
A note on the consistency of φAC

MIYAMOTO Tadatoshi

24th January 2003

Abstract

We show the consistency of the combinatorial principle φAC starting
from the ground model where there exists a regular cardinal below which
there are cofinally many measurable cardinals. It is known that these two
hypotheses are equiconsistent.

§1. Introduction

Two combinatorial principles φAC and ϕAC are introduced in [W] and a
similar enumeration principle θAC in [T]. We have formulated the principles
CODE(S) for stationary and costationary subsets S of ω1 and θ∗AC as our
counterparts to ϕAC and θAC respectively. For precise definitions, see next
section. We know that ([M], [M1] and [M2])

(1) If there exists a stationary and costationary subset S of ω1 such that
CODE(S) holds, then 2ω = 2ω1 = ω2 holds.

(2) If CODE(S) hold for all stationary and costationary subsets S of ω1,
then ϕAC holds.

It is known that ϕAC implies 2ω = 2ω1 = ω2 ([W]).

(3) If CODE(S) hold for all stationary and costationary subsets S of ω1,
then it holds the so called complete bounding (CB) of functions from
ω1 to ω1.

However, it turns out that (3) gets interpolated by ϕAC.

(4) ([A], [A-W]) ϕAC implies CB.

Concerning the consistency strengths of these principles, we have

1



(5) ([D-D]) CB entails the existence of a regular cardinal below which there
are cofinally many measurable cardinals.

We simply denote this large cardinal assumption by LC.

(6) LC is sufficient to construct a model of set theory where CODE(S)
hold for all stationary and costationary subsets S of ω1.

Turning to the remaining collection of principles, we have

(7) θ∗AC implies both θAC and CB.
(8) LC is sufficient to construct a model of set theory where θ∗AC holds.

Hence, most of these are equiconsistent. The only possible exception
would be θAC.

However, the following have been known to D. Aspero and told accord-
ingly to us during his visit to Nagoya and Kobe University late 2003.

(1) ([A], [A-W], [W]) Both φAC and ϕAC imply CB.
(2) ([A]) LC is sufficient to construct a model of set theory where a strong

form of φAC, denoted by φ∗
AC, holds.

Therefore, we have the following.

(1.1) Theorem. The following seven are all equiconsistent.

(1) φAC.
(2) ϕAC.
(3) CODE(S) for all stationary and costationary subsets S of ω1.
(4) CB.
(5) θ∗AC.
(6) φ∗

AC.
(7) LC.

We present a consistency proof of φ∗
AC starting from the large cardinal

assumption LC. This note is based on a short but essential conversation
with D. Aspero during the Symposium on Mathematical Logic 03 held at
Kobe University on 17th through 19th of December in 2003.
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Before closing this section, let me mention that the following appears
to be still open.

(1.2) Question. (1) ([W]) MM implies φAC. Does MM imply φ∗
AC ?

(2) Does φ∗
AC (or φAC) imply 2ω = 2ω1 = ω2 ?

§2. A Quick Review of Definitions

We prepare a list of relevant definitions for the sake of clarity. We
begin with remarks on notations used in this note.

(2.1) Definition. For a countable set X of ordinals, o.t.(X) denotes
the order type of X. Hence o.t.(X) < ω1. For γ with ω1 < γ < ω2, a
sequence 〈Xδ | δ < ω1〉 ↗ γ means the following;

• Each Xδ is a countable subset of γ,

• The Xδ’s are continuously increasing,

• ⋃{Xδ | δ < ω1} = γ.

We allow Xδ = Xδ+1 to occur. But notice that there is some δ with
ω1 ∈ Xδ and that ω1 =

⋃{Xδ ∩ ω1 | δ < ω1} holds.

The following is from [W] where a weaker system of Set Theory is
intended. Here we work with an equivalent formulation in the usual system
of Set Theory, i.e, ZFC. We are simply concerned with the values of 2ω and
2ω1 in the ℵ’s.

