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Abstract

We show the consistency of the combinatorial principle ¢ac starting
from the ground model where there exists a regular cardinal below which
there are cofinally many measurable cardinals. It is known that these two
hypotheses are equiconsistent.

§1. Introduction

Two combinatorial principles ¢pac and @ac are introduced in [W] and a
similar enumeration principle f5¢ in [T]. We have formulated the principles
CODE(S) for stationary and costationary subsets S of w; and 03 as our
counterparts to pac and Oa¢ respectively. For precise definitions, see next
section. We know that ([M], [M1] and [M2])

(1) If there exists a stationary and costationary subset S of w; such that
CODE(S) holds, then 2 = 2“1 = ws holds.

(2) If CODE(S) hold for all stationary and costationary subsets S of wy,
then pac holds.

It is known that pac implies 2¥ = 2“1 = wy ([W]).

(3) If CODE(S) hold for all stationary and costationary subsets S of wy,
then it holds the so called complete bounding (CB) of functions from
wiq to ws.

However, it turns out that (3) gets interpolated by ¢ac.
(4) ([A], [A-W]) pac implies CB.

Concerning the consistency strengths of these principles, we have
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(5) ([D-D]) CB entails the existence of a regular cardinal below which there
are cofinally many measurable cardinals.

We simply denote this large cardinal assumption by LC.

(6) LC is sufficient to construct a model of set theory where CODE(S)
hold for all stationary and costationary subsets S of w;.

Turning to the remaining collection of principles, we have

(7) O%c implies both f5c and CB.
(8) LC is sufficient to construct a model of set theory where 6%~ holds.

Hence, most of these are equiconsistent. The only possible exception
would be 6 AC-

However, the following have been known to D. Aspero and told accord-
ingly to us during his visit to Nagoya and Kobe University late 2003.
(1) ((A], [A-W], [W]) Both ¢ac and ¢ac imply CB.

(2) ([A]) LC is sufficient to construct a model of set theory where a strong
form of ¢ac, denoted by ¢, holds.

Therefore, we have the following.

(1.1) Theorem. The following seven are all equiconsistent.

(1) ¢ac-
(2) pac-
(8) CODE(S) for all stationary and costationary subsets S of wy.
(4) CB.
() Oxrc-
(6) dac-
(7) LC.

We present a consistency proof of ¢} ~ starting from the large cardinal
assumption LC. This note is based on a short but essential conversation
with D. Aspero during the Symposium on Mathematical Logic 03 held at
Kobe University on 17th through 19th of December in 2003.
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Before closing this section, let me mention that the following appears
to be still open.

(1.2) Question. (1) ([W]) MM implies ¢pac. Does MM imply ¢} ?
(2) Does ¢ (or ¢pac) imply 2% = 2“1 = wy ?

§2. A Quick Review of Definitions

We prepare a list of relevant definitions for the sake of clarity. We
begin with remarks on notations used in this note.

(2.1) Definition. For a countable set X of ordinals, o.t.(X) denotes
the order type of X. Hence 0.t.(X) < w;. For v with w1 < 7 < wo, a
sequence (Xs5 | < wiy) /" v means the following;

e Fach X; is a countable subset of v,

e The X;’s are continuously increasing,
o HXs5|d<wi}=1.

We allow X5 = X511 to occur. But notice that there is some § with
w1 € X5 and that w; = [J{XsNw1 | 6 < wi} holds.

The following is from [W] where a weaker system of Set Theory is
intended. Here we work with an equivalent formulation in the usual system
of Set Theory, i.e, ZFC. We are simply concerned with the values of 2* and
2“1 in the N’s.

