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Abstract. Grzegorczyk logic, GRZ, is the normal modal logic obtained by adding Grzegorczyk
axiom �(�(p ⊃ �p) ⊃ p) ⊃ p to the smallest normal modal logic K. The quotient set of the set of
formulas modulo the provability of GRZ is Boolean with respect to the derivation of GRZ (cf. Chagrov
and Zakharyaschev [CZ97]). Here we give an inductive construction of the representatives of the quotient
set of the set of formulas with only one propositional variable p and with a finite number of occurrences
of �.

1 Preliminaries

We use lower case Latin letters p, q, r for propositional variables. Formulas are defined inductively, as
usual, from the propositional variables and ⊥ (contradiction) by using logical connectives ∧ (conjunction),
∨ (disjunction), ⊃ (implication) and � (necessitation). By S(p), we mean the set of formulas constructed
from p by using ∧, ∨ ⊃ and �. By GRZ, we mean the smallest set of formulas containing all the
tautologies and the axioms

K : �(p ⊃ q) ⊃ (�p ⊃ �q),
Grz : �(�(p ⊃ p) ⊃ p) ⊃ p (Grzegorczyk axiom),

and closed under modus ponens, substitution and necessitation.

We introduce a sequent system for GRZ given in Avron [Avr84]. We use Greek letters, Γ and ∆,
possibly with suffixes, for finite sets of formulas. The expression �Γ denotes the set {�A | A ∈ Γ}. By a
sequent, we mean the expression Γ → ∆. For brevity’s sake, we write

A1, · · · , Ak, Γ1, · · · , Γ� → ∆1, · · · , ∆m, B1, · · · , Bn

instead of
{A1, · · · , Ak} ∪ Γ1 ∪ · · · ∪ Γ� → ∆1 ∪ · · · ∪ ∆m ∪ {B1, · · · , Bn}.

By GGRZ, we mean the system defined by the following axioms and inference rules in the usual way.

Axioms of GGRZ:
A → A

⊥ →
Inference rules of GGRZ:

Γ → ∆
A,Γ → ∆

(w →)
Γ → ∆

Γ → ∆, A
(→ w)

Γ → ∆, A A,Π → Λ
Γ, Π → ∆,Λ

(cut)

Ai, Γ → ∆
A1 ∧ A2, Γ → ∆

(∧ →i)
Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧ B
(→ ∧)

A,Γ → ∆ B, Γ → ∆
A ∨ B, Γ → ∆

(∨ →)
Γ → ∆, Ai

Γ → ∆, A1 ∨ A2
(→ ∨i)

Γ → ∆, A B, Π → Λ
A ⊃ B, Γ, Π → ∆,Λ

(⊃→)
A,Γ → ∆, B

Γ → ∆, A ⊃ B
(→⊃)
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A,Γ → ∆
�A,Γ → ∆

(� →)
�(A ⊃ �A),�Γ → A

�Γ → �A
(→ �)

Definition 1.1. The set SubFig(P) of a proof figure in GGRZ is defined as follows:
(1) SubFig(P) = {P} if P consists of only one axiom,

(2) SubFig(
P1

S
) = SubFig(P1) ∪ {P} if P =

P1

S
,

(3) SubFig(
P1 P2

S
) = SubFig(P1) ∪ SubFig(P2) ∪ {P} if P =

P1 P2

S
.

Let P be a proof figure in GGRZ. We note that each element in SubFig(P) is a proof figure in
GGRZ. A proof figure in SubFig(P) is called a subfigure of P . A subfigure Q of P is called a proper
subfigure of P if P �= Q.

Lemma 1.2([Avr84]).
(1) Γ → ∆ ∈ GGRZ if and only if

∧

A∈Γ

A ⊃
∨

B∈∆

B ∈ GRZ.

(2) If Γ → ∆ ∈ GGRZ, then there exists a cut-free proof figure for Γ → ∆ in GGRZ .

By the lemma above, we can identify GGRZ with GRZ. So, if there is no confusion, we use the
sequent system GGRZ instead of GRZ.