(2.2) Definition. φAC holds, if for any sequence 〈Sn | n < ω〉 of
stationary subsets of ω1 and any partition 〈Tn | n < ω〉 of ω1, there exist η
and a function F : ω1 −→ η such that ω1 < η < ω2, F is strictly increasing
and continuous and cofinal below η and for all n < ω, F ′′Tn ⊆ S̃n hold,
where γ ∈ S̃n, if ω1 < γ < ω2 and there exists a sequence 〈Xδ | δ < ω1〉 ↗ γ
such that for each δ < ω1, we have

o.t.(Xδ) ∈ Sn.
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We consider a somewhat stronger principle than φAC due to [A]. This
principle deals with stationary subsets of ω1 indexed by ω1. I do not know
whether these two can be separated.

(2.3) Definition. ([A]) φ∗
AC holds, if for any sequence 〈Si | i < ω1〉

of stationary subsets of ω1, there exist η and a function F : ω1 −→ η such
that ω1 < η < ω2, F is strictly increasing and continuous and cofinal below
η and for all i < ω1, F (i) ∈ S̃i hold.

Now we go back to [W] where a simpler principle ϕAC than φAC is also
activated.

(2.4) Definition. ([W]) ϕAC holds, if for any two stationary and
costationary subsets S and T of ω1, there exist γ with ω1 < γ < ω2 and a
club C of ω1 such that

T ∩ C = {δ ∈ C | o.t.(Xδ) ∈ S}.

We formulate a somewhat stronger principle than ϕAC. This new prin-
ciple exactly calculates every subset of ω1 with no appearances of club
subsets C of ω1. I do not know whether these two can be separated.

(2.5) Definition. ([M]) For any stationary and costationary subset S
of ω1, CODE(S) holds, if for any B ⊆ ω1, there exists γ with ω1 < γ < ω2

and a sequence 〈Xδ | δ < ω1〉 ↗ γ such that

B = {δ < ω1 | o.t.(Xδ) ∈ S}.

The following also appears in [W] and considered by many including
this author. This principle has found its exact consistency strength ([D-D],
[M1]) and its relation to CH ([L-S]). We remark that this simple formulation
and its naming are one of the local dialects.

(2.6) Definition. ([A], [D-D], [L-S], [M1], [W]) The complete bounding
(CB) means that for any f : ω1 −→ ω1, there exist γ and a sequence
〈Xδ | δ < ω1〉 ↗ γ such that for all δ < ω1, we have

f(δ) < o.t.(Xδ).
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We prepare for our last principle.

(2.7) Definition. A one-to-one list r = 〈ri | i < ω1〉 in ω2 means
that for all i < ω1, ri : ω −→ 2 and for all i, j < ω1, if i 	= j, then
ri 	= rj . In this case, we denote ∆(ri, rj) = Min {n < ω | ri(n) 	= rj(n)}.
For any ordinals α < β, if o.t.(X ∩ α) < o.t.(X ∩ β) < ω1, we denote
∆r

X(α, β) = ∆(ro.t.(X∩α), ro.t.(X∩β)). We usually simply write ∆X(α, β)
instead of ∆r

X(α, β). For any ordinals α, β and γ, if o.t.(X ∩ α) < o.t.(X ∩
β) < o.t.(X ∩ γ) < ω1, then we denote

Max ∆X(α, β, γ) = Max {∆X(α, β),∆X (α, γ),∆X(β, γ)}.

An enumeration principle θAC along the same line as ϕAC and φAC of
[W] has been considered by [T]. The Bounded Martin’s Maximum (BMM)
implies θAC. And θAC in turn implies 2ω = 2ω1 = ω2. But no large cardinal
lower bound to this principle is known yet. The following θ∗AC due to us
is somewhat stronger than θAC. The Bounded Semi-Proper Forcing Axiom
(BSPFA) with a measurable cardinal implies θ∗AC.

(2.8) Definition. ([T], [M2]) θ∗AC holds, if for any r one-to-one list
in ω2 and any B ⊆ ω1, there exist β and γ with ω1 < β < γ < ω2 and
〈Xi | i < ω1〉 ↗ γ such that

B = {i < ω1 | ∆Xi(ω1, β) = Max ∆Xi(ω1, β, γ)}.

