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Abstract

The Forcing Axiom for the p.o. sets which are σ-closed, ω2-Baire and preserve the stationary subsets
of ω2 with ω2-many dense subsets must fail. This is a straightforward simplification of a construction due
to S. Shelah.

Introduction

We consider Forcing Axioms for the second uncountable cardinal. For positive answers, we may consult
[B], [S1] or [W]. We summarize the failure in this context. Recall that a notion of forcing is ω2-Baire, if it
adds no new sequences of ordinals of length ω1 to the ground model. The following is known.

Theorem. (p. 856 in [W]) (CH) The Forcing Axiom for the p.o. sets which are σ-closed and ω1-centered
with ω2-many dense subsets must fail.

CH used to show the stronger form of the ω2-c.c. The following is a very specific case among others in
[S2].

Theorem. ([S2]) (CH is not assumed) The Forcing axiom for the p.o. sets which are σ-closed, ω2-Baire
and preserve the stationary subsets of ω2 with ω2-many dense subsets must fail.

Main set theoretic structures in the construction of [S2] are what are termed witnesses and strong
witnesses. We observe that it suffices to consider ω1 instead of those objects in the specific case of ω2. More
specifically,

(1) If ω1 fails, then the Forcing Axiom for the notion of p.o. set to force a generic ω1 -sequence via the
possible initial segments must fail. It is well-known that the p.o. set is σ-closed, ω2-Baire and preserves
the stationary subsets of ω2.

(2) If ω1 holds, then we may turn it into a stronger one (see lemma below) and consider a p.o. set which
forces a counter example to this stronger property to fail. This notion of forcing turns out to be in the
same category as above.

(3) Hence either (1) or (2), we have the failure of this type of Forcing Axiom.

It appears that the main new point here is that we use ω1 instead of CH. This situation is somewhat
analoguous to the constructions of ω2-Souslin trees. Namely, one may construct asssuming CH together with
♦ω2(S2

1), while the others may use ω1 and ♦ω2(S2
1 ). (see pp. 140-143 in [D])

We appreciate a series of talks by [F] on this subject in the Set Theory Seminar, Nagoya University,
May through July, 2002.

§1. Turning the
ω1

-sequences into stronger ones

In this section we formulate a stronger form of ω1 . This corresponds to a strong witness of [S2]. Given
any club E of ω2, a strong ω1-sequence C = 〈Cδ | δ ∈ limit ∩ ω2〉 would capture E in a specific manner at
quite many Cδ with δ ∈ S2

1 . The manner Cδ captures E is that Cδ \ acc(Cδ) hits E cofinally often below
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δ. Since δ ∈ S2
1 , it is necessary that acc(Cδ) hits E club often below δ as long as δ ∈ acc(E), though. Here

acc(Cδ) denotes the accumulation points of Cδ.

1.1 Definition. C = 〈Cδ | δ ∈ limit ∩ ω2〉 is a ω1
-sequence, if

• Cδ is a closed unbounded subset of δ,

• If cf(δ) < ω1, then o.t.(Cδ) < ω1,

• If α ∈ acc(Cδ), then Cα = Cδ ∩ α,

1.2 Definition. Let C = 〈Cδ | δ ∈ limit ∩ ω2〉 be a ω1
-sequence.

C is a strong
ω1
-sequence, if for any club E ⊆ ω2, the following is stationary in ω2

{δ ∈ S2
1 | sup{α ∈ Cδ | sucCδ

(α) ∈ E} = δ}
where, sucCδ

(α) denotes the least member of Cδ strictly above α ∈ Cδ. Namely, the next element of α
in Cδ.

The following entails that we once have a ω1-sequence C, then we may assume that it is strong.

1.3 Lemma. Let C = 〈Cδ | δ ∈ limit ∩ ω2〉 be a ω1
-sequence. Then there exists a club E∗ ⊆ ω2 such

that for any club E ⊆ ω2, the following is stationary in ω2.

{δ ∈ S2
1 | sup{α ∈ Cδ | α < sup(E∗ ∩ sucCδ

(α)) ∈ E} = δ}

Proof. By contradiction. Suppose not and construct 〈E∗
n �→ En | n < ω〉 such that

(1) E∗
0 = ω2,

(2) E∗
n �→ En are clubs in ω2 such that the following is non-stationary.

