A Forcing Axiom for The Second Uncountable Cardinal Must Fail

MIYAMOTO Tadatoshi

25th of January 2003

Abstract

The Forcing Axiom for the p.o. sets which are σ -closed, ω_2 -Baire and preserve the stationary subsets of ω_2 with ω_2 -many dense subsets must fail. This is a straightforward simplification of a construction due to S. Shelah.

Introduction

We consider Forcing Axioms for the second uncountable cardinal. For positive answers, we may consult [B], [S1] or [W]. We summarize the failure in this context. Recall that a notion of forcing is ω_2 -Baire, if it adds no new sequences of ordinals of length ω_1 to the ground model. The following is known.

Theorem. (p. 856 in [W]) (CH) The Forcing Axiom for the p.o. sets which are σ -closed and ω_1 -centered with ω_2 -many dense subsets must fail.

CH used to show the stronger form of the ω_2 -c.c. The following is a very specific case among others in [S2].

Theorem. ([S2]) (CH is not assumed) The Forcing axiom for the p.o. sets which are σ -closed, ω_2 -Baire and preserve the stationary subsets of ω_2 with ω_2 -many dense subsets must fail.

Main set theoretic structures in the construction of [S2] are what are termed witnesses and strong witnesses. We observe that it suffices to consider \Box_{ω_1} instead of those objects in the specific case of ω_2 . More specifically,

- (1) If \Box_{ω_1} fails, then the Forcing Axiom for the notion of p.o. set to force a generic \Box_{ω_1} -sequence via the possible initial segments must fail. It is well-known that the p.o. set is σ -closed, ω_2 -Baire and preserves the stationary subsets of ω_2 .
- (2) If \Box_{ω_1} holds, then we may turn it into a stronger one (see lemma below) and consider a p.o. set which forces a counter example to this stronger property to fail. This notion of forcing turns out to be in the same category as above.
- (3) Hence either (1) or (2), we have the failure of this type of Forcing Axiom.

It appears that the main new point here is that we use \Box_{ω_1} instead of CH. This situation is somewhat analoguous to the constructions of ω_2 -Souslin trees. Namely, one may construct assuming CH together with $\Diamond_{\omega_2}(S_1^2)$, while the others may use \Box_{ω_1} and $\Diamond_{\omega_2}(S_1^2)$. (see pp. 140-143 in [D])

We appreciate a series of talks by [F] on this subject in the Set Theory Seminar, Nagoya University, May through July, 2002.

§1. Turning the \square_{ω_1} -sequences into stronger ones

In this section we formulate a stronger form of \Box_{ω_1} . This corresponds to a strong witness of [S2]. Given any club E of ω_2 , a strong \Box_{ω_1} -sequence $\mathcal{C} = \langle C_{\delta} | \delta \in \text{limit} \cap \omega_2 \rangle$ would capture E in a specific manner at quite many C_{δ} with $\delta \in S_1^2$. The manner C_{δ} captures E is that $C_{\delta} \setminus \operatorname{acc}(C_{\delta})$ hits E cofinally often below δ . Since $\delta \in S_1^2$, it is necessary that $\operatorname{acc}(C_{\delta})$ hits E club often below δ as long as $\delta \in \operatorname{acc}(E)$, though. Here $\operatorname{acc}(C_{\delta})$ denotes the accumulation points of C_{δ} .

1.1 Definition. $C = \langle C_{\delta} \mid \delta \in \text{limit} \cap \omega_2 \rangle$ is a \Box_{ω_1} -sequence, if

- C_{δ} is a closed unbounded subset of δ ,
- If $cf(\delta) < \omega_1$, then o.t. $(C_{\delta}) < \omega_1$,
- If $\alpha \in \operatorname{acc}(C_{\delta})$, then $C_{\alpha} = C_{\delta} \cap \alpha$,

1.2 Definition. Let $C = \langle C_{\delta} | \delta \in \text{limit} \cap \omega_2 \rangle$ be a \square_{ω_1} -sequence. C is a *strong* \square_{ω_1} -sequence, if for any club $E \subseteq \omega_2$, the following is stationary in ω_2

 $\{\delta \in S_1^2 \mid \sup\{\alpha \in C_\delta \mid \operatorname{suc}_{C_\delta}(\alpha) \in E\} = \delta\}$

where, $\operatorname{suc}_{C_{\delta}}(\alpha)$ denotes the least member of C_{δ} strictly above $\alpha \in C_{\delta}$. Namely, the next element of α in C_{δ} .