We restate the large cardinal assumption LC which has found many but
similar equiconsistent principles. Under many of these principles, 2ω1 = ω2

holds and sometimes even 2ω = 2ω1 = ω2 can be concluded via the Weak
Diamond. A known exception is CB. We may construct a model of Set
Theory where CB holds together with CH via a highly-semiproper revised
countable support iterated forcing ([L-S]).

(2.9) Definition. LC stands for the following large cardinal assump-
tion.

• There exists a regular cardinal ρ such that {κ < ρ | κ is a measurable
cardinal} is a cofinal subset of ρ.
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§3. Easy Implications

We begin to list easier relations among the principles introduced so far.
For those claims mentioned in the introduction but whose proofs are not
found in this section, we may consult [M], [M1] and [M2].

(3.1) Proposition. φ∗
AC implies φAC.

Proof. Let 〈Sn | n < ω〉 and 〈Tn | n < ω〉 be as in φAC. Define a map
〈i 
→ ni | i < ω1〉 such that i ∈ Tni

and apply φ∗
AC to 〈Sni

| i < ω1〉. Get γ
with ω1 < γ < ω2 and a strictly increasing continuous function F : ω1 −→ γ
with a cofinal image in γ such that for all i < ω1, we have F (i) ∈ S̃ni

. Hence
F ′′Tn ⊆ S̃n holds.

We have seen that φ∗
AC implies φAC. It is known that φAC implies

2ω1 = ω2 ([W]). Therefore the following is not new but we include it for the
sake of completeness.

(3.2) Proposition. φ∗
AC implies 2ω1 = ω2.

Proof. We provide a one-to-one map g from P(ω1) into ω2. To this
end, we first partition ω1 into 〈Si | i < ω1〉 so that each Si is stationary in
ω1. Hence ω1 =

⋃̇{Si | i < ω1}, where
⋃̇

denotes the disjoint union of the
Si’s. We also fix a stationary and costationary subset T of ω1 so that we
have

T̃ ∩ ˜(ω1 \ T ) = ∅.
Now given A ⊆ ω1, we define S(A) =

⋃̇{Si | i ∈ A}. Notice that for
any i ∈ ω1, we have

Si ⊆ S(A) iff S(A) ∩ Si 	= ∅ iff i ∈ A.

We next define a sequence 〈SA
α | α < ω1〉 of stationary subsets of ω1 so

that for any α < ω1,
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SA
α =

{
T, if α ∈ S(A),
ω1 \ T, otherwise.

Apply φ∗
AC to this sequence of SA

α ’s. Then we have ηA with ω1 < ηA <
ω2 and a strictly increasing continuous function F A : ω1 −→ ηA with the
cofinal range in ηA such that for all α < ω1, we have F A(α) ∈ S̃A

α . Hence

(∗)A

{
F A(α) ∈ T̃ , if α ∈ S(A),
F A(α) ∈ ˜(ω1 \ T ), otherwise.

We define g(A) = ηA. This completes the definition of g. Note that
we do not associate F A to A. We just associate ηA for which there exists
such F A. To see this g works, let A, B ⊆ ω1 and suppose ηA = ηB . Take
any F A, F B and set

C = {α < ω1 | F A(α) = F B(α)}.

Since F A and F B are continuous and strictly increasing cofinally in
ηA = ηB , we know C is a club. To conculde A = B, we may observe, say,
A ⊆ B as follows;

Let i ∈ A. Then Si ⊆ S(A) holds. Since Si is sationary, there exists
α ∈ Si ∩ C and so α ∈ S(A) ∩ C. By (∗)A, we have F B(α) = F A(α) ∈ T̃ .
In turn by (∗)B , we have α ∈ Si ∩ S(B) and so Si ⊆ S(B). Hence i ∈ B.

(3.3) Proposition. ([A]) φAC implies CB.

Proof. Let f : ω1 −→ ω1 and C(f) = {i < ω1 | f ′′i ⊆ i}. Then C(f)
is a club in ω1. Apply φAC to 〈C(f) | n < ω〉 and 〈ω1, ∅, · · · , ∅, · · · · · ·〉.
We have η with ω1 < η < ω2 and a strictly increasing continuous function
F : ω1 −→ η such that F ′′ω1 ⊂ C̃(f).