An = {δ ∈ S2
1 | sup{α ∈ Cδ | α < sup(E∗

n ∩ sucCδ
(α)) ∈ En} = δ}.

(3) E∗
n+1 ⊂ acc(En ∩ E∗

n) and E
∗
n+1 ∩An = ∅.

In particular,

E∗
n+1 ⊂ E∗

n and E
∗
n+1 ⊂ En.

Define clubs E∗ and E∗∗ in ω2 as follows;

E∗ =
⋂

{E∗
n | n < ω},

and

E∗∗ = acc(E∗ ∩ S2
1).

Take

δ∗ ∈ S2
1 ∩ E∗∗.

Since o.t.(Cδ∗) = ω1, notice that (E∗ ∩ S2
1 ∩ δ∗) ⊂ (δ∗ \ acc(Cδ∗)) is cofinal in δ∗.

And for any n < ω, we have

δ∗ ∈ E∗
n+1 and so δ

∗ �∈ An.

Define
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βn = Max{Min(Cδ∗), sup{α ∈ Cδ∗ | α < sup(E∗
n ∩ sucCδ∗ (α)) ∈ En}} < δ∗

so that

βn ∈ Cδ∗ .

Let

β∗ = sup{βn | n < ω} ∈ Cδ∗ .

Pick any γ∗ such that

sucCδ∗ (β
∗) < γ∗ ∈ δ∗ ∩E∗ ∩ S2

1 .

Take ζ∗ so that

sucCδ∗ (β
∗) ≤ ζ∗ = Max(Cδ∗ ∩ γ∗) ∈ Cδ∗ .

Since γ∗ ∈ S2
1 , we have

ζ∗ < γ∗.

Let

ξ∗ = sucCδ∗ (ζ
∗).

Then by the definition of ζ∗, we have

γ∗ ≤ ξ∗.

Case 1. γ∗ < ξ∗: Fix any n < ω. Since γ∗ ∈ E∗ ⊂ E∗
n, we have

ζ∗ < sup(E∗
n ∩ ξ∗).

But βn < ζ
∗, so

sup(E∗
n ∩ ξ∗) �∈ En.

But E∗
n+1 ⊂ En, so

sup(E∗
n ∩ ξ∗) �∈ E∗

n+1.

Since E∗
n+1 ⊂ E∗

n, we conclude

γ∗ ≤ sup(ξ∗ ∩ E∗
n+1) < sup(ξ

∗ ∩ E∗
n).

Therefore, we have a strictly descending infinite sequence of ordinals. This is a contradiction.

Case 2. γ∗ = ξ∗ = sucCδ∗ (ζ
∗): Take any n < ω. Since γ∗ ∈ E∗ ⊂ E∗

n+1 ⊂ acc(E∗
n), we have

ζ∗ < sup(E∗
n ∩ ξ∗) = ξ∗ = γ∗ ∈ En.

Hence by the definition of βn, we have

ζ∗ < βn.

This is a contradiction.
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We may always turn a given ω1 -sequence into a stronger one.

1.4 Lemma. Let C and E∗ be as in the previous lemma. We set

C′
δ = Cδ ∪ {β | α ∈ Cδ, α < β = sup(E∗ ∩ sucCδ

(α))}.
Then C′ = 〈C′

δ | δ ∈ limit ∩ ω2〉 is a strong ω1
-sequence.

Proof. We neeed to check the following.

(1) C′
δ is a club in δ,

(2) If cf(δ) < ω1, then o.t.(C′
δ) < ω1,

(3) If α ∈ acc(C ′
δ), then C

′
α = C

′
δ ∩ α,

And

(4) For any club E ⊆ ω2, if α ∈ Cδ and α < sup(E∗ ∩ sucCδ
(α)) ∈ E, then α ∈ C′

δ and sucC′
δ
(α) =

sup(E∗ ∩ sucCδ
(α)) ∈ E.

They are mostly routine to check and left to the reader.

§ 2. Forcing a counter-example to make sure a given
ω1

-sequence non-strong

While any ω1-sequence C would produce to a strong one C′, we may force a club of ω2 to make sure
that C is not strong in the generic extensions.