(2.2) Definition. ¢ac holds, if for any sequence (S, | n < w) of
stationary subsets of w; and any partition (7,, | n < w) of wq, there exist n
and a function F': w; — n such that w; <n < wy, F is strictly increasing
and continuous and cofinal below n and for all n < w, F"T,, C S, hold,
where 7 € S,,, if w1 < v < wy and there exists a sequence (X5 | 6 < wy) /7
such that for each § < wy, we have

O.t.(X5) €S,.
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We consider a somewhat stronger principle than ¢ac due to [A]. This
principle deals with stationary subsets of w; indexed by w;. I do not know
whether these two can be separated.

(2.3) Definition. ([A]) ¢i holds, if for any sequence (S; | ¢ < wy)
of stationary subsets of wy, there exist  and a function F' : w; — 7 such

that wy <1 < wy, F'is strictly increasing and continuous and cofinal below
n and for all i < wq, F(i) € S; hold.

Now we go back to [W] where a simpler principle pac than ¢ac is also
activated.

(2.4) Definition. ([W]) pac holds, if for any two stationary and
costationary subsets S and T of wy, there exist v with w; < v < ws and a
club C of w; such that

TNC={6eC|ot.(Xs) €S}

We formulate a somewhat stronger principle than pac. This new prin-
ciple exactly calculates every subset of w; with no appearances of club
subsets C' of wy. I do not know whether these two can be separated.

(2.5) Definition. ([M]) For any stationary and costationary subset S
of w1, CODE(S) holds, if for any B C w1, there exists v with w; < v < wy
and a sequence (X5 | § < wy) /7 such that

B={0 <w; |ot.(X5) €S}

The following also appears in [W] and considered by many including
this author. This principle has found its exact consistency strength ([D-D],
[M1]) and its relation to CH ([L-S]). We remark that this simple formulation
and its naming are one of the local dialects.

(2.6) Definition. ([A], [D-D], [L-S], [M1], [W]) The complete bounding
(CB) means that for any f : w; — wj, there exist v and a sequence
(X5 | 6§ <wy) /v such that for all § < wy, we have

f(0) < o.t.(Xs).
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We prepare for our last principle.

(2.7) Definition. A one-to-one list v = (r; | i < wp) in “2 means
that for all ¢ < wy, r; : w — 2 and for all 7,7 < wq, if ¢ # j, then
ri # r;. In this case, we denote A(r;,r;) = Min {n < w | r;(n) # r;(n)}.
For any ordinals a < 3, if 0.t. (X Na) < 0.t.(X N B) < wi, we denote
ArX(aaﬁ) - A(fro.t.(Xﬁoz)a700.‘5.(Xﬁﬁ))' We usually Slmply write AX(aaﬁ)
instead of A% (a, 3). For any ordinals a, 8 and 7, if 0.t.(X Na) < 0.t.(X N
B) < o0.t.(X N7) < wi, then we denote

Max Ax(a,0,7) = Max {Ax(a, 8), Ax (e, 7), Ax (B, 7)}-

An enumeration principle fa¢ along the same line as pac and ¢pac of
[W] has been considered by [T]. The Bounded Martin’s Maximum (BMM)
implies 05c. And Oa¢ in turn implies 2% = 2“! = w,. But no large cardinal
lower bound to this principle is known yet. The following 6%~ due to us
is somewhat stronger than 65c. The Bounded Semi-Proper Forcing Axiom
(BSPFA) with a measurable cardinal implies 07} .

(2.8) Definition. ([T], [M2]) 6% holds, if for any r one-to-one list
in “2 and any B C w1, there exist # and v with w; < 8 < v < wy and
(X; |1 <wi) /7 such that

B = {Z < w1 | Axi(wl,ﬁ) = Max AXi(wl,ﬁ,’}/)}.

We restate the large cardinal assumption LC which has found many but
similar equiconsistent principles. Under many of these principles, 2“1 = wy
holds and sometimes even 2% = 2“! = wy can be concluded via the Weak
Diamond. A known exception is CB. We may construct a model of Set
Theory where CB holds together with CH via a highly-semiproper revised
countable support iterated forcing ([L-S]).