Pick (any) one γ ∈ F ′′ω1. Then there exists a sequence 〈Xδ | δ <
ω1〉 ↗ γ such that for all δ < ω1, we have o.t.(Xδ) ∈ C(f). Let

D = {δ < ω1 | ω1 ∈ Xδ, ω1 ∩ Xδ = δ}.
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Then D is a club in ω1. It suffices to show that for all δ ∈ D, f(δ) < o.t.(Xδ)
hold. But δ < o.t.(Xδ) ∈ C(f), so this is immediate.

(3.4) Proposition. If CODE(S) hold for all stationary and costa-
tionary subsets S of ω1, then ϕAC holds.

Proof. Let S and T be two stationary and costationary subsets of ω1.
Apply CODE(S). We have γ with ω1 < γ < ω2 and 〈Xδ | δ < ω1〉 ↗ γ
such that T = {δ < ω1 | o.t.(Xδ) ∈ S}. Hence ϕAC holds.

(3.5) Proposition. ([A], [A-W]) ϕAC implies CB.

Proof. Let f : ω1 −→ ω1 and C(f) = {i < ω1 | f ′′i ⊆ i}. Then
C(f) is a club in ω1. Partition C(f) into two stationary sets S and T . So
C(f) = S∪T and S∩T = ∅. Apply ϕAC to (S, T ) and (S,ω1 \T ). So there
exist γ1, γ2, C1, C2, 〈X1

δ | δ < ω1〉 ↗ γ1 and 〈X2
δ | δ < ω1〉 ↗ γ2 such that

T ∩ C1 = {δ ∈ C1 | o.t.(X1
δ ) ∈ S},

(ω1 \ T ) ∩ C2 = {δ ∈ C2 | o.t.(X2
δ ) ∈ S}.

Since γ1 	= γ2, we may assume ω1 < γ1 < γ2 < ω2. Let

D = C1 ∩C2 ∩ {δ < ω1 | ω1 ∈ X1
δ , γ1 ∈ X2

δ , X1
δ = X2

δ ∩ γ1, X1
δ ∩ ω1 = δ}.

Then D is a club in ω1. It suffices to show that for all δ ∈ D, we have

f(δ) < o.t.(X2
δ ).

Case 1. δ ∈ T : δ < o.t.(X1
δ ) ∈ S ⊂ C(f). So we have f(δ) <

o.t.(X1
δ ) < o.t.(X2

δ ).

Case 2. δ 	∈ T : δ < o.t.(X1
δ ) < o.t.(X2

δ ) ∈ S ⊂ C(f). So we have
f(δ) < o.t.(X2

δ ).
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§4. Measurable Cardinals and Semiproperness

We review combinatorial arguments which involve measurable cardinals
and elementary substructures in this section.

(4.1) Lemma. (End-Extension) Let κ be a measurable cardinal with
a normal measure U . Let θ be a regular cardinal with θ ≥ (2κ)+ so that
U ∈ Hθ. For any countable elementary substructure N of Hθ with U ∈ N
and any s ∈ ⋂

(U ∩ N), we may define N(s) = {f(s) | f ∈ N}. Then we
have

(1) sup(N ∩ κ) < s,

(2) {s} ∪ N ⊂ N(s), N(s) is a countable elementary substructure of Hθ,

(3) For all a ∈ N ∩ Hκ, we have a ∩ N = a ∩ N(s),

(4) s is the least ordinal in N(s) \ N .

Proof. For (1): (Set Theory Seminar at Nagoya University) Let ξ ∈
N ∩ κ. Then (ξ, κ) = {x < κ | ξ < x} ∈ U ∩ N and so ξ < s holds. Hence
sup(N ∩ κ) ≤ s. Since {η < κ | η is regular} ∈ U ∩N , we know s is regular
and so sup(N ∩ κ) < s holds.