Definition 1.3. The depth d(A) of a formula A ∈ S(p) is defined inductively as follows:
(1) d(p) = 0,
(2) d(B ∧ C) = d(B ∨ C) = d(B ⊃ C) = max{d(B), d(C)},
(3) d(�B) = d(B) + 1.

We put Sn(p) = {A ∈ S(p) | d(A) ≤ n}. Immediately, we note that S(p) =
∞⋃

n=0

Sn(p).

2 Main results

For formulas A and B, we use the expression A ≡ B instead of (A ⊃ B) ∧ (B ⊃ A) ∈ GRZ. We note
that ≡ is an equivalence relation on a set S of formulas. We write [A] ≤ [B] if there exist A′ ∈ [A] and
B′ ∈ [B] such that B′ ⊃ A′ ∈ GRZ. Our main purpose is to give a concrete representative of each
equivalence class of Sn(p) in an inductive way and elucidate the structure 〈Sn(p),≤〉.

Definition 2.1. Formulas Fn (n = 0, 1, 2, · · ·) are defined inductively as follows:
F0 = p,
F1 = p ⊃ �p,
Fk+2 = Fk ∨ �Fk+1.

We note that Fn ∈ Sn(p).

Definition 2.2. The sets Gn (n = 0, 1, 2, · · ·) of formulas are defined inductively as follows:
G0 = {F0},
G1 = {F0, F1},
Gk+2 = (Gk+1 − {Fk}) ∪ {Fk+2, Fk ∨ (�Fk+1 ⊃ �p)}.

We note that Gn has just n + 1 elements.

Theorem 2.3.
(1) Sn(p)/ ≡= {[

∧

A∈S

A] | S ⊆ Gn}.

(2) For subsets S1 and S2 of Gn,
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(2.1) S1 ⊆ S2 if and only if [
∧

A∈S1

A] ≤ [
∧

A∈S2

A],

(2.2) S1 = S2 if and only if [
∧

A∈S1

A] = [
∧

A∈S2

A].

(3) Sn(p)/ ≡ has just 2n+1 elements.

To prove the theorem above, we need some lemmas.

Lemma 2.4.
(1) �A ⊃ A ∈ GRZ,
(2) ��A ≡ �A,
(3) �(A ∧ B) ≡ (�A ∧ �B).

Proof. By GGRZ. �

Lemma 2.5. Let A and B be formulas in S(p). Then
(1) �p ⊃ A ∈ GRZ,
(2) (A ⊃ B) ≡ ((A ⊃ �p) ∨ B),
(3) A ≡ ((A ⊃ �p) ⊃ �p).

Proof. For (1). We use an induction on A. If A = p, then (1) is clear from Lemma 2.1(1). Also
by the following four figures, if �p ⊃ B and �p ⊃ C are provable in GRZ, then so are four formulas
�p ⊃ B ∧ C,�p ⊃ B ∨ C,�p ⊃ B ⊃ C and �p ⊃ �B.

�p → B �p → C

�p → B ∧ C
(→ ∧)

�p → C

�p → B ∨ C
(→ ∨2)

�p → C

B, �p → C
(w →)

�p → B ⊃ C
(→⊃)

�p → B

�(B → �B),�p → B
(w →)

�p → �B
(→ �)

For (2). By the following figures and (1), we obtain (2).

A → A B → B
A,A ⊃ B → B

(⊃→)

A ⊃ B → A ⊃ �p, B
(→⊃), (→ w)

A ⊃ B → (A ⊃ �p) ∨ B
(→ ∨2), (→ ∨1)

A → A �p → B

A,A ⊃ �p → B
(⊃→)

A ⊃ �p → A ⊃ B
(→⊃)

B → B

B → A ⊃ B
(→⊃), (w →)

(A ⊃ �p) ∨ B → A ⊃ B
(∨ →)

For (3). By the following figures and (1), we obtain (3).