The following entails that we once have a \Box_{ω_1} -sequence \mathcal{C} , then we may assume that it is strong.

1.3 Lemma. Let $C = \langle C_{\delta} | \delta \in \text{limit} \cap \omega_2 \rangle$ be a \Box_{ω_1} -sequence. Then there exists a club $E^* \subseteq \omega_2$ such that for any club $E \subseteq \omega_2$, the following is stationary in ω_2 .

$$\{\delta \in S_1^2 \mid \sup\{\alpha \in C_\delta \mid \alpha < \sup(E^* \cap \operatorname{suc}_{C_\delta}(\alpha)) \in E\} = \delta\}$$

Proof. By contradiction. Suppose not and construct $\langle E_n^* \mapsto E_n \mid n < \omega \rangle$ such that

- (1) $E_0^* = \omega_2$,
- (2) $E_n^* \mapsto E_n$ are clubs in ω_2 such that the following is non-stationary.

$$A_n = \{\delta \in S_1^2 \mid \sup\{\alpha \in C_\delta \mid \alpha < \sup(E_n^* \cap \operatorname{suc}_{C_\delta}(\alpha)) \in E_n\} = \delta\}$$

(3) $E_{n+1}^* \subset \operatorname{acc}(E_n \cap E_n^*)$ and $E_{n+1}^* \cap A_n = \emptyset$.

In particular,

$$E_{n+1}^* \subset E_n^*$$
 and $E_{n+1}^* \subset E_n$.

Define clubs E^* and E^{**} in ω_2 as follows;

$$E^* = \bigcap \{E_n^* \mid n < \omega\},\$$

and

$$E^{**} = \operatorname{acc}(E^* \cap S_1^2).$$

Take

$$\delta^* \in S_1^2 \cap E^{**}$$

Since o.t. $(C_{\delta^*}) = \omega_1$, notice that $(E^* \cap S_1^2 \cap \delta^*) \subset (\delta^* \setminus \operatorname{acc}(C_{\delta^*}))$ is cofinal in δ^* . And for any $n < \omega$, we have

$$\delta^* \in E_{n+1}^*$$
 and so $\delta^* \notin A_n$.

Define

$$\beta_n = \operatorname{Max}\{\operatorname{Min}(C_{\delta^*}), \ \sup\{\alpha \in C_{\delta^*} \mid \alpha < \sup(E_n^* \cap \operatorname{Suc}_{C_{\delta^*}}(\alpha)) \in E_n\}\} < \delta'$$

so that

$$\beta_n \in C_{\delta^*}$$

Let

$$\beta^* = \sup\{\beta_n \mid n < \omega\} \in C_{\delta^*}.$$

Pick any γ^* such that

$$\operatorname{suc}_{C_{\delta^*}}(\beta^*) < \gamma^* \in \delta^* \cap E^* \cap S_1^2.$$

Take ζ^* so that

$$\operatorname{suc}_{C_{\delta^*}}(\beta^*) \leq \zeta^* = \operatorname{Max}(C_{\delta^*} \cap \gamma^*) \in C_{\delta^*}$$

Since $\gamma^* \in S_1^2$, we have

 $\zeta^* < \gamma^*.$

Let

$$\xi^* = \operatorname{suc}_{C_{\delta^*}}(\zeta^*).$$

Then by the definition of ζ^* , we have

 $\gamma^* \le \xi^*.$

Case 1. $\gamma^* < \xi^*$: Fix any $n < \omega$. Since $\gamma^* \in E^* \subset E_n^*$, we have

 $\zeta^* < \sup(E_n^* \cap \xi^*).$

But $\beta_n < \zeta^*$, so

$$\sup(E_n^* \cap \xi^*) \notin E_n.$$

But $E_{n+1}^* \subset E_n$, so

$$\sup(E_n^* \cap \xi^*) \notin E_{n+1}^*.$$

Since $E_{n+1}^* \subset E_n^*$, we conclude

$$\gamma^* \le \sup(\xi^* \cap E_{n+1}^*) < \sup(\xi^* \cap E_n^*)$$

Therefore, we have a strictly descending infinite sequence of ordinals. This is a contradiction.