For (2): Let f = {(i, i) | i < κ}. Then f ∈ N and s = f(s) ∈ N(s).
Let y ∈ N and set g = {(i, y) | i < κ}. Then g ∈ N and y = g(s) ∈ N(s).
Hence N ⊂ N(s) holds.

To show that N(s) is an elementary substructure of Hθ, we resort to
the Tarski’s criterion. Namely, suppose f1, · · · , fn ∈ N and

Hθ |= “∃ y ϕ
(
y, f1(s), · · · , fn(s)

)
”.

It suffices to find f ∈ N with

Hθ |= “ϕ
(
f(s), f1(s), · · · , fn(s)

)
”.

Since κ Hθ ⊂ Hθ, we have f : κ −→ Hθ such that f ∈ Hθ and

Hθ |= “∀x < κ ∀y
(
ϕ
(
y, f1(x), · · · , fn(x)

)
=⇒ ϕ

(
f(x), f1(x), · · · , fn(x)

))
”.

9



Since κ, f1, · · · , fn ∈ N , we may assume f ∈ N . Hence we have

Hθ |= “ϕ
(
f(s), f1(s), · · · , fn(s)

)
”.

For (3): We first mention the following preliminary

Claim. For all η ∈ N ∩ κ, we have η ∩ N = η ∩ N(s).

We observe this claim suffices as follows; Let a ∈ N∩Hκ and e : |a| −→
a be a bijection. We may assume e ∈ N, |a| ∈ N ∩ κ. Let x ∈ a ∩ N(s).
Then there exists i ∈ |a| ∩N(s) = |a| ∩ N with e(i) = x. Hence x ∈ N and
so a ∩ N = a ∩ N(s) holds.

Proof of Claim. Let η ∈ N ∩ κ and i ∈ η ∩ N(s). There is f ∈ N with
i = f(s). Since i < η < s, we may assume that f ∈ N is regressive. Hence
there exists v ∈ N ∩ κ such that f−1“{v} ∈ U ∩N . Therefore s ∈ f−1“{v}
and so i = f(s) = v ∈ N . Hence η ∩ N = η ∩ N(s) holds.

For (4): A similar proof as above works. Let i ∈ N(s) ∩ s. We want
to show i ∈ N . There is f ∈ N with f(s) = i. Since f(s) = i < s,
we may assume f ∈ N is regressive. Hence there exists v ∈ N ∩ κ with
f−1“{v} ∈ U ∩ N . Since s ∈ f−1“{v}, we have i = f(s) = v ∈ N .

By applying Lemma (End-Extension) repeatedly, we may form a chain
of elementary substructures. Therefore we may shoot into a given stationary
set in the following sense.

(4.2) Lemma. (End-Extending into Stationary Sets) Let κ be a mea-
surable cardinal with a normal measure U . Let θ be a regular cardinal with
θ ≥ (2κ)+ so that U ∈ Hθ. For any countable elementary substructure N of
Hθ with U ∈ N , any stationary subset S of ω1 and any t < ω1, there exists
M such that

(1) M is a countable elementary substructure of Hθ with N ⊂ M ,

(2) For all a ∈ N ∩ Hκ, we have a ∩ M = a ∩ N ,

(3) t < o.t.(M ∩ κ) ∈ S.

10



Proof. Let t < ω1 and S be a stationary subset of ω1. Let N be a
countable elementary substructure of Hθ with U ∈ N . We make use of
Lemma (End-Extension) repeatedly to construct 〈Ni | i < ω1〉 and 〈si | i <
ω1〉 such that

• N0 = N and s0 ∈ ⋂
(U ∩ N),

• N ⊂ Ni, Ni is a countable elementary substructure of Hθ and si ∈⋂
(U ∩ Ni),

• sup(Ni ∩ κ) < si < κ,
• {si}∪Ni ⊂ Ni+1 = Ni(si) = {f(si) | f ∈ Ni} is a countable elementary

substructure of Hθ,
• For all a ∈ Ni ∩ Hκ, we have a ∩ Ni = a ∩ Ni+1,
• For limit i, Ni =

⋃{Nj | j < i}.
Then, it is easy to conclude

• 〈o.t.(Ni ∩ κ) | i < ω1〉 is a club in ω1,
• For all i < ω1 and all a ∈ N ∩ Hκ, we have a ∩ N = a ∩ Ni.