A → A �p → �p

A,A ⊃ �p, �p
(⊃→)

A → (A ⊃ �p) ⊃ �p
(→⊃)

A → A

→ A ⊃ �p, A
(→⊃), (→ w)

�p → A

(A ⊃ �p) ⊃ �p → A
(⊃→)

�

Lemma 2.6. For n > 0,

Gn = {Fn, Fn−1} ∪ {Fk ∨ (�Fk+1 ⊃ �p) | 0 ≤ k ≤ n − 2}.

Proof. We use an induction on n. If n = 1, then the lemma is clear by the definition. Suppose that
n > 1 and

Gn−1 = {Fn−1, Fn−2} ∪ {Fk ∨ (�Fk+1 ⊃ �p) | 0 ≤ k ≤ n − 3}.
Then

Gn = (Gn−1 − {Fn−2}) ∪ {Fn, Fn−2 ∨ (�Fn−1 ⊃ �p)}
= {Fn−1} ∪ {Fk ∨ (�Fk+1 ⊃ �p) | 0 ≤ k ≤ n − 3} ∪ {Fn, Fn−2 ∨ (�Fn−1 ⊃ �p)}
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= {Fn−1, Fn} ∪ {Fk ∨ (�Fk+1 ⊃ �p) | 0 ≤ k ≤ n − 2}.
�

Lemma 2.7. �Fn ⊃ �Fn+1 ∈ GRZ.

Proof. The case n = 0 is shown by the following figure on the left-hand side, and other cases, by the
figure on the right-hand side (see also Figure 1):

�p → �p

�p → p ⊃ �p (⊃→), (w →)

�p → �(p ⊃ �p)
(→ �), (w →)

�Fn → �Fn

�Fn → Fn−1 ∨ �Fn
(→ ∨2)

�Fn → �(Fn−1 ∨ �Fn)
(→ �), (w →)

�

F0

F2F3

F4F5

F1

E3

E4E5

E6
E7

F6F7

[]F0

[]F2

[]F4

[]F3

[]F5

[]F6

E2

[]F1

Figure 1: Hasse diagram of 〈⋃n
k=1 Gk,≤〉, where Ek+2 = Fk ∨ (�Fk+1 ⊃ �p)

For m ≥ −1, we put
F2m = {F2i | 0 ≤ i ≤ m},

F2m+1 = {F2i+1 | 0 ≤ i ≤ m}.
For n ≥ 0, we put

Antn = {Fi | n < i} ∪ {�Fi | n < i} ∪ {Fi ⊃ �Fi | n ≤ i} ∪ {�(Fi ⊃ �Fi) | n ≤ i},

Seqn = {Γ → ∆ | Γ is a finite subset of Antn ∪Fn−1, ∆ is a finite subset of Fn ∪ �Fn−1 ∪ {�p}},

Seq =
∞⋃

n=0

Seqn.
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Lemma 2.8. Let P be a cut-free proof figure in GGRZ. Then none of the sequents in Seq is the
end sequent of P.

Proof. We use an induction on P .
If P consists of only one axiom, then the end sequent of P is an axiom. However, we note that

(Antn ∪Fn−1) ∩ (Fn ∪ �Fn−1 ∪ {�p}) = ∅ and ⊥ �∈ Antn ∪ Fn−1.

So, none of the sequents in Seq is an axiom, and hence the end sequent of P .
Suppose that P has proper subfigures P1, · · · ,Pk (k = 1, 2) such that

P =
P1 · · · Pk

S
,

where S is the end sequent of P and none of the sequents in Seq is the end sequents of any proper
subfigures of P . Let I be the inference rule introducing the end sequent of P . We also suppose that the
end sequent of P belongs to Seqn for some n ≥ 0. We divide the cases.

The case that I is either (w →) or (→ w). We note the upper sequent of I, the end sequent of P1,
also belongs to Seqn (⊆ Seq). This is in contradiction with the induction hypothesis.

The case that I is (� →). The principal formula of I is �Fi (n < i) or �(Fi ⊃ �Fi) (n ≤ i) in
Antn. We note that the auxiliary formula, which is either Fi (n < i) or Fi ⊃ �Fi (n ≤ i), belongs to
Antn. Hence the upper sequent of I, the end sequent of P1, also belongs to Seqn (⊆ Seq). This is in
contradiction with the induction hypothesis.