Case 2. $\gamma^* = \xi^* = \operatorname{suc}_{C_{\delta^*}}(\zeta^*)$: Take any $n < \omega$. Since $\gamma^* \in E^* \subset E_{n+1}^* \subset \operatorname{acc}(E_n^*)$, we have

$$\zeta^* < \sup(E_n^* \cap \xi^*) = \xi^* = \gamma^* \in E_n.$$

Hence by the definition of β_n , we have

$$\zeta^* < \beta_n.$$

This is a contradiction.

We may always turn a given \Box_{ω_1} -sequence into a stronger one.

1.4 Lemma. Let \mathcal{C} and E^* be as in the previous lemma. We set

$$C'_{\delta} = C_{\delta} \cup \{\beta \mid \alpha \in C_{\delta}, \alpha < \beta = \sup(E^* \cap \operatorname{suc}_{C_{\delta}}(\alpha))\}.$$

Then $\mathcal{C}' = \langle C'_{\delta} \mid \delta \in \text{limit} \cap \omega_2 \rangle$ is a strong \Box_{ω_1} -sequence.

Proof. We need to check the following.

- (1) C'_{δ} is a club in δ ,
- (2) If $cf(\delta) < \omega_1$, then o.t. $(C'_{\delta}) < \omega_1$,
- (3) If $\alpha \in \operatorname{acc}(C'_{\delta})$, then $C'_{\alpha} = C'_{\delta} \cap \alpha$,

And

(4) For any club $E \subseteq \omega_2$, if $\alpha \in C_{\delta}$ and $\alpha < \sup(E^* \cap \operatorname{suc}_{C_{\delta}}(\alpha)) \in E$, then $\alpha \in C'_{\delta}$ and $\operatorname{suc}_{C'_{\delta}}(\alpha) = \sup(E^* \cap \operatorname{suc}_{C_{\delta}}(\alpha)) \in E$.

They are mostly routine to check and left to the reader.

§ 2. Forcing a counter-example to make sure a given \Box_{ω_1} -sequence non-strong

While any \Box_{ω_1} -sequence \mathcal{C} would produce to a strong one \mathcal{C}' , we may force a club of ω_2 to make sure that \mathcal{C} is not strong in the generic extensions.

2.1 Definition. Let $\langle C_{\alpha} \mid \alpha \in \text{limit} \cap \omega_2 \rangle$ be a \square_{ω_1} -sequence. We define $p \in P$, if

- (1) p is a closed bounded subset of ω_2 ,
- (2) For any $\delta \in \operatorname{acc}(p) \cap S_1^2$ there exists $\overline{\delta} < \delta$ such that $(p \cap \delta) \setminus \overline{\delta} \subset \operatorname{acc}(C_{\delta}) \cup (\delta \setminus C_{\delta})$.

For $p_1, p_2 \in P$, we set $p_2 \leq p_1$, if p_2 end-extends p_1 .

2.2 Lemma. (1) P is σ -closed.

(2) P is ω_2 -Baire.

Proof. For (1): Let $\langle p_n \mid n < \omega \rangle$ be a descending sequence in P. For each $n < \omega$, let $\alpha_n = \sup p_n$. We may assume the α_n 's are strictly increasing. Let $\alpha = \sup \{\alpha_n \mid n < \omega\}$ and let $q = \bigcup \{p_n \mid n < \omega\} \cup \{\alpha\}$. Since $\alpha \in S_0^2$, we have $q \in P$ and so q is a lower bound of the p_n 's.