Now take i < ω1 so that t < o.t.(Ni ∩ κ) ∈ S and set M = Ni. This
M works.

Now we are ready for the main technical Lemma in this note. This
observation is due to [A].

(4.3) Lemma. Let 〈Si | i < ω1〉 be a sequence of stationary subsets
of ω1 and 〈κi | i ≤ ω1〉 be a continuously strictly increasing sequence of
cardinals such that for all non-limit i, κi are measurable cardinals. Let us
define

S∗ = S∗(〈Si | i < ω1〉, 〈κi | i ≤ ω1〉)
= {X ∈ [κω1 ]

ω | ∀ i ≤ X ∩ ω1 o.t.(X ∩ κi) ∈ Si}.
Then S∗ is semiproper. Namely, let θ be any regular cardinal with θ ≥
(κω1)

+ so that 〈κi| i ≤ ω1〉 ∈ Hθ. Then for any countable elementary
substructure N of Hθ with 〈κi| i ≤ ω1〉 ∈ N , there exists a countable ele-
mentary substructure M of Hθ such that N ⊂ M , M ∩ ω1 = N ∩ ω1 and
M ∩ κω1 ∈ S∗.
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Proof. We formulate a couple of intermediary technical Claims.

Claim 1. Let P (t, α,N, β) denote the following;

• t < ω1,
• α < β < ω1,
• N is a countable elementary substructure of Hθ with 〈κi | i ≤ ω1〉 ∈ N ,
• α, β ∈ N and so κα, κβ ∈ N ,

Let Q(t, α,N, β,M) denote the following;

• N ⊆ M , M is a countable elementary substructure of Hθ,
• N ∩ Hκα = M ∩ Hκα ,
• For all i with α < i ≤ β, we have o.t.(M ∩ κi) ∈ Si,
• t < o.t.(M ∩ κβ).

Then for all β < ω1, we have

∀ t ∀α∀N
(
P (t, α,N, β) =⇒ ∃ M Q(t, α,N, β,M)

)
.

Proof. By induction on β < ω1.

Case 1. β + 1: Suppose P (t, α,N, β + 1).

Subcase 1.1. α < β:

Then P (t, α,N, β) holds. By induction, there exists M ′ such that
Q(t, α,N, β,M ′) holds. By Lemma (End-Extending into Stationary Sets)
with (M ′, κβ+1, Sβ+1), we have M such that

(1) M is a countable elementary substructure of Hθ with M ′ ⊂ M ,
(2) For all a ∈ M ′ ∩ Hκβ+1 , we have a ∩ M ′ = a ∩ M ,
(3) t < o.t.(M ∩ κβ+1) ∈ Sβ+1.

In particular, we have M ′ ∩ Hκβ
= M ∩ Hκβ

. It is routine to check
Q(t, α,N, β + 1, M). Namely,

• N ⊆ M , M is a countable elementary substructure of Hθ,
• N ∩ Hκα

= M ∩ Hκα
,

• For all i with α < i ≤ β + 1, we have o.t.(M ∩ κi) ∈ Si,
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• t < o.t.(M ∩ κβ+1).

Subcase 1.2. α = β:

For (N,κβ+1, Sβ+1), we apply Lemma (End-Extending into Stationary
Sets) so that we have M as wished.

Case 2. β is a limit ordinal: Suppose P (t, α,N, β). Take a regular
cardinal χ so that Hθ ∈ Hχ. Take a countable elementary substructure M∗

of Hχ such that t,N,Hθ ∈ M∗ and

M∗ ∩ ω1 ∈ Sβ .

This is possible, since Sβ is stationary. Let 〈βn | n < ω〉 be a strictly
increasing sequence of ordinals such that β0 = α and sup{βn | n < ω} = β.
Note that βn ∈ N ∩ ω1 holds. Let 〈tn | n < ω〉 be a strictly increasing
sequence of ordinals such that t0 = t and sup{tn | n < ω} = M∗ ∩ω1. Note
that tn ∈ M∗ ∩ ω1 holds.

