ q2 ∈ Rξ and is a common extension
in Rξ.

• αq1 = αq2 ,
• Xq1 ∩ ξ = Xq2 ∩ ξ,
• gq1

β = gq2
β for all β ∈ (Xq1 ∩ Xq2 ) \ ξ,

• For all α with αq1 ≤ α < ω1, we have |ω \ {gβ(α) | β ∈ Xq1 ∩ ξ} | = ω. So the same must hold for q2,
too.

Notice that we have ω ≥ | (Xq1 \ ξ) ∪ (Xq2 \ ξ) |.
Since κ is strongly inaccessible, given 〈pi | i < κ〉, we may get the qi and I as claimed.

We prepare for intermediate stages.

6.9 Corollary. Let Rξ and κ be as above. Then in V [Rξ][Lv(ξ, ω1)], it holds that

(1) Rξ × Lv([ξ, κ), ω1) is Eξ-complete.
(2) Rξ × Lv([ξ, κ), ω1) has the κ-c.c.

Proof. For (1): Since Rξ remains Eξ-complete and Lv([ξ, κ), ω1) is σ-closed, we may show their product
is Eξ-complete.

For (2): Since Rξ still has the stronger type of the κ-c.c. and so does Lv([ξ, κ), ω1), their product
certainly has the κ-c.c.
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We extract a combinatorial property of 〈gβ | β < ξ〉 in V [Gξ] which would guarantee an ω2-c.c. of Rξ.

6.10 Definition. Let X1, X2 ∈ Eξ. We say X1 and X2 are amalgable, if there exists (X, h) such that

• (X1 ∪ X2) ⊆ X ∈ Eξ and X1 ∩ ω1 = X2 ∩ ω1 ≤ X ∩ ω1,
• h is a bijection from X1 onto X2 such that h is the identity on X1 ∩ X2,
• For all β ∈ X1 \ (X1 ∩ X2), gβ and gh(β) agree on the interval [X1 ∩ ω1, X∩ω1).

For any X ∈ Eξ, X and X are amalgable. It is also easy to see that if X1 and X2 are amalgable, then
so are X2 and X1.

In addition to the stationarity, Eξ has the following property of amalgable pairs in V [Gξ].

6.11 Lemma. Suppose CH holds in V , then in V [Gξ], for any sequence 〈Xi | i < ω2〉 such that for all
i < ω2, Xi ∈ Eξ, there exist two distinct indices i and i′ such that Xi and Xi′ are amalgable.

Proof. Suppose p ‖−Rξ“〈Ẋi | i < ω2〉 is a sequence such that for all i < ω2, Ẋi ∈ Ėξ”. For each i < ω2, we
take pi ≤ p in Rξ to decide the value of Ẋi to be Xi. We may assume Xi ⊆ Xpi and Xi∩ω1 ≤ αpi = Xpi ∩ω1.
Apply the ∆-system Lemma to 〈Xpi | i < ω2〉. We concentrate on two distinct indices i and i′. We may
assume the following.

• αpi = αpi′ and Xi ∩ ω1 = Xi′ ∩ ω1,
• There exists a bijection h : Xpi −→ Xpi′ such that h on Xpi ∩ Xpi′ is the identity and h′′Xi = Xi′ ,
• For all β ∈ Xpi \ (Xpi ∩ Xpi′ ), gpi

β and g
pi′
h(β) agree on [Xi ∩ ω1, α

pi),

• pi and pi′ agree on Xpi ∩ Xpi′ .

Let X = Xpi ∪ Xpi′ . Then we may take r ≤ (pi ∪ pi′) in Rξ such that αr = αpi and r ‖−Rξ“X ∈ Ėξ”.
Now we may observe r ‖−Rξ“Ẋi and Ẋi′ are amalgable due to (X, h�Xi)”.

6.12 Lemma. (CH) If Eξ satisfies the additional property on amalgable pairs as in 6.11 Lemma, then
Rξ satisfies the ω2-c.c.

Proof. Let 〈pi | i < ω2〉 be a sequence of conditions of Rξ. Since Eξ is stationary, we may take qi ≤ pi

in Rξ such that Xqi ∩ ξ ∈ Eξ. Apply the ∆-system Lemma to 〈Xqi | i < ω2〉. We may assume that αqi

are constant and so are qi on the kernel of the ∆-system. Then by assumption, there exist two distinct
indices i and i′ such that Xqi ∩ ξ and Xqi′ ∩ ξ are amalgable with (X, h). Then we may construct r ∈ Rξ,
by placing appropriate values to gr

β�[αqi , X ∩ ω1) for β ∈ (Xqi ∪ Xqi′ ) \ ξ, so that r ≤ qi, qi′, αr = X ∩ ω1,
Xr ∩ ξ = X ∈ Eξ and Xr \ ξ = (Xqi ∪ Xqi′ ) \ ξ. In particular, pi and pi′ are compatible in Rξ.

I do not know whether Rξ satisfies the stronger ω2-c.c. Namely, given 〈pi | i < ω2〉, there exists I ∈ [ω2]ω2

such that for any two i and i′ in I, pi and pi′ are compatible in Rξ.