The case that I is (⊃→) and the principal formula of I is Fn ⊃ �Fn. Then the auxiliary formula Fn

occurring in the succeedent of the left upper sequent of I belongs to Fn. So, the left upper sequent of I,
the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction with the induction hypothesis.

The case that I is (⊃→) and the principal formula of I is Fi ⊃ �Fi (n < i). Then the auxiliary
formula �Fi occurring in the antecedent of the right upper sequent of I belongs to Antn. So, the right
upper sequent of I, the end sequent of P2, belongs to Seqn (⊆ Seq). This is in contradiction with the
induction hypothesis.

The case that I is (⊃→) and the principal formula of I is F1. We note that F1 ∈ Fn−1 ∪{Fi | n < i}.
If F1 ∈ Fn−1, then n = 2, 4, 6, · · ·. If F1 ∈ {Fi | n < i}, then n = 0. So, we have n = 0, 2, 4, · · ·. Hence
the auxiliary formula p (= F0) occurring in the succeedent of the left upper sequent of I belongs to Fn.
So, the left upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction
with the induction hypothesis.

The case that I is (∨ →) and the principal formula of I is Fi = Fi−2 ∨ �Fi−1 ∈ Fn−1. Then the
auxiliary formula Fi−2 occurring in the antecedent of the left upper sequent of I belongs to Fn−1. So,
the left upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction
with the induction hypothesis.

The case that I is (∨ →) and the principal formula of I is Fn+1 = Fn−1 ∨ �Fn ∈ {Fj | n < j}. Then
the auxiliary formula Fn−1 occurring in the antecedent of the left upper sequent of I belongs to Fn−1.
So, the left upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction
with the induction hypothesis.

The case that I is (∨ →) and the principal formula of I is Fi = Fi−2∨�Fi−1 ∈ {Fj | n+1 < j}. Since
n + 1 < i, we have n < i − 1. So the auxiliary formula �Fi−1 occurring in the antecedent of the right
upper sequent of I belongs to Antn. So, the right upper sequent of I, the end sequent of P2, belongs to
Seqn (⊆ Seq). This is in contradiction with the induction hypothesis.

The case that I is (→ ∨1) and the principal formula of I is Fi = Fi−2 ∨ �Fi−1 ∈ Fn. Then the
auxiliary formula Fi−2 occurring in the succeedent of the upper sequent of I belongs to Fn. So, the
upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction with the
induction hypothesis.

The case that I is (→ ∨2) and the principal formula of I is Fi = Fi−2 ∨ �Fi−1 ∈ Fn. Then the
auxiliary formula �Fi−1 occurring in the succeedent of the upper sequent of I belongs to �Fn−1. So, the
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upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq). This is in contradiction with the
induction hypothesis.

The case that I is (→⊃) and the principal formula of I is F1 = p ⊃ �p ∈ Fn. We note that n is an odd
number. So, the auxiliary formula p (= F0) occurring in the antecedent of the upper sequent of I belongs
to Fn−1. Also, the auxiliary formula �p (= �F0) occurring in the succeedent of the upper sequent of I
belongs to �Fn−1. So, the upper sequent of I, the end sequent of P1, belongs to Seqn (⊆ Seq).

The case that I is (→ �) and the principal formula of I is �Fi ∈ �Fn−1 ∪ {�p}. We note that
i ≤ n − 1 and I is of the form of the following figure:

�(Fi ⊃ �Fi),Γ, Π → Fi

Γ, Π → �Fi
I

where Γ and Π are finite subsets of {�Fj | n < j} and {�(Fj ⊃ �Fj) | n ≤ j}, respectively. The upper
sequent of I, the end sequent of P1, belongs to Seqi (⊆ Seq). This is in contradiction with the induction
hypothesis. �

Corollary 2.9. None of the formulas in Gn is provable in GRZ.

Proof. We note that
→ Fk ∈ Seq and �Fk+1 → Fk, �p ∈ Seq.