For (2): Let $p \models_P \dot{f} : \omega_1 \longrightarrow V$. We want to find $q \leq p$ such that $q \mid |\dot{f}$. To this end let θ be a sufficiently large regular cardinal and $\langle N_i \mid i \leq \omega_1 \rangle$ be a sequence such that

- N_i is an elementary substructure of H_{θ} , $|N_i| = \omega_1, N_i \cap \omega_2 < \omega_2$ and for any *i* which is non-limit, we demand $N_i \cap \omega_2 \in S_1^2$,
- $\langle N_k \mid k \leq i \rangle \in N_{i+1}$ and the N_i 's are continuously increasing,
- In particular, the $N_i \cap \omega_2$'s are strictly increasing and forms a club in ω_2 ,
- N_0 contains every relevant parameters.

For each $i < \omega_1$, let

$$\delta_i = N_i \cap \omega_2$$
 and $\delta = \sup\{\delta_i \mid i < \omega_1\} = N_{\omega_1} \cap \omega_2 \in S_1^2$.

And let

$$W = \{i < \omega_1 \mid N_i \cap \omega_2 \in \operatorname{acc}(C_{\delta})\} \subset S_0^2$$

We have

If
$$i \in W$$
, then $W \cap (i+1) \in N_{i+1}$.

This is because $\delta_i \in \operatorname{acc}(C_{\delta})$ and so $C_{\delta_i} = C_{\delta} \cap \delta_i$. Hence

$$W \cap i = \{k < i \mid \delta_k \in \operatorname{acc}(C_{\delta})\} = \{k < i \mid \delta_k \in \operatorname{acc}(C_{\delta_i})\}.$$

Since $\langle N_k \mid k \leq i \rangle$, C_{δ_i} are in N_{i+1} and since $i \in N_{i+1}$, we conclude $W \cap (i+1) \in N_{i+1}$.

We build $\langle p_i \mid i \in W \rangle$ by recursion on *i* so that

- For $i_0 = Min(W)$, we set $p_{i_0} = F(p, \sup(C_{\delta} \cap \delta_{i_0+1}) + 1, 0)$,
- For $i \in W$ such that $j = Max(W \cap i) < i$, we set $p_i = F(p_j, \sup(C_{\delta} \cap \delta_{i+1}) + 1, \text{o.t.}(W \cap i))$,
- For $i \in \operatorname{acc}(W)$, we set $p_i = \bigcup \{ p_k \mid k \in W \cap i \} \cup \{ \sup(\bigcup \{ p_k \mid k \in W \cap i \}) \}.$

Here, $F: P \times \omega_2 \times \omega_1 \longrightarrow P$ such that for (p, ξ, i) with $\sup p < \xi$, if we let $q = F(p, \xi, i)$, then

$$q \leq p \cup \{\xi\}$$
 and $q \parallel f(i)$.

We may assume that $F \in N_0$.

Claim. We have 4 items in accordance with the recursive construction.

 $(\underline{i} = \underline{i}_0)$: For $\underline{i}_0 = \operatorname{Min}(W)$, we have

- $p_{i_0} \in P$,
- $\delta_{i_0} < \sup p_{i_0}$,
- $p_{i_0} \in N_{i_0+1}$,
- $p_{i_0} \parallel \dot{f}(0),$
- $p_{i_0} \leq p$,
- $(p_{i_0} \setminus p) \cap C_{\delta} = \emptyset$,

(*i* is the successor of *j* in *W*): For $i \in W$ with $j = Max(W \cap i) < i$, we have

- $p_i \in P$,
- $\delta_i < \sup p_i$,
- $p_i \in N_{i+1}$,
- $p_i \parallel \dot{f}(\text{o.t.}(W \cap i)),$
- $p_i \leq p_j$,
- $(p_i \setminus p_j) \cap C_{\delta} = \emptyset$,

• $\langle p_k \mid k \in W \cap (i+1) \rangle \in N_{i+1},$

 $(i \in \operatorname{acc}(W))$: For $i \in \operatorname{acc}(W)$, we have

- $p_i \in P$,
- For all $k \in W \cap i$, $p_i \leq p_k$,
- sup $p_i = \delta_i \in \operatorname{acc}(C_\delta)$,
- $\langle p_k \mid k \in W \cap (i+1) \rangle \in N_{i+1},$

(conclusion): Let $q = \bigcup \{ p_i \mid i \in W \} \cup \{ \delta \}$, then $q \in P, q \leq p$ and $q \mid \mid \dot{f}$.