(2.9) Definition. LC stands for the following large cardinal assump-
tion.

e There exists a regular cardinal p such that {x < p | k is a measurable
cardinal} is a cofinal subset of p.
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§3. Easy Implications

We begin to list easier relations among the principles introduced so far.
For those claims mentioned in the introduction but whose proofs are not
found in this section, we may consult [M], [M1] and [M2].

(3.1) Proposition. ¢} implies pac.

Proof. Let (S, | n < w) and (T}, | n < w) be as in ¢ac. Define a map
(i — m; | i <wnq) such that ¢ € T),, and apply ¢ic to (Sp, | ¢ <wi). Get v
with wy <7 < ws and a strictly increasing continuous function F' : w; — 7y
with a cofinal image in « such that for all i < wy, we have F(i) € S,,. Hence

F"T, C S, holds.

We have seen that ¢} implies ¢pac. It is known that ¢ac implies
21 = wy ([W]). Therefore the following is not new but we include it for the
sake of completeness.

(3.2) Proposition. ¢} implies 2“7 = ws.

Proof. We provide a one-to-one map g from P(w;) into ws. To this
end, we first partition wy into (S; | ¢ < wi) so that each S; is stationary in
wi. Hence wy = [J{S; | i < w1}, where |J denotes the disjoint union of the
S;’s. We also fix a stationary and costationary subset 7' of w; so that we
have

—_—

Tﬂ(wl\T):@.

Now given A C wy, we define S(A) = |J{S; | i € A}. Notice that for
any ¢ € wy, we have

S; € S(A) iff S(A)NS; # 0 iff i € A.

We next define a sequence (S | a < wy) of stationary subsets of w; so
that for any o < wq,



SA:{T, lfOéES(A),

w1 \ T, otherwise.

Apply ¢’ to this sequence of S4’s. Then we have n with w; < n? <
wy and a strictly increasing continuous function F4 : w; — 1 with the

cofinal range in n“ such that for all & < w;, we have F4(a) € S4. Hence

§ FA(a) eT, if « € S(A),
(¥) {FA(a) € (wlA\JT), otherwise.

We define g(A) = n. This completes the definition of g. Note that
we do not associate F4 to A. We just associate n for which there exists

such F4. To see this g works, let A, B C w; and suppose n* = nB. Take
any F4, FB and set

C={a<uw | Fa)=FB(a)}.

Since F4 and FB are continuous and strictly increasing cofinally in
n4 = nP, we know C is a club. To conculde A = B, we may observe, say,
A C B as follows;

Let i € A. Then S; C S(A) holds. Since S; is sationary, there exists
a€S,NC andso ac S(A)NC. By ()4, we have FB(a) = FA(a) € T
In turn by (*)5, we have a € S; N S(B) and so S; C S(B). Hence i € B.

|

(3.3) Proposition. ([A]) ¢ac implies CB.

Proof. Let f:w; — wy and C(f) = {i < wy | f’i Ci}. Then C(f)
is a club in wi. Apply éac to (C(f) | » < w) and (wy,0,---,0,------ ).
We have n with w1 <7 < ws and a strictly increasing continuous function
F : wy — n such that F"w; C C(f).

Pick (any) one v € F"w;. Then there exists a sequence (X5 | 0 <
w1) /v such that for all 6 < wq, we have 0.t.(Xs) € C(f). Let

D={6<w |w € X5, wv1NXs=0}.
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Then D is a club in w;. It suffices to show that for all 6 € D, f(J) < 0.t.(X5s)
hold. But § < 0.t.(Xs) € C(f), so this is immediate.

(3.4) Proposition. If CODE(S) hold for all stationary and costa-
tionary subsets S of wy, then pac holds.

Proof. Let S and T be two stationary and costationary subsets of w;.
Apply CODE(S). We have v with w; < v < wg and (X5 | 6 < wy) v
such that T'= {§ < w; | 0.t.(Xs) € S}. Hence pac holds.