Using Lemma 2.8, none of the above sequents is provable in GGRZ. So, none of the formulas

Fk and Fk ∨ (�Fk+1 ⊃ �p)

is provable in GRZ. By Lemma 2.6, each member of Gn is of the form of the above two. So, we obtain
the corollary. �

Lemma 2.10. For any different formulas A,B ∈ Gn, A ∨ B ∈ GRZ.

Proof. We use an induction on n. There is no two different formulas in G0. Also F0∨F1 is a tautology.
So, the lemma holds if n = 0, 1. Suppose that n > 1 and the lemma holds for any k < n. Since

Gn = (Gn−1 − {Fn−2}) ∪ {Fn, Fn−2 ∨ (�Fn−1 ⊃ �p)},

either one of the following holds, for different formulas A and B,
(1) both belong to Gn−1,
(2) one belongs to Gn−1 − {Fn−2} and the other belongs to {Fn, Fn−2 ∨ (�Fn−1 ⊃ �p)},
(3) one is Fn and the other is Fn−2 ∨ (�Fn−1 ⊃ �p).

If (1) holds, then by the induction hypothesis, we obtain the lemma. If (3) holds, then we also obtain
the lemma since Fn ∨ (Fn−2 ∨ (�Fn−1 ⊃ �p)) is a tautology. Suppose that (2) holds. Without loss of the
generality, we assume that A ∈ Gn−1 − {Fn−2} and B ∈ {Fn, Fn−2 ∨ (�Fn−1 ⊃ �p)}. By Lemma 2.6,
we have Fn−2 ∈ Gn−1. Using the induction hypothesis, we have A ∨ Fn−2 ∈ GRZ. On the other hand,
we note that Fn−2 ⊃ B is a tautology. Hence we have A ∨ B ∈ GRZ. �

Lemma 2.11. For n > 0,
∧

C∈Gn

C ≡ �p.

Proof. We use an induction on n. We can easily see

(p ∧ (p ⊃ �p)) ≡ �p.

So, we have (F0 ∧ F1) ≡ �p.
Suppose that n > 1 and ∧

C∈Gn−1

C ≡ �p.
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Since Fn−2 ∈ Gn−1,
(

∧

C∈Gn−1−{Fn−2}
C) ∧ Fn−2 ≡ �p

On the other hand, by Lemma 2.5(1), we can see

Fn−2 ≡ ((Fn−2 ∨ �Fn−1) ∧ (Fn−2 ∨ (�Fn−1 ⊃ �p))),

and hence
Fn−2 ≡ (Fn ∧ (Fn−2 ∨ (�Fn−1 ⊃ �p))).

Hence we obtain the lemma. �

Lemma 2.12. For any subset S of Gn,

(
∧

C∈S

C) ⊃ �p ≡
∧

D∈Gn−S

D.

Proof. By Lemma 2.11, we have
∧

D∈Gn−S

D ⊃ ((
∧

C∈S

C) ⊃ �p) ∈ GRZ.

By Lemma 2.10, for different formulas A,B ∈ Gn,

A ∨ B ∈ GRZ.

Using Lemma 2.5(3),
((A ⊃ �p) ⊃ �p) ∨ B ∈ GRZ.

Using Lemma 2.5(2),
(A ⊃ �p) ⊃ B ∈ GRZ.

Hence for any D �∈ S, ∧

C∈S

((C ⊃ �p) ⊃ D) ∈ GRZ,

and so,
((

∧

C∈S

C) ⊃ �p) ⊃ D ∈ GRZ.

Hence
((

∧

C∈S

C) ⊃ �p) ⊃ (
∧

D∈Gn−S

D) ∈ GRZ.

�

Lemma 2.13. For 0 ≤ m ≤ n,

F2m ≡ (
n−1∧

k=m

(F2k ∨ (�F2k+1 ⊃ �p))) ∧ F2n,

F2m+1 ≡ (
n−1∧

k=m

(F2k+1 ∨ (�F2k+2 ⊃ �p))) ∧ F2n+1,

Proof. We use an induction on n. If n = m, then the lemma is clear. Suppose that n > m and

F2m ≡ (
n−2∧

k=m

(F2k ∨ (�F2k+1 ⊃ �p))) ∧ F2n−2,
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F2m+1 ≡ (
n−2∧

k=m

(F2k+1 ∨ (�F2k+2 ⊃ �p))) ∧ F2n−1.