Now construct 〈Nn | n < ω〉 such that

• N0 = N ,
• Nn ∈ M∗ is a countable elementary substructure of Hθ such that

N ⊆ Nn, N ∩ Hκα
= Nn ∩ Hκα

and P (tn, βn, Nn, βn+1) holds,
• Q(tn, βn, Nn, βn+1, Nn+1) holds and Nn+1 ∈ M∗.

Let M =
⋃{Nn | n < ω}. Notice that

o.t.(M ∩ κβ) = sup{o.t.(Nn ∩ κβn
) | n < ω}

= sup{tn | n < ω} = M∗ ∩ ω1 ∈ Sβ .

Now it is routine to check that Q(t, α,N, β,M) holds.

Claim 2. Let P (t,N, β) denote the following;

• t < ω1,
• N is a countable elementary substructure of Hθ such that 〈κi | i ≤

ω1〉 ∈ N ,
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• β < ω1 ∩ N .

Let R(t,N, β,M) denote the following;

• M is a countable elementary substructure of Hθ such that N ⊆ M and
N ∩ ω1 = M ∩ ω1,

• For all i ≤ β, we have o.t.(M ∩ κi) ∈ Si,
• t < o.t.(M ∩ κβ).

Then for all β < ω1, we have

∀t ∀N
(
P (t,N, β) =⇒ ∃ M R(t,N, β,M)

)
.

Proof. By induction on β < ω1.

Case 1. β = 0: Suppose P (t,N, 0). Apply Lemma (End-Extending
into Stationary Sets) so that there exists M such that R(t,N, 0, M) holds.

Case 2. β + 1: Suppose P (t,N, β + 1). Then P (t,N, β) holds. By
induction, there exists M ′ such that R(t,N, β,M ′) holds.

With (M ′, κβ+1, Sβ+1), apply Lemma (End-Extending into Stationary
Sets) so that there exists M such that R(t,N, β + 1, M).

Case 3. β is a limit ordinal: Suppose P (t,N, β). Take a regular
cardinal χ with Hθ ∈ Hχ. Take a countable elementary substructure M∗

of Hχ such that t,N,Hθ ∈ M∗ and M∗ ∩ ω1 ∈ Sβ . This is possible,
since Sβ is a stationary subset of ω1. Fix a strictly increasing sequence
〈βn | n < ω〉 of ordinals such that β0 = 0, βn ∈ N and sup{βn | n <
ω} = β. Fix also a strictly increasing sequence 〈tn | n < ω〉 of ordinals
such that t0 = t, tn ∈ M∗ and sup{tn | n < ω} = M∗ ∩ ω1. By induction
(or Lemma (End-Extending into Stationary Sets)) and Claim 1, we may
construct 〈Nn | n < ω〉 such that

• R(t0, N, β0, N0) with N0 ∈ M∗,
• P (tn, βn, Nn, βn+1) with Nn ∈ M∗,
• Q(tn, βn, Nn, βn+1, Nn+1) with Nn+1 ∈ M∗.

Let M =
⋃{Nn | n < ω}. Then we have

o.t.(M ∩ κβ) = sup{o.t.(Nn ∩ κβn
) | n < ω}
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= sup{tn | n < ω} = M∗ ∩ ω1 ∈ Sβ .

It is routine to check R(t,N, β,M).

Proof of Lemma. Let θ be a regular cardinal with κω1 ∈ Hθ. Let N be
any countable elementary substructure of Hθ with 〈κi | i ≤ ω1〉 ∈ N . We
want to find a countable elementary substructure M of Hθ such that N ⊆
M , N ∩ ω1 = M ∩ ω1 and M ∩ κω1 ∈ S∗ = S∗(〈Si | i < ω1〉, 〈κi | i ≤ ω1〉).
To this end, let us take a regular cardinal χ with Hθ ∈ Hχ. Let M∗ be a
countable elementary substructure of Hχ such that Hθ, N, 〈Si | i < ω1〉 ∈
M∗ and M∗ ∩ ω1 ∈ SN∩ω1 . This is possible, since SN∩ω1 is a stationary
subset of ω1.