§7. Main Theorems

Now we are ready to provide details to our main theorem of section 3. We restate it as follows;

7.1 Theorem. Let κ be a strongly inaccessible cardinal. Then we have ¬club-wKH but TH in the
generic extensions V [Lv(κ, ω1) × R], where R is defined in 5.1 Definition.

Proof. By contradiction. Suppose 〈Cβ | β < κ〉, 〈bβ | β < κ〉 and 〈Sα | α < ω1〉 are given so that
club-wKH holds in V [Lv(κ, ω1) × R] = V [R × Lv(κ, ω1)]. Then by the κ-c.c. of the product R × Lv(κ, ω1),
we have an ordinal ξ such that ω1 ≤ ξ < κ and 〈Sα | α < ω1〉 is in V [Rξ × Lv(ξ, ω1)].
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In the intermediate stage V [Rξ×Lv(ξ, ω1)] = V [Lv(ξ, ω1)][Rξ], the tail Rξ×Lv([ξ, κ), ω1) is Eξ-complete
and has the κ-c.c. by 6.9 Corollary. Let V1 = V [Rξ × Lv(ξ, ω1)] and Q = Rξ × Lv([ξ, κ), ω1) for a simpler
notation.

Fix any β < κ and let b = bβ and C = Cβ. Then b : ω1 −→ 2, C is a club in ω1 and for all α ∈ C, we
assume b�α ∈ Sα in V1[Q]. Since 〈Sα | α < ω1〉 ∈ V1, we know that b ∈ V1 by 4.5 Lemma. Since Q has the
κ-c.c., we have κ = | {bβ | β < κ} | ≤ | (ω1 2)V1 | < κ in V1[Q]. This is a contradiction.

7.2 Theorem. Let κ be a strongly inaccessible cardinal. Then in V [Lv(κ, ω1)], we have (∗)-wKH but
for all stationary subsets F of ω1, we have the failure of club-wKH(F ).

Proof. We have seen in [M] that (∗)-wKH holds in V [Lv(κ, ω1)]. We show that club-wKH(F ) must fail
for all stationary F ⊆ ω1 in V [Lv(κ, ω1)]. Our proof is identical to that of 7.1 Theorem. However, we write
it down for the sake of clarity.

We proceed by contradiction. Suppose F , 〈Sα | α < ω1〉, 〈bβ | β < κ〉 and 〈Cβ | β < κ〉 are given so
that club-wKH(F ) holds in V [Lv(κ, ω1)]. Then by the κ-c.c. of Lv(κ, ω1), we have an ordinal ξ such that
ω1 ≤ ξ < κ and F, 〈Sα | α < ω1〉 are in V [Lv(ξ, ω1)].

In the intermediate stage V [Lv(ξ, ω1)], the tail Lv([ξ, κ), ω1) is σ-closed and has the κ-c.c. Let V1 =
V [Lv(ξ, ω1)] and Q = Lv([ξ, κ), ω1) for a simpler notation. Note that F is stationary, κ remains strongly
inaccessible and Q is forcing equivalent to the whole Lv(κ, ω1) in V1.

Fix any β < κ and let b = bβ and C = Cβ. Then b : ω1 −→ 2, C is a club in ω1 and for all α ∈ F ∩ C,
we assume b�α ∈ Sα in V1[Q]. Since F , 〈Sα | α < ω1〉 ∈ V1, we know that b ∈ V1 by 4.6 Lemma. Since Q
has the κ-c.c., we have κ = | {bβ | β < κ} | ≤ | (ω1 2)V1 | < κ in V1[Q]. This is a contradiction.

7.3 Corollary. The following theories are all equiconsistent.

(1) Con(ZFC + there exists a strongly inaccessible cardinal).
(2) Con(ZFC + ¬club-wKH + TH).
(3) Con

(
ZFC + for all stationary subsets F of ω1, ¬club-wKH(F ) + (∗)-wKH

)
.

(4) Con(ZFC + ¬wKH).
(5) Con(ZFC + ¬KH).

Proof. (1) implies (2), (3), (4) and (5). Conversely, (2) or (3) or (4) imply (5). It is known ([Ku]) that
(5) implies (1).

The following makes use of a measurable cardinal to separate the club-wKH(F ) and (∗)-wKH.

7.4 Theorem. Let κ be a measurable cardinal. Then we have (∗)-wKH and SCC in the generic
extensions V [Lv(κ, ω1)].

Proof. We know (∗)-wKH holds in V [Lv(κ, ω1)] by [M]. We also know that SCC holds in V [Lv(κ, ω1)]
by [S].

7.5 Corollary. Con(ZFC + there exists a measurable cardinal) implies Con
(

(∗)-wKH + for all sta-
tionary subsets F of ω1, ¬TH(F )

)
and so Con((∗)-wKH + ¬TH) holds.
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A summary of implications

KH → club-wKH
↓

TH
⇓

¬CC

⇒ club-wKH(F )
⇓

TH(F )
⇓

¬SCC

→ (∗)-wKH ⇒ ˜̃♦ ⇒ stat-wKH ⇒ wKH

The symbol ⇒ indicates a logical implication in ZFC.
The symbol → means ⇒ and the converse consistently fails.
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