2.1 Definition. Let 〈Cα | α ∈ limit ∩ ω2〉 be a ω1
-sequence. We define p ∈ P , if

(1) p is a closed bounded subset of ω2,

(2) For any δ ∈ acc(p) ∩ S2
1 there exists δ̄ < δ such that (p ∩ δ) \ δ̄ ⊂ acc(Cδ) ∪ (δ \Cδ).

For p1, p2 ∈ P , we set p2 ≤ p1, if p2 end-extends p1.

2.2 Lemma. (1) P is σ-closed.

(2) P is ω2-Baire.

Proof. For (1): Let 〈pn | n < ω〉 be a descending sequence in P . For each n < ω, let αn = sup pn. We
may assume the αn’s are strictly increasing. Let α = sup{αn | n < ω} and let q = ⋃{pn | n < ω} ∪ {α}.
Since α ∈ S2

0 , we have q ∈ P and so q is a lower bound of the pn’s.

For (2): Let p ‖−P “ḟ : ω1 −→ V ”. We want to find q ≤ p such that q || ḟ . To this end let θ be a
sufficiently large regular cardinal and 〈Ni | i ≤ ω1〉 be a sequence such that
• Ni is an elementary substructure of Hθ, | Ni |= ω1, Ni ∩ ω2 < ω2 and for any i which is non-limit, we

demand Ni ∩ ω2 ∈ S2
1 ,

• 〈Nk | k ≤ i〉 ∈ Ni+1 and the Ni’s are continuously increasing,

• In particular, the Ni ∩ ω2’s are strictly increasing and forms a club in ω2,

• N0 contains every relevant parameters.

For each i < ω1, let

δi = Ni ∩ ω2 and δ = sup{δi | i < ω1} = Nω1 ∩ ω2 ∈ S2
1 .
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And let

W = {i < ω1 | Ni ∩ ω2 ∈ acc(Cδ)} ⊂ S2
0 .

We have
If i ∈W, then W ∩ (i+ 1) ∈ Ni+1.

This is because δi ∈ acc(Cδ) and so Cδi = Cδ ∩ δi. Hence

W ∩ i = {k < i | δk ∈ acc(Cδ)} = {k < i | δk ∈ acc(Cδi)}.
Since 〈Nk | k ≤ i〉, Cδi are in Ni+1 and since i ∈ Ni+1, we conclude W ∩ (i+ 1) ∈ Ni+1.

We build 〈pi | i ∈W 〉 by recursion on i so that
• For i0 = Min(W ), we set pi0 = F (p, sup(Cδ ∩ δi0+1) + 1, 0),

• For i ∈W such that j = Max(W ∩ i) < i, we set pi = F (pj , sup(Cδ ∩ δi+1) + 1, o.t.(W ∩ i)),
• For i ∈ acc(W ), we set pi =

⋃{pk | k ∈W ∩ i} ∪ {sup(⋃{pk | k ∈ W ∩ i})}.

Here, F : P × ω2 × ω1 −→ P such that for (p, ξ, i) with sup p < ξ, if we let q = F (p, ξ, i), then

q ≤ p ∪ {ξ} and q || ḟ(i).

We may assume that F ∈ N0.

Claim. We have 4 items in accordance with the recursive construction.

(i = i0): For i0 = Min(W ), we have

• pi0 ∈ P ,

• δi0 < sup pi0 ,

• pi0 ∈ Ni0+1,

• pi0 || ḟ(0),

• pi0 ≤ p,

• (pi0 \ p) ∩ Cδ = ∅,

(i is the successor of j in W ): For i ∈W with j = Max(W ∩ i) < i, we have

• pi ∈ P ,

• δi < sup pi,

• pi ∈ Ni+1,

• pi || ḟ(o.t.(W ∩ i)),

• pi ≤ pj ,

• (pi \ pj) ∩Cδ = ∅,
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• 〈pk | k ∈W ∩ (i+ 1)〉 ∈ Ni+1,

(i ∈ acc(W )): For i ∈ acc(W ), we have

• pi ∈ P ,

• For all k ∈W ∩ i, pi ≤ pk,

• sup pi = δi ∈ acc(Cδ),

• 〈pk | k ∈W ∩ (i+ 1)〉 ∈ Ni+1,

(conclusion): Let q =
⋃{pi | i ∈W} ∪ {δ}, then q ∈ P , q ≤ p and q || ḟ .