By Lemma 2.5(1), we note the following two:

F2n−2 ≡ (F2n−2 ∨ �F2n−1) ∧ (F2n−2 ∨ (�F2n−1 ⊃ �p),

F2n−1 ≡ (F2n−1 ∨ �F2n) ∧ (F2n−1 ∨ (�F2n ⊃ �p),

and so,
F2n−2 ≡ F2n ∧ (F2n−2 ∨ (�F2n−1 ⊃ �p),

F2n−1 ≡ F2n+1 ∧ (F2n−1 ∨ (�F2n ⊃ �p).

Using the induction hypothesis, we obtain the lemma. �

Lemma 2.14.
(1) Fn ∧ Fn+1 ≡ �Fn,
(2) �(Fn ∨ (�Fn+1 ⊃ �p)) ≡ �Fn.

Proof.
For (1). By Lemma 2.4(1),

�Fn ⊃ Fn ∈ GRZ.

Also by Lemma 2.7 and Lemma 2.4(1), two formulas �Fn ⊃ �Fn+1 and �Fn+1 ⊃ Fn+1 are provable in
GRZ, and hence

�Fn ⊃ Fn+1 ∈ GRZ.

Hence
�Fn ⊃ Fn ∧ Fn+1 ∈ GRZ.

To prove Fn ∧ Fn+1 ⊃ �Fn ∈ GRZ, we show

Fn, Fn+1 → �Fn ∈ GGRZ,

by an induction on n. Clearly,

F0, F1 → �F1 ∈ GGRZ (p, p ⊃ �p → �p ∈ GGRZ).

Suppose that n > 0 and
Fn−1, Fn → �Fn−1 ∈ GGRZ.

Then by Lemma 2.7 and the following figure, we obtain (2).

Fn, Fn−1 → �Fn−1 �Fn−1 → �Fn

Fn, Fn−1 → �Fn
(cut)

�Fn → �Fn

Fn, �Fn → �Fn
(w →)

Fn, Fn+1 → �Fn
(∨ →)

For (2). By the figure
Fn → Fn

�Fn → Fn
(� →)

�Fn → Fn ∨ (�Fn+1 ⊃ �p)
(→ ∨1)

�Fn → �(Fn ∨ (�Fn+1 ⊃ �p))
(→ �), (w →)

,

we obtain
�Fn ⊃ �(Fn ∨ (�Fn+1 ⊃ �p)) ∈ GRZ.
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For the other direction, by Lemma 2.5(1) and the figure

Fn → Fn

Fn ⊃ �Fn → Fn+1

�(Fn ⊃ �Fn) → Fn+1
(� →)

�(Fn ⊃ �Fn) → �Fn+1
(→ �), (w →)

�p → Fn

�(Fn ⊃ �Fn),�Fn+1 ⊃ �p → Fn
(⊃→)

�(Fn ⊃ �Fn), Fn ∨ (�Fn+1 ⊃ �p) → Fn
(∨ →), (w →)

�(Fn ⊃ �Fn),�(Fn ∨ (�Fn+1 ⊃ �p)) → Fn
(� →)

�(Fn ∨ (�Fn+1 ⊃ �p)) → �Fn
(→ �)

,

it is sufficient to show
Fn ⊃ �Fn → Fn+1 ∈ GGRZ.

If n = 0, then it is an axiom. If n > 0, then we consider the following figure

→ Fn+1, Fn

�Fn → �Fn+1 �Fn+1 → Fn+1

�Fn → Fn+1
(cut)

Fn ⊃ �Fn → Fn+1
(⊃→)

.