Proof. By induction on $i \in W$.

 $(i = i_0)$: Since $p \in N_0 \subset N_{i_0}$, we have $\sup p < \delta_{i_0} \in C_{\delta}$ and so

$$\delta_{i_0} \leq \sup(C_{\delta} \cap \delta_{i_0+1}) < \sup(C_{\delta} \cap \delta_{i_0+1}) + 1 < \delta_{i_0+1} \in S_1^2.$$

Hence $p_{i_0} \in P$, $\delta_{i_0} < \sup p_{i_0}$, $p_{i_0} \mid\mid \dot{f}(0), p_{i_0} \leq p$, $(p_{i_0} \setminus p) \cap C_{\delta} = \emptyset$ and $p_{i_0} \in N_{i_0+1}$.

(*i* is the successor of *j* in *W*): We have $\langle p_k | k \in W \cap (j+1) \rangle \in N_{j+1}$. Since $p_j \in N_{j+1} \subset N_i$, we have sup $p_j < \delta_i \in C_{\delta}$. And so

$$\delta_i \le \sup(C_{\delta} \cap \delta_{i+1}) < \sup(C_{\delta} \cap \delta_{i+1}) + 1 < \delta_{i+1} \in S_1^2.$$

Hence $p_i \in P$, $\delta_i < \sup p_i$, $p_i \parallel \dot{f}(\text{o.t.}(W \cap i))$, $p_i \leq p_j$, $(p_i \setminus p_j) \cap C_{\delta} = \emptyset$ and $p_i \in N_{i+1}$. And so $\langle p_k \mid k \in W \cap (i+1) \rangle \in N_{i+1}$.

 $(i \in \operatorname{acc}(W))$: We have constructed $\langle p_k \mid k \in W \cap i \rangle$. We observe that $\langle p_k \mid k \in W \cap i \rangle$ is definable from parameters which are all in N_{i+1} . And so we would have

$$\langle p_k \mid k \in W \cap i \rangle \in N_{i+1}.$$

Some details follow. Notice first $\delta_i \in \operatorname{acc}(C_{\delta})$ and so

$$C_{\delta_i} = C_{\delta} \cap \delta_i.$$

Since both $\langle N_k \mid k \leq i \rangle$ and $W \cap (i+1)$ are in N_{i+1} , we have

$$\langle N_{k+1} \mid k \in W \cap i \rangle \in N_{i+1}.$$

Since C_{δ_i} is in N_{i+1} , we have

$$\langle \sup(C_{\delta} \cap \delta_{k+1}) \mid k \in W \cap i \rangle = \langle \sup(C_{\delta_i} \cap N_{k+1}) \mid k \in W \cap i \rangle \in N_{i+1}.$$

Note that $\langle p_k | k \in W \cap i \rangle$ is definable in H_{θ} from $W \cap i$, F, p and $\langle \sup(C_{\delta} \cap \delta_{k+1}) | k \in W \cap i \rangle$ as follows;

- For $k_0 = \operatorname{Min}(W \cap i), \ p_{k_0} = F(p, \sup(C_{\delta} \cap \delta_{k_0+1}) + 1, 0),$
- For $k \in W \cap i$ with $j = Max((W \cap i) \cap k) < k$, $p_k = F(p_j, \sup(C_{\delta} \cap \delta_{k+1}) + 1, \text{o.t.}((W \cap i) \cap k))$,
- For $k \in \operatorname{acc}(W \cap i)$, $p_k = \bigcup \{ p_{\bar{k}} \mid \bar{k} \in (W \cap i) \cap k \} \cup \{ \sup(\bigcup \{ p_{\bar{k}} \mid \bar{k} \in (W \cap i) \cap k \}) \}.$

We have $\langle p_k \mid k \in W \cap i \rangle \in N_{i+1}$.