(3.5) Proposition. ([A], [A-W]) pac implies CB.

Proof. Let f : wy — wy and C(f) = {i < wy | f”i C i}. Then
C(f) is a club in wy. Partition C(f) into two stationary sets S and T'. So
C(f)=SUT and SNT = 0. Apply pac to (S,T) and (S,w; \T). So there
exist 1, y2, C1, C2, (X} | 6 <wi) /71 and (X? | § < wi) /72 such that

TNCy = {(S e C | Ot(Xg) € S},
(w1 \T) NCy = {(5 € Cy ’ O.t.(Xg) € S}
Since Y1 ;é Y2, We may assume wi < v < y2 < wa. Let
D201ﬁ02m{5<w1 ]wl EX(%, Y1 EX52, X61 :Xgﬂ’)/l, X;ﬂwl :5}
Then D is a club in wq. It suffices to show that for all 6 € D, we have
f(6) < o.t.(X3).

Case 1. 6 € T: 6 < ot.(X}) € S C C(f). So we have f(§) <
0.t.(X}) < 0.t.(X3).

Case 2. § ¢ T: § < 0.t.(X}) < 0.t.(X2) € S C C(f). So we have
f(0) < o.t.(X3).



§4. Measurable Cardinals and Semiproperness

We review combinatorial arguments which involve measurable cardinals
and elementary substructures in this section.

(4.1) Lemma. (End-Extension) Let k be a measurable cardinal with
a normal measure U. Let 0 be a regular cardinal with 8 > (27)T so that
U € Hy. For any countable elementary substructure N of Hy withd € N
and any s € (\(U N N), we may define N(s) = {f(s) | f € N}. Then we
have
(1) sup(NNk) <s,
(2) {s} UN C N(s), N(s) is a countable elementary substructure of Hy,
(8) For alla € NN Hy, we haveaN N = aN N(s),
(4) s is the least ordinal in N(s) \ N.

Proof. For (1): (Set Theory Seminar at Nagoya University) Let & €
NNk. Then ({,k) ={z <k | &<z} €UNN and so £ < s holds. Hence

sup(N Nk) < s. Since {n < k | n is regular} € U N N, we know s is regular
and so sup(N N k) < s holds.

For (2): Let f = {(i,i) | « < k}. Then f € N and s = f(s) € N(s).
Let y € N and set g = {(4,y) | i < k}. Then g € N and y = g(s) € N(s).
Hence N C N(s) holds.

To show that N(s) is an elementary substructure of Hyp, we resort to
the Tarski’s criterion. Namely, suppose f1,---, f, € N and

Hy = “Fy oy, fi(s), - fals))”.
It suffices to find f € N with

Hy |= “p(f(s), f1(s), -, fu(s))"

Since ® Hy C Hy, we have f : Kk — Hy such that f € Hy and

Hg ): “Yr < K Vy (cp(y, fl(x)77fn($>) = gO(f(ﬂ?),fl(ﬂf),"',fn(l'))>”-
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Since k, f1, -, fn € N, we may assume f € N. Hence we have

H0 ): “90(][(5)7]01(5)7 T fn(s))”

For (3): We first mention the following preliminary
Claim. For all n € NNk, we have n N N =n N N(s).

We observe this claim suffices as follows; Let a € NNH, and e : |a| —
a be a bijection. We may assume e € N,|a| € NNk. Let x € anN N(s).
Then there exists ¢ € |a| N N(s) = |a| N N with e(i) = x. Hence x € N and
soaN N =an N(s) holds.

Proof of Claim. Let n € NNk and i € nN N(s). There is f € N with
i = f(s). Since i < n < s, we may assume that f € N is regressive. Hence
there exists v € N Nk such that f~1“{v} € U N N. Therefore s € f~1“{v}
and so i = f(s) = v € N. Hence n N N = n N N(s) holds.