Proof. By induction on i ∈W .
(i = i0): Since p ∈ N0 ⊂ Ni0 , we have sup p < δi0 ∈ Cδ and so

δi0 ≤ sup(Cδ ∩ δi0+1) < sup(Cδ ∩ δi0+1) + 1 < δi0+1 ∈ S2
1 .

Hence pi0 ∈ P , δi0 < sup pi0 , pi0 || ḟ(0), pi0 ≤ p, (pi0 \ p) ∩ Cδ = ∅ and pi0 ∈ Ni0+1.

(i is the successor of j in W ): We have 〈pk | k ∈ W ∩ (j + 1)〉 ∈ Nj+1. Since pj ∈ Nj+1 ⊂ Ni, we have
sup pj < δi ∈ Cδ. And so

δi ≤ sup(Cδ ∩ δi+1) < sup(Cδ ∩ δi+1) + 1 < δi+1 ∈ S2
1 .

Hence pi ∈ P , δi < sup pi, pi || ḟ(o.t.(W ∩ i)), pi ≤ pj , (pi \ pj) ∩ Cδ = ∅ and pi ∈ Ni+1. And so
〈pk | k ∈W ∩ (i+ 1)〉 ∈ Ni+1.

(i ∈ acc(W )): We have constructed 〈pk | k ∈W ∩ i〉. We observe that 〈pk | k ∈ W ∩ i〉 is definable from
parameters which are all in Ni+1. And so we would have

〈pk | k ∈ W ∩ i〉 ∈ Ni+1.

Some details follow. Notice first δi ∈ acc(Cδ) and so

Cδi = Cδ ∩ δi.
Since both 〈Nk | k ≤ i〉 and W ∩ (i+ 1) are in Ni+1, we have

〈Nk+1 | k ∈W ∩ i〉 ∈ Ni+1.

Since Cδi is in Ni+1, we have

〈sup(Cδ ∩ δk+1) | k ∈W ∩ i〉 = 〈sup(Cδi ∩Nk+1) | k ∈W ∩ i〉 ∈ Ni+1.

Note that 〈pk | k ∈ W ∩ i〉 is definable in Hθ from W ∩ i, F , p and 〈sup(Cδ ∩ δk+1) | k ∈ W ∩ i〉 as
follows;

• For k0 = Min(W ∩ i), pk0 = F (p, sup(Cδ ∩ δk0+1) + 1, 0),

• For k ∈W ∩ i with j = Max((W ∩ i) ∩ k) < k, pk = F (pj , sup(Cδ ∩ δk+1) + 1, o.t.((W ∩ i) ∩ k)),
• For k ∈ acc(W ∩ i), pk =

⋃{pk̄ | k̄ ∈ (W ∩ i) ∩ k} ∪ {sup(⋃{pk̄ | k̄ ∈ (W ∩ i) ∩ k})}.

We have 〈pk | k ∈ W ∩ i〉 ∈ Ni+1.
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Let pi =
⋃{pk | k ∈ (W ∩ i)} ∪ {sup(⋃{pk | k ∈ (W ∩ i)})}. We know pi ∈ Ni+1 and 〈pk | k ∈

W ∩ (i + 1)〉 ∈ Ni+1. Since δk < sup pk < δk+1 for all k ∈ (W ∩ i) \ acc(W ), we know pi as defined is a
bounded closed set. Since sup pi = δi ∈ acc(Cδ) ∩ S2

0 , we have pi ∈ P .

For (conclusion): Since δi < sup pi < δi+1 for i ∈ W \acc(W ), we see that q as defined is a closed subset
of ω2 with sup q = δ. To see q ∈ P , we may check that

q \ p ⊂ acc(Cδ) ∪ (δ \ Cδ).

But this holds by construction. Since q sits below every pi, we have q ≤ p and q || ḟ .

2.3 Lemma. P preserves every stationary subset of ω2.

Proof. Since P is σ-closed, P is proper. Hence P preserves every stationary subset of S2
0 . Therefore we

need to take care of stationary subsets T with T ⊆ S2
1 .