By Lemma 2.6, Fn+1, Fn ∈ Gn+1, and using Lemma 2.10, → Fn+1, Fn ∈ GGRZ. Also by Lemma 2.4
and Lemma 2.7, every sequent at the leaves of the above figure is provable. Hence we obtain Fn ⊃ �Fn →
Fn+1 ∈ GGRZ. �

Lemma 2.15.
(1) If A ∈ �Gn, then A ≡ �Fi for some i ∈ {0, 1, · · · , n},
(2) If 0 ≤ m ≤ n, then there exists a subset S of Gn such that

Fm ≡
∧

B∈S

B.

(3) If A ∈ �Gn, then there exists a subset S of Gn+1 such that

A ≡
∧

B∈S

B.

Proof. For (1). By Lemma 2.6,

A ∈ {�Fn, �Fn−1} ∪ {�(Fk ∨ (�Fk+1 ⊃ �p)) | 0 ≤ k ≤ n − 2}.
If A ∈ {�Fn, �Fn−1}, then (1) is clear. So, we assume that A = �(Fk ∨ (�Fk+1 ⊃ �p)) for some
k ∈ {0, 1, · · · , n − 2}. Using Lemma 2.14(2), A ≡ �Fk, and hence we obtain (1).

For (2). If m = 2m′ n = 2n′ for some n′ and m′, then we have m′ ≤ n′, and by Lemma 2.13,

Fm (= F2m′) ≡ (
n′−1∧

k=m′
(F2k ∨ (�F2k+1 ⊃ �p))) ∧ F2n′ .

We note that every conjuncts of the formula on the right-hand side of the above equation belongs to
G2n′ (= Gn).

Also such conjuncts belong to G2n′+1. So, in a similar way we can show (2) if m = 2m′ n = 2n′ + 1
for some n′ and m′.

If m = 2m′ + 1 n = 2n′ for some n′ and m′, then we have m′ ≤ n′ − 1, and by Lemma 2.13,

Fm (= F2m′+1) ≡ (
n′−2∧

k=m′
(F2k+1 ∨ (�F2k+2 ⊃ �p))) ∧ F2n′−1.
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We note that every conjuncts of the formula on the right-hand side of the above equation belongs to
G2n′ (= Gn).

If m = 2m′ + 1 n = 2n′ + 1 for some n′ and m′, then we have m′ ≤ n′, and by Lemma 2.13,

Fm (= F2m′+1) ≡ (
n′−1∧

k=m′
(F2k+1 ∨ (�F2k+2 ⊃ �p))) ∧ F2n′+1.

We note that every conjuncts of the formula on the right-hand side of the above equation belongs to
G2n′+1 (= Gn).

For (3). By (1), A ≡ �Fi for some i ≤ n. Using Lemma 2.14(1),

A ≡ Fi ∧ Fi+1.

Using (2),
A ≡

∧

B∈S1

B ∧
∧

C∈S2

C,

for some subsets S1 and S2 of Gn+1. Hence

A ≡
∧

B∈S1∪S2

B.

�

Lemma 2.16. For any A ∈ Sn(p), there exists a subset S of Gn such that

A ≡
∧

A′∈S

A′.

Proof. We use an induction on A.
Basis(A = p). We note that there exists a number m (≥ 0) such that n ∈ {2m, 2m + 1}. We put

Pm = {F2k ∨ (�F2k+1 ⊃ �p) | 0 ≤ k ≤ m − 1} ∪ {F2m}.

Then by Lemma 2.13,
p ≡

∧

A′∈Pm

A′.

Also we can easily see
Pm ⊆ G2m and Pm ⊆ G2m+1,

and hence
Pm ⊆ Gn.

Induction step(A �= p). Suppose that the lemma holds for any proper subformula of A. We divide the
cases.

The case that A = B ∧ C. By the induction hypothesis, there exist subsets S1 and S2 of Gn such
that

B ≡
∧

B′∈S1

B′ and C ≡
∧

C′∈S2

C′.

Hence
A ≡ (

∧

B′∈S1

B′ ∧
∧

C′∈S2

C′),

and so,
A ≡

∧

A′∈S1∪S2

A′.
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We also note that
S1 ∪ S2 ⊆ Gn.

The case that A = B ∨ C. By the induction hypothesis, there exist subsets S1 and S2 of Gn such
that

B ≡
∧

B′∈S1

B′ and C ≡
∧

C′∈S2

C′.