For (4): A similar proof as above works. Let i € N(s) N's. We want
to show ¢ € N. There is f € N with f(s) = i. Since f(s) = i < s,
we may assume f € N is regressive. Hence there exists v € N Nk with
f~1{v} eUUN N. Since s € f~1“{v}, we have i = f(s) =v € N.

By applying Lemma (End-Extension) repeatedly, we may form a chain
of elementary substructures. Therefore we may shoot into a given stationary
set in the following sense.

(4.2) Lemma. (End-Extending into Stationary Sets) Let k be a mea-
surable cardinal with a normal measure U. Let 6 be a reqular cardinal with
0 > (2°)T so thatU € Hy. For any countable elementary substructure N of

Hy withUd € N, any stationary subset S of w1 and any t < w1, there exists
M such that

(1) M is a countable elementary substructure of Hy with N C M,
(2) For alla € NN Hy, we haveanNn M =aNN,
(3) t<ot.MNk)eS.
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Proof. Let t < w; and S be a stationary subset of w;. Let N be a
countable elementary substructure of Hy with &4 € N. We make use of
Lemma (End-Extension) repeatedly to construct (N; | i < wq) and (s; | i <
w1) such that

e No=N and sgp € () (UNN),

e N C N;, N; is a countable elementary substructure of Hy and s; €
M U N N;),

o sup(NV; Nk) < s; < K,

o {s;}UN; C N;y1 = N;(s;) ={f(s;) | f € N;} is a countable elementary
substructure of Hy,

e Forallae N;N H,, we have aN N; = a N N4,

e For limit 4, V; = [J{IV; | j < i}.

Then, it is easy to conclude

e (0.t.(N;NK)|i<wi)isaclubin wy,
e Forall? <wj; and alla € NN H,, we have aN N =anNN;.

Now take i < wy so that t < 0.t.(N; Nk) € S and set M = N;. This
M works.

Now we are ready for the main technical Lemma in this note. This
observation is due to [A].

(4.3) Lemma. Let (S; | i < wy) be a sequence of stationary subsets
of wi and (k; | i < wy) be a continuously strictly increasing sequence of
cardinals such that for all non-limit ¢, k; are measurable cardinals. Let us
define

ST =5"((Si | i <w1), (ki | i <wr))
={X €[k, ] | Vi< XNuw ot.(X Nk;) €5}
Then S* 1s semiproper. Namely, let 0 be any reqular cardinal with 0 >
(kw,)T so that (k;| i < wi) € Hy. Then for any countable elementary
substructure N of Hy with (k;| i < w1) € N, there exists a countable ele-

mentary substructure M of Hy such that N C M, M Nw; = N Nwy and
M Nk, €5
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Proof. We formulate a couple of intermediary technical Claims.
Claim 1. Let P(¢,«a, N, 3) denote the following;

o t <wiy,
a< f<wi,

N is a countable elementary substructure of Hy with (k; | 1 <wi) € N,

a,B € N and so Kkq, kg € N,
Let Q(t,a, N, 3, M) denote the following;

N C M, M is a countable elementary substructure of Hy,
NNH, =MnH,,_,

For all i with a < i < 3, we have o.t.(M N k;) € S;

t <ot.(MNkg).

Then for all 3 < wy, we have
YVt VavVN (P(t,a,N,B) —dM Q(t,a,N,B,M)).