Let $p_i = \bigcup \{p_k \mid k \in (W \cap i)\} \cup \{\sup(\bigcup \{p_k \mid k \in (W \cap i)\})\}$. We know $p_i \in N_{i+1}$ and $\langle p_k \mid k \in W \cap (i+1)\rangle \in N_{i+1}$. Since $\delta_k < \sup p_k < \delta_{k+1}$ for all $k \in (W \cap i) \setminus \operatorname{acc}(W)$, we know p_i as defined is a bounded closed set. Since $\sup p_i = \delta_i \in \operatorname{acc}(C_{\delta}) \cap S_0^2$, we have $p_i \in P$.

For (conclusion): Since $\delta_i < \sup p_i < \delta_{i+1}$ for $i \in W \setminus \operatorname{acc}(W)$, we see that q as defined is a closed subset of ω_2 with $\sup q = \delta$. To see $q \in P$, we may check that

$$q \setminus p \subset \operatorname{acc}(C_{\delta}) \cup (\delta \setminus C_{\delta}).$$

But this holds by construction. Since q sits below every p_i , we have $q \leq p$ and $q \parallel f$.

2.3 Lemma. P preserves every stationary subset of ω_2 .

Proof. Since P is σ -closed, P is proper. Hence P preserves every stationary subset of S_0^2 . Therefore we need to take care of stationary subsets T with $T \subseteq S_1^2$.

Let $T \subseteq S_1^2$ be stationary and $p \models_P f : \omega_2 \longrightarrow \omega_2$. We want to find $q \leq p$ and $\delta \in T$ such that $q \models_P \forall \alpha < \delta f(\alpha) < \delta^{\circ}$. To this end let θ be a sufficiently large regular cardinal and $\langle N_i \mid i < \omega_2 \rangle$ be a continuously increasing sequence of elementary substructures of H_{θ} such that

- $|N_i| = \omega_1$ and $\delta_i = N_i \cap \omega_2 < \omega_2$.
- If i = 0 or i is a successor, then $\delta_i \in S_1^2$.
- $\langle N_i \mid i \leq j \rangle \in N_{j+1}.$

Take $i^* \in S_1^2$ such that

• $\delta^* = \delta_{i^*} = N_{i^*} \cap \omega_2 \in T \subseteq S_1^2$.

Let

$$W^* = \{i < i^* \mid \delta_i \in \operatorname{acc}(C_{\delta^*})\} \subset S_0^2.$$

Claim 1. (1) The order type of W^* is exactly ω_1 .

(2) If $i \in W^*$, then $W^* \cap (i+1) \in N_{i+1}$.

Proof. For (1): Since $\delta^* \in S_1^2$, we know that $\langle \delta_i | i < i^* \rangle$ is a club in δ^* and so is $\operatorname{acc}(C_{\delta^*})$. Hence $\operatorname{o.t.}(W^*) = \omega_1$.

For (2): This is where we need \Box_{ω_1} . Since $i \in W^*$, we have

$$C_{\delta_i} = C_{\delta^*} \cap \delta_i.$$

Then for any k < i, we have $k \in W^*$ iff $\delta_k \in \operatorname{acc}(C_{\delta^*})$ iff $\delta_k \in \operatorname{acc}(C_{\delta_i})$ iff $\langle N_k \mid k \leq i \rangle(k) \cap \omega_2 \in \operatorname{acc}(C_{\delta_i})$. But $\langle N_k \mid k \leq i \rangle, \omega_2, C_{\delta_i} = C_{N_i \cap \omega_2}$ are all in N_{i+1} . Hence $W^* \cap (i+1) = (W^* \cap i) \cup \{i\} \in N_{i+1}$.

We have seen that P adds no new sequences of ordinals of length less than ω_2 . So we may construct $\langle p_i \mid i \in W^* \rangle$ so that

- For $i_0 = \operatorname{Min}(W^*)$, let $p_{i_0} = K(p, \sup(C_{\delta^*} \cap \delta_{i_0+1}) + 1, \delta_0)$,
- For *i* with $i > j = Max(W^* \cap i)$, let $p_i = K(p_j, \sup(C_{\delta^*} \cap \delta_{i+1}) + 1, \delta_i)$,
- For $i \in \operatorname{acc}(W^*)$, let $p_i = \bigcup \{p_k \mid k \in W^* \cap i\} \cup \{\delta_i\},\$

where,

$$K: P \times \omega_2 \times \omega_2 \longrightarrow P$$

such that for (a, ξ, η) with $\sup(a) < \xi < \omega_2$, if we write $q = K(a, \xi, \eta)$, then $q \le a \cup \{\xi\}$ and q decides $\dot{f}[\eta]$.