Hence
A ≡ (

∧

B′∈S1

B′) ∨ (
∧

C′∈S2

C′),

and so,
A ≡

∧

B′∈S1,C′∈S2

(B′ ∨ C′),

A ≡ (
∧

B′∈S1,C′∈S2,B′=C′
(B′ ∨ C′) ∧

∧

B′∈S1,C′∈S2,B′ �=C′
(B′ ∨ C′)).

Using Lemma 2.10,
A ≡

∧

B′∈S1,C′∈S2,B′=C′
(B′ ∨ C′),

and so,
A ≡

∧

A′∈S1∩S2

A′.

We also note that
S1 ∩ S2 ⊆ Gn.

The case that A = B ⊃ C. By the induction hypothesis, there exist subsets S1 and S2 of Gn such
that

B ≡
∧

B′∈S1

B′ and C ≡
∧

C′∈S2

C′.

Hence
A ≡ (

∧

B′∈S1

B′) ⊃ (
∧

C′∈S2

C′).

Using Lemma 2.5(2),
A ≡ (

∧

B′∈S1

B′ ⊃ �p) ∨ (
∧

C′∈S2

C′).

Using Lemma 2.12,
A ≡ (

∧

B′∈Gn−S1

B′) ∨ (
∧

C′∈S2

C′),

and similarly to the above case,
A ≡ (

∧

A′∈(Gn−S1)∪S2

A′).

We also note that
(Gn − S1) ∩ S2 ⊆ Gn.

The case that A = �B. Since A ∈ Sn(p), we have B ∈ Sn−1(p). By the induction hypothesis, there
exists a subset S′ of Gn−1 such that

B ≡
∧

B′∈S′
B′.

Hence
A ≡ �

∧

B′∈S′
B′,
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and using Lemma 2.4(3),
A ≡

∧

B′∈S′
�B′.

On the other hand, by Lemma 2.15, for any C ∈ �Gn−1, there exists a subset T(C) of Gn such that

C ≡
∧

D∈T(C)

D.

Since �B′ ∈ �S′ for B′ ∈ S′,
A ≡

∧

B′∈S′

∧

D∈T(�B′)

D.

Hence
A ≡

∧

D∈�B′∈S′ T(�B′)

D.

We also note that ⋃

B′∈S′
T(�B′) ⊆ Gn.

�

Lemma 2.17. For subsets S1 and S2 of Gn,

S1 �⊆ S2 implies [
∧

A∈S1

A] �≤ [
∧

A∈S2

A].

Proof. Suppose that
S1 �⊆ S2 and [

∧

A∈S1

A] ≤ [
∧

A∈S2

A].

Then there exists a formula B ∈ S1 − S2 and
∧

A∈S2

A →
∧

A∈S1

A ∈ GGRZ.

Since B ∈ S1, we have
∧

A∈S1

A → B ∈ GGRZ, and so,

∧

A∈S2

A → B ∈ GGRZ.

Using Lemma 2.12,
(

∧

A∈Gn−S2

A) ⊃ �p → B ∈ GGRZ.

Since B ∈ Gn − S2, we have B ⊃ �p →
∧

A∈Gn−S2

A ⊃ �p ∈ GGRZ, and so,

B ⊃ �p → B ∈ GGRZ.

Considering the figure
B → B

B → B, �p
(→ w)

→ B, B ⊃ �p
(→⊃)

�B ⊃ �p → B

→ B
(cut)

,

we obtain B ∈ GRZ. This is in contradiction with Corollary 2.9. �

Proof of Theorem 2.3. By Lemma 2.16, we obtain (1), The “if” part of (2.1) is clear and the “only
of” part is from Lemma 2.17. From (2.1), we have (2.2). (3) is shown by (1) and (2). �

12



References

[Avr84] A. Avron, On modal systems having arithmetical interpretations, The Journal of Symbolic Logic,
49, 1984, pp. 935–942.

[CZ97] A. Chagrov and M. Zakharyaschev, Modal Logic, Oxford University Press, 1997.

13