Proof. By induction on § < w;.
Case 1. §+ 1: Suppose P(t,a, N,G+1).
Subcase 1.1. a < (:

Then P(t,a, N,(3) holds. By induction, there exists M’ such that
Q(t,a, N, 3, M") holds. By Lemma (End-Extending into Stationary Sets)
with (M', kgt1,58+1), we have M such that
(1) M is a countable elementary substructure of Hy with M’ C M,

(2) Forallae M'NHy,, , wehaveaN M’ =an M,
(

3) t < O.t.(M N /£5+1) € Sﬁ—l—l'

In particular, we have M’ N H,, = M N H,,. It is routine to check
Q(t,a, N, + 1, M). Namely,

e N C M, M is a countable elementary substructure of Hy,
e NNH, =MnH,_,
e For all i with a < i < 4 1, we have o.t.(M Nk;) € S;
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o t <ot.(MNKg1).
Subcase 1.2. a = (:

For (N, kg41,S5+1), we apply Lemma (End-Extending into Stationary
Sets) so that we have M as wished.

Case 2. (is a limit ordinal: Suppose P(t,a, N, (). Take a regular
cardinal x so that Hy € H, . Take a countable elementary substructure M*
of H, such that ¢, N, Hg € M™ and

M*ﬂw1 ESﬁ.

This is possible, since Sg is stationary. Let (8, | n < w) be a strictly
increasing sequence of ordinals such that Gy = a and sup{g3, | n < w} = 5.
Note that 5, € N Nw; holds. Let (¢, | n < w) be a strictly increasing
sequence of ordinals such that tg = ¢t and sup{t,, | n < w} = M*Nw;. Note
that ¢,, € M* Nw; holds.

Now construct (V,, | n < w) such that

L4 NO:N7

e N, € M* is a countable elementary substructure of Hy such that
NCN,, NNH,, = N,NH,_ and P(t,, [, Nn, Bns1) holds,

d Q(tnaﬂnaNnaﬂn—i—hNn—{—l) holds and Nn+1 € M*.
Let M = |J{N,, | n < w}. Notice that

0.t.(M Nkg) =sup{o.t.(N, NKg,) | n <w}

=sup{t, | n <w}=M"Nw; € 5.
Now it is routine to check that Q(t, o, N, 3, M) holds.

Claim 2. Let P(t, N, 3) denote the following;

o t <wiy,

e N is a countable elementary substructure of Hp such that (k; | i <
Cd1> € N7
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0 <wi NN.
Let R(t, N, 3, M) denote the following;

e M is a countable elementary substructure of Hy such that N C M and
NN w1 = M N w1,

For all i < 3, we have o.t.(M Nk;) € S;

t < O.t.(M N Hg).

Then for all 3 < wy, we have
V¢ VN (P(t,N,8) = 3 M R(t,N,(3,M)).

Proof. By induction on < w;.

Case 1. [ = 0: Suppose P(t,N,0). Apply Lemma (End-Extending
into Stationary Sets) so that there exists M such that R(¢, N,0, M) holds.

Case 2. (§+ 1: Suppose P(t,N,3 + 1). Then P(t, N, () holds. By
induction, there exists M’ such that R(t, N, 3, M") holds.

With (M’ kg+1,S58+1), apply Lemma (End-Extending into Stationary
Sets) so that there exists M such that R(¢t,N,3+ 1, M).

Case 3. [ is a limit ordinal: Suppose P(t,N,[3). Take a regular
cardinal x with Hyg € H,. Take a countable elementary substructure M*
of H, such that ¢t,N,Hy € M* and M* Nw; € Sg. This is possible,
since Sg is a stationary subset of w;. Fix a strictly increasing sequence
(Bn | n < w) of ordinals such that Gy = 0,0, € N and sup{8, | n <
w} = [. Fix also a strictly increasing sequence (¢, | n < w) of ordinals
such that ty = t,t, € M* and sup{t, | n < w} = M* Nw;. By induction
(or Lemma (End-Extending into Stationary Sets)) and Claim 1, we may
construct (IV,, | n < w) such that

o Rl(to, N, By, No) with Ny € M*,

o P(tn,Bp, Ny, Bpi1) with Ny, € M*,

o Qtn, Bns Nu, Bni1, Npa1) with Ny € M*.
Let M = |J{N,, | n <w}. Then we have

0.t.(M Nkg) =sup{o.t.(N, Nkg,) | n <w}
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=sup{t, | n <w}=M"Nw; € Ss.
It is routine to check R(t, N, 3, M).