We may assume that $K \in N_0$.

Claim 2. For $i_0 = Min(W^*)$, we have

- $p_{i_0} \in P$,
- $\delta_{i_0} < \sup(p_{i_0}),$
- $p_{i_0} \in N_{i_0+1}$,
- $p_{i_0} \Vdash_P ``f [\delta_{i_0} = f [\delta_{i_0}" \text{ for some (abusive notation) } f [\delta_{i_0} \in N_{i_0+1},$
- $p_{i_0} \leq p$,
- $(p_{i_0} \setminus p) \cap C_{\delta^*} = \emptyset.$

Proof. Note $K, p \in N_0 \subset N_{i_0+1}$. Also note that $\sup(C_{\delta^*}) \cap \delta_{i_0+1} < \delta_{i_0+1}$ and so $\sup(C_{\delta^*}) \cap \delta_{i_0+1} \in N_{i_0+1}$. Hence $p_{i_0} \in N_{i_0+1}$. The rest is more or less explicit in the definition of p_{i_0+1} .

- **Claim 3.** For $i > j = Max(W^* \cap i)$, we inductively suppose
- $\langle p_k \mid k \in W^* \cap (j+1) \rangle \in N_{j+1} \subseteq N_i \subset N_{i+1}.$
- In particular, $p_j \in N_{j+1} \subseteq N_i$ holds.

Then we have

- $p_i \in P$,
- $\delta_i < \sup(p_i),$
- $p_i \in N_{i+1}$,
- $p_i \models_P ``f [\delta_i = f [\delta_i]''$ for some (abusive notation) $f [\delta_i \in N_{i+1}, \delta_i]$
- $p_i \leq p_j$,
- $(p_i \setminus p_j) \cap C_{\delta^*} = \emptyset$,
- $\langle p_k \mid k \in W^* \cap (i+1) \rangle \in N_{i+1}.$

Proof. Since $i \in W^*$, we have $W^* \cap i \in N_{i+1}$. Hence $\text{o.t.}(W^* \cap i) \in N_{i+1}$. Since $\delta_i < \sup(C_{\delta^*} \cap \delta_{i+1}) + 1 \in N_{i+1}$ as well, we have $p_i = K(p_j, \sup(C_{\delta^*} \cap \delta_{i+1}) + 1, \text{o.t.}(W^* \cap i)) \in N_{i+1}$. Hence $\langle p_k \mid k \in W^* \cap (i+1) \rangle = \langle p_k \mid k \in W^* \cap (j+1) \rangle \cup \{(i, p_i)\} \in N_{i+1}$.

- **Claim 4.** For $i \in \operatorname{acc}(W^*)$, we have
- $p_i \in P$,
- For all $k \in W^* \cap i, p_i \leq p_k$,
- $\sup(p_i) = \delta_i \in \operatorname{acc}(C_{\delta^*}),$
- $\langle p_k \mid k \in W^* \cap (i+1) \rangle \in N_{i+1}.$

Proof. For $k \in W^* \cap i$, we inductively have $p_k \in N_{k+1}$ and $\delta_k < \sup(p_k)$. Hence $\delta_k < \sup(p_k) < \delta_{k+1}$. Since $i \in \operatorname{acc}(W^*)$, we conclude

 $\sup\{\sup(p_k) \mid k \in W^* \cap i\} = \sup\{\delta_k \mid k \in W^* \cap i\} = \delta_i.$

Since $cf(\delta_i) = \omega$, we have $p_i \in P$. $\langle p_k \mid k \in W^* \cap i \rangle$ is definable as follows.