Let T ⊆ S2
1 be stationary and p ‖−P“ḟ : ω2 −→ ω2”. We want to find q ≤ p and δ ∈ T such that

q ‖−P “∀α < δ ḟ(α) < δ”. To this end let θ be a sufficiently large regular cardinal and 〈Ni | i < ω2〉 be a
continuously increasing sequence of elementary substructures of Hθ such that

• |Ni| = ω1 and δi = Ni ∩ ω2 < ω2.

• If i = 0 or i is a sucessor, then δi ∈ S2
1 .

• 〈Ni | i ≤ j〉 ∈ Nj+1.

Take i∗ ∈ S2
1 such that

• δ∗ = δi∗ = Ni∗ ∩ ω2 ∈ T ⊆ S2
1 .

Let

W ∗ = {i < i∗ | δi ∈ acc(Cδ∗)} ⊂ S2
0 .

Claim 1. (1) The order type of W ∗ is exactly ω1.

(2) If i ∈W ∗, then W ∗ ∩ (i+ 1) ∈ Ni+1.

Proof. For (1): Since δ∗ ∈ S2
1 , we know that 〈δi|i < i∗〉 is a club in δ∗ and so is acc(Cδ∗). Hence

o.t.(W ∗) = ω1.

For (2): This is where we need ω1 . Since i ∈W ∗, we have

Cδi = Cδ∗ ∩ δi.
Then for any k < i, we have k ∈W ∗ iff δk ∈ acc(Cδ∗) iff δk ∈ acc(Cδi) iff 〈Nk | k ≤ i〉(k)∩ω2 ∈ acc(Cδi ).

But 〈Nk | k ≤ i〉, ω2, Cδi = CNi∩ω2 are all in Ni+1. Hence W ∗ ∩ (i+ 1) = (W ∗ ∩ i) ∪ {i} ∈ Ni+1.

We have seen that P adds no new sequences of ordinals of length less than ω2. So we may construct
〈pi | i ∈W ∗〉 so that
• For i0 = Min(W ∗), let pi0 = K(p, sup(Cδ∗ ∩ δi0+1) + 1, δ0),

• For i with i > j = Max(W ∗ ∩ i), let pi = K(pj , sup(Cδ∗ ∩ δi+1) + 1, δi),

• For i ∈ acc(W ∗), let pi =
⋃{pk | k ∈ W ∗ ∩ i} ∪ {δi},
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where,

K : P × ω2 × ω2 −→ P

such that for (a, ξ, η) with sup(a) < ξ < ω2, if we write q = K(a, ξ, η), then q ≤ a ∪ {ξ} and q decides
ḟ�η.

We may assume that K ∈ N0.

Claim 2. For i0 = Min(W ∗), we have

• pi0 ∈ P ,
• δi0 < sup(pi0),

• pi0 ∈ Ni0+1,

• pi0 ‖−P“ḟ�δi0 = f�δi0” for some (abusive notation) f�δi0 ∈ Ni0+1,

• pi0 ≤ p,
• (pi0 \ p) ∩ Cδ∗ = ∅.

Proof. NoteK, p ∈ N0 ⊂ Ni0+1. Also note that sup(Cδ∗)∩δi0+1 < δi0+1 and so sup(Cδ∗)∩δi0+1 ∈ Ni0+1.
Hence pi0 ∈ Ni0+1. The rest is more or less explicit in the definition of pi0+1.

Claim 3. For i > j = Max(W ∗ ∩ i), we inductively suppose
• 〈pk | k ∈W ∗ ∩ (j + 1)〉 ∈ Nj+1 ⊆ Ni ⊂ Ni+1.

• In particular, pj ∈ Nj+1 ⊆ Ni holds.

Then we have

• pi ∈ P ,
• δi < sup(pi),

• pi ∈ Ni+1,

• pi ‖−P “ḟ�δi = f�δi” for some (abusive notation) f�δi ∈ Ni+1,

• pi ≤ pj ,

• (pi \ pj) ∩Cδ∗ = ∅,
• 〈pk | k ∈W ∗ ∩ (i+ 1)〉 ∈ Ni+1.