Proof of Lemma. Let 6 be a regular cardinal with k., € Hyp. Let N be
any countable elementary substructure of Hy with (k; | i < wq) € N. We
want to find a countable elementary substructure M of Hy such that N C
M, NNwi =MNw; and M Nk, €S*=5*(S; | i <wi),(ki|i<w)).
To this end, let us take a regular cardinal x with Hg € H,. Let M™* be a
countable elementary substructure of H, such that Hy, N, (S; | i < wy) €
M* and M* Nw; € Synw,- This is possible, since Syn, is a stationary
subset of ws.

Fix a strictly increasing sequence (t,, | n < w) of ordinals such that
t, € M*Nwy and sup{t, | n < w} = M*Nw;. Fix also a strictly increasing
sequence (i, | n < w) of ordinals such that i,, € N Nw; and sup{i, | n <
w} = N Nuw;. By applying Claims 1 and 2, we may construct (IV,, | n < w)
such that

e N C Ny, Ng € M* is a countable elementary substructure of Hy and
N N w1 = No N w1,

e For all i with i <ip, we have o.t.(Ng N k;) € 5;

o i< O.t.(NO N Hio);

e NCN,, N, € M* is a countable elementary substructure of Hy and
N Nwy =N, Nwq,

e For all ¢ with i < i,, we have 0.t.(IV,, N k;) € S;

o i, <o.t.(NgNk;,),

e N, C Nyy1 € M*, N,NH,, =Npjy1NH,,

e For all i with i,, < i <i,11, we have 0.t.(N,411 NK;) € 5;
® tyy1 <Oot.(Npg1 NKG, ).

Let M = |J{N,, | n <w}. Then we have
0.t.(M NKENAw,) = sup{o.t.(N, Nk, ) | n < w}
=sup{t, | n<w}=M"Nwi € SNrw, -
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It is routine to check that this M works.

(4.4) Corollary. Let Q = Q((S; | i < w1), (ki |1 < w1)) be a partially
ordered set for shooting a club through S* = S*((S; | i <w1), (ki | i <wyq)),
then Q is semiproper and in V@, there ezists <X5 | 6 < w1) /' Kuw, such
that for each § < wy, we have X5 € S*.

Proof. We describe our relevant partially ordered set. p = (X7 | i <
aP) € @Q, if the X7 € S* are continuously increasing with a? < wy. For
p,q € Q, we set ¢ < p, if ¢ DO p. Since S* is semiproper iff ) is semiproper
as a partially ordered set, we conclude () is semiproper.

(4.5) Theorem. ([A]) Let p be a regular cardinal such that {x <
p | Kk is a measurable cardinal } is cofinal in p. Then there is a semiproper
preorder P, such that P, has the p-c.c. and in Ve we have

e For any sequence (S; | i < w1) of stationary subsets of wy, there exist
a strictly increasing continuous sequence (k; | i < wy) of ordinals and a
sequence (X5 | d <w1) /" Ky, such that for all 6 < wy and all i < XsNwy,

we have 0.t.(Xs N k) € S;. In particular, k; € S; and so ¢ holds.

Proof. We simply iterate relevant semiproper partially ordered set
Q = QSi | i < wy),(ki | © < wy)). This is possible, since plenty of
measurable cardinals remain in any intermediate stage. We accomplish the

whole construction by book-keeping relevant names by the chain condition.
The resulted semiproper simple ([M3]) iteration P, is what we claimed.

O

(4.6) Corollary. ([A], [D-D]) The following are equiconsistent.

(1) ¢AC hOZdS;

(2) The large cardinal assumption LC holds. Namely, there exists a reqular
cardinal p such that {k < p | Kk is a measurable cardinal } is cofinal below

p.
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