- For $k_0 = \operatorname{Min}(W^* \cap i), \ p_{k_0} = K(p, \sup(C_{\delta_i} \cap \delta_{k_0+1}) + 1, \delta_{k_0}),$
- For $k > j = \operatorname{Max}((W^* \cap i) \cap k), p_k = K(p_j, \sup(C_{\delta_i} \cap \delta_{k+1}) + 1, \delta_k),$
- For $k \in \operatorname{acc}(W^* \cap i)$, $p_k = \bigcup \{ p_{\bar{k}} \mid \bar{k} \in (W^* \cap i) \cap k \} \cup \{ \delta_k \}.$

This is in terms of $K, W^* \cap i, \langle N_k | k \in W^* \cap i \rangle, C = \langle C_\delta | \delta$ is limit and $\delta < \omega_2 \rangle$ and C_{δ_i} which are all in N_{i+1} . Hence $\langle N_k | k \in W^* \cap i \rangle \in N_{i+1}$. For this definability, we use the \square_{ω_1} -ness of C.

Now let $q = \bigcup \{ p_k \mid k \in W^* \} \cup \{ \delta^* \}$. Then this q is closed, as

$$\delta_k < \sup(p_k) < \delta_{k+1}.$$

And $q \in P$, as $q \setminus p \subset \operatorname{acc}(C_{\delta^*}) \cup (\delta^* \setminus C_{\delta^*})$. Since $p_k \Vdash_P ``f[\delta_k = f[\delta_k"]$ with $f[\delta_k \in N_{k+1}]$, we conclude $q \Vdash_P ``\forall \alpha < \delta^* f(\alpha) < \delta^*"$.

2.4 Lemma. P adds a club $E \subset \omega_2$ such that $\langle C_\alpha \mid \alpha \in \text{limit} \cap \omega_2 \rangle$ is non-strong due to E. Namely,

$$\forall \delta \in \operatorname{acc}(E) \cap S_1^2 \{ \alpha \in C_\delta \mid \operatorname{suc}_{C_\delta}(\alpha) \in E \}$$
 is bounded below δ .

Proof. We design P so that this holds. Let $E = \bigcup G$, where G is a P-generic filter over V. Then we have

$$\forall \delta \in \operatorname{acc}(E) \cap S_1^2 \; \exists \delta < \delta \text{ such that } E \cap (\delta \setminus \delta) \subset (\delta \setminus C_\delta) \cup \operatorname{acc}(C_\delta)$$

Accordingly we have

2.5 Theorem. The forcing Axiom for the following class of p.o. sets \mathcal{P} with ω_2 -many dense subsets fails, where

 \mathcal{P} contains

- The notion of forcing to force \Box_{ω_1} via the initial segments,
- The notions of forcing to kill the strongness of all \Box_{ω_1} -sequences, if any.

2.6 Note. (CH) We may directly force a generic strong \Box_{ω_1} -sequence via countable conditions.

Question 1. Give a single p.o. set which is σ -closed, ω_2 -Baire, preserves the stationary subsets of ω_2 so that the Forcing Axiom with ω_2 -many dense subsets fails. Does $< \omega_2$ -support product of the above p.o. sets work ?

Question 2. Is it easy to generalize the argument in this note to higher cardinals ? Do we really need witnesses and strong witnesses of [S2] ?

Question 3. Does a non-reflecting stationary set $S \subset S_0^2 = \{\alpha < \omega_2 \mid cf(\alpha) = \omega\}$ of any sort suffice to replace \Box_{ω_1} -sequence in the present context? Can you view witnesses and strong witnesses of [S2] along this line?

References

[B]: J. Baumgartner, Iterated Forcing, *Surveys in Set Theory*, London Mathematical Society Lecture Note Series 87, pp. 1-59, 1983.

[D]: K. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, 1984.

[F]: S. Fuchino, A Series of Talks, Set Theory Seminar, Nagoya University, May through July, 2002.

[S1]: S. Shelah, A Weak generalization of MA to higher cardinals, Israel Journal of Mathematics, 30, pp. 193-204, 1977.

[S2]: S. Shelah, Forcing Axiom Failure for Any $\lambda > \aleph_1$, preprint, no. 784.

[W]: W. Weiss, Versions of Martin's Axioms in Handbook of Set Theoretic Topology, Noth-Holland, 1984.

Mathematics Nanzan University Seirei-cho, 27, Seto-shi 489-0863, Japan miyamoto@nanzan-u.ac.jp