Proof. Since i ∈W ∗, we haveW ∗∩i ∈ Ni+1. Hence o.t.(W ∗∩i) ∈ Ni+1. Since δi <sup(Cδ∗ ∩δi+1)+1 ∈
Ni+1 as well, we have pi = K(pj , sup(Cδ∗ ∩ δi+1) + 1, o.t.(W ∗ ∩ i)) ∈ Ni+1. Hence 〈pk | k ∈ W ∗ ∩ (i+ 1)〉 =
〈pk | k ∈W ∗ ∩ (j + 1)〉 ∪ {(i, pi)} ∈ Ni+1.

Claim 4. For i ∈ acc(W ∗), we have

• pi ∈ P ,
• For all k ∈ W ∗ ∩ i, pi ≤ pk,

• sup(pi) = δi ∈ acc(Cδ∗),

• 〈pk | k ∈W ∗ ∩ (i+ 1)〉 ∈ Ni+1.
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Proof. For k ∈ W ∗ ∩ i, we inductively have pk ∈ Nk+1 and δk < sup(pk). Hence δk < sup(pk) < δk+1.
Since i ∈ acc(W ∗), we conclude

sup{sup(pk) | k ∈W ∗ ∩ i} = sup{δk | k ∈W ∗ ∩ i} = δi.
Since cf(δi) = ω, we have pi ∈ P .
〈pk | k ∈W ∗ ∩ i〉 is definable as follows.

• For k0 = Min(W ∗ ∩ i), pk0 = K(p, sup(Cδi ∩ δk0+1) + 1, δk0),

• For k > j = Max((W ∗ ∩ i) ∩ k), pk = K(pj, sup(Cδi ∩ δk+1) + 1, δk),

• For k ∈ acc(W ∗ ∩ i), pk =
⋃{pk̄ | k̄ ∈ (W ∗ ∩ i) ∩ k} ∪ {δk}.

This is in terms of K, W ∗ ∩ i, 〈Nk | k ∈W ∗ ∩ i〉, C = 〈Cδ | δ is limit and δ < ω2〉 and Cδi which are all
in Ni+1. Hence 〈Nk | k ∈W ∗ ∩ i〉 ∈ Ni+1. For this definabilty, we use the ω1 -ness of C.

Now let q =
⋃{pk | k ∈ W ∗} ∪ {δ∗}. Then this q is closed, as

δk < sup(pk) < δk+1.

And q ∈ P , as q \ p ⊂ acc(Cδ∗)∪ (δ∗ \Cδ∗). Since pk ‖−P “ḟ�δk = f�δk” with f�δk ∈ Nk+1, we conclude
q ‖−P “∀α < δ∗ ḟ(α) < δ∗”.

2.4 Lemma. P adds a club E ⊂ ω2 such that 〈Cα | α ∈ limit ∩ ω2〉 is non-strong due to E. Namely,

∀δ ∈ acc(E) ∩ S2
1 {α ∈ Cδ | sucCδ

(α) ∈ E} is bounded below δ.

Proof. We design P so that this holds. Let E =
⋃
G, where G is a P -generic filter over V . Then we

have
∀δ ∈ acc(E) ∩ S2

1 ∃δ̄ < δ such that E ∩ (δ \ δ̄) ⊂ (δ \ Cδ) ∪ acc(Cδ).

Accordingly we have

2.5 Theorem. The forcing Axiom for the following class of p.o. sets P with ω2-many dense subsets
fails, where

P contains

• The notion of forcing to force ω1 via the initial segments,

• The notions of forcing to kill the strongness of all ω1 -sequences, if any.

2.6 Note. (CH) We may directly force a generic strong ω1 -sequence via countable conditions.

Question 1. Give a single p.o. set which is σ-closed, ω2-Baire, preserves the stationary subsets of ω2

so that the Forcing Axiom with ω2-many dense subsets fails. Does < ω2-support product of the above p.o.
sets work ?
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Question 2. Is it easy to generalize the argument in this note to higher cardinals ? Do we really need
witnesses and strong witnesses of [S2] ?

Question 3. Does a non-reflecting stationary set S ⊂ S2
0 = {α < ω2 | cf(α) = ω} of any sort suffice to

replace ω1-sequence in the present context ? Can you view witnesses and strong witnesses of [S2] along this
line ?
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