Fix a strictly increasing sequence 〈tn | n < ω〉 of ordinals such that
tn ∈ M∗ ∩ω1 and sup{tn | n < ω} = M∗∩ω1. Fix also a strictly increasing
sequence 〈in | n < ω〉 of ordinals such that in ∈ N ∩ ω1 and sup{in | n <
ω} = N ∩ω1. By applying Claims 1 and 2, we may construct 〈Nn | n < ω〉
such that

• N ⊂ N0, N0 ∈ M∗ is a countable elementary substructure of Hθ and
N ∩ ω1 = N0 ∩ ω1,

• For all i with i ≤ i0, we have o.t.(N0 ∩ κi) ∈ Si,
• t0 < o.t.(N0 ∩ κi0),
• N ⊂ Nn, Nn ∈ M∗ is a countable elementary substructure of Hθ and

N ∩ ω1 = Nn ∩ ω1,
• For all i with i ≤ in, we have o.t.(Nn ∩ κi) ∈ Si,
• tn < o.t.(N0 ∩ κin

),
• Nn ⊂ Nn+1 ∈ M∗, Nn ∩ Hκin

= Nn+1 ∩ Hκin
,

• For all i with in < i ≤ in+1, we have o.t.(Nn+1 ∩ κi) ∈ Si,
• tn+1 < o.t.(Nn+1 ∩ κin+1).

Let M =
⋃{Nn | n < ω}. Then we have

o.t.(M ∩ κN∩ω1) = sup{o.t.(Nn ∩ κin
) | n < ω}

= sup{tn | n < ω} = M∗ ∩ ω1 ∈ SN∩ω1 .
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It is routine to check that this M works.

(4.4) Corollary. Let Q = Q(〈Si | i < ω1〉, 〈κi | i ≤ ω1〉) be a partially
ordered set for shooting a club through S∗ = S∗(〈Si | i < ω1〉, 〈κi | i ≤ ω1〉),
then Q is semiproper and in V Q, there exists 〈Ẋδ | δ < ω1〉 ↗ κω1 such
that for each δ < ω1, we have Ẋδ ∈ S∗.

Proof. We describe our relevant partially ordered set. p = 〈Xp
i | i ≤

αp〉 ∈ Q, if the Xp
i ∈ S∗ are continuously increasing with αp < ω1. For

p, q ∈ Q, we set q ≤ p, if q ⊇ p. Since S∗ is semiproper iff Q is semiproper
as a partially ordered set, we conclude Q is semiproper.

(4.5) Theorem. ([A]) Let ρ be a regular cardinal such that {κ <
ρ | κ is a measurable cardinal } is cofinal in ρ. Then there is a semiproper
preorder Pρ such that Pρ has the ρ-c.c. and in V Pρ , we have

• For any sequence 〈Si | i < ω1〉 of stationary subsets of ω1, there exist
a strictly increasing continuous sequence 〈κi | i ≤ ω1〉 of ordinals and a
sequence 〈Xδ | δ < ω1〉 ↗ κω1 such that for all δ < ω1 and all i ≤ Xδ ∩ ω1,
we have o.t.(Xδ ∩ κi) ∈ Si. In particular, κi ∈ S̃i and so φ∗

AC holds.

Proof. We simply iterate relevant semiproper partially ordered set
Q = Q(〈Si | i < ω1〉, 〈κi | i ≤ ω1〉). This is possible, since plenty of
measurable cardinals remain in any intermediate stage. We accomplish the
whole construction by book-keeping relevant names by the chain condition.
The resulted semiproper simple ([M3]) iteration Pρ is what we claimed.

(4.6) Corollary. ([A], [D-D]) The following are equiconsistent.

(1) φAC holds,
(2) The large cardinal assumption LC holds. Namely, there exists a regular
cardinal ρ such that {κ < ρ | κ is a measurable cardinal } is cofinal below
ρ.
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