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A sequent system for the interpretability logic with the persistence axiom

Katsumi Sasaki

Abstract. In [Sas01], it was given a cut-free sequent system for the smallest interpretability logic IL.
He first gave a cut-free system for IK4, a sublogic of IL, whose ✄-free fragment is the modal logic K4.
Here, using the method in [Sas01], we give sequent systems for the interpretability logic ILP obtained by
adding the persistence axiom P : (p ✄ q) ⊃ ✷(p ✄ q) to IL and for the logic IK4+P obtained by adding
P to IK4. We also prove a cut-elimination theorem for the system for IK4P.

1 Introduction

The idea of interpretability logics arose in Visser [Vis90]. He introduced the logics as extensions of the
provability logic GL with a binary modality ✄. The arithmetic realization of A✄B in a theory T will be
that T plus the realization of B is interpretable in T plus the realization of A (T +A interprets T +B).
More precisely, there exists a function f (the relative interpretation) on the formulas of the language of
T such that T +B � C implies T +A � f(C).

The interpretability logics were considered in several papers. An arithmetic completeness of the
interpretability logic ILM, obtained by adding Montagna’s axiom to the smallest interpretability logic
IL, was proved in Berarducci [Ber90] and Shavrukov [Sha88] (see also Hájek and Montagna [HM90] and
Hájek and Montagna [HM92]). [Vis90] proved that the interpretability logic ILP, obtained by adding
the persistence axiom to IL, is also complete for another arithmetic interpretation. The completeness
with respect to Kripke semantics due to Veltman was, for IL, ILM and ILP, proved in de Jongh and
Veltman [JV90]. The fixed point theorem of GL can be extended to IL and hence ILM and ILP (cf.
de Jongh and Visser [JV91]). The unary pendant “T interprets T +A” is much less expressive and was
studied in de Rijke [Rij92]. For an overview of interpretability logic, see Visser [Vis97], and Japaridze
and de Jongh [JJ98].

The language of interpretability logics contain a unary modal operator ✷ and a binary modal operator
✄. However, we can show the equivalence between ✷A and ¬A✄⊥ in sublogic IK4, which is the smallest
among the logics treated here (cf. [JJ98]). Hence, we do not have to treat ✷ as a primary operator.
Systems for interpretability logics with two primary modal operators are much more complicated than
the ones with one primary modal operator. So, in this paper, we treat ✷A as an abbreviation of ¬A✄⊥.

We use lower case Latin letters p, q, r, possibly with suffixes, for propositional variables. Formulas are
defined, as usual, from the propositional variables and the logical constant ⊥ (contradiction) by using
binary logical connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication) and ✄ (interpretation). We
use upper case Latin letters A,B,C, · · ·, possibly with suffixes, for formulas. A formula of the form A✄B
is said to be a ✄-formula. The expressions ¬A, ✷A and ✸A are abbreviations for A ⊃ ⊥,¬A ✄ ⊥ and
¬(A ✄⊥), respectively.

Definition 1.1. The degree d(A) of a formula A is defined inductively as follows:
(1) d(p) = 1,
(2) d(⊥) = 0,
(3) d(A ∧B) = d(A ∨B) = d(A ⊃ B) = d(A ✄ B) = d(A) + d(B) + 1.

Note that d(A ✄⊥) < d(A ✄ B) for each B �= ⊥.

An interpretability logic is a set of formulas containing all the tautologies and axioms
K : ✷(p ⊃ q) ⊃ (✷p ⊃ ✷q),
L : ✷(✷p ⊃ p) ⊃ ✷p,
J1 : ✷(p ⊃ q) ⊃ (p ✄ q),
J2 : (p ✄ q) ∧ (q ✄ r) ⊃ (p ✄ r),
J3 : (p ✄ r) ∧ (q ✄ r) ⊃ ((p ∨ q) ✄ r),
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J5 : (✸p) ✄ p,
and closed under modus ponens, substitution and necessitation. By IL, we mean the smallest inter-
pretability logic. By ILP, we mean the smallest set of formulas containing all the theorems in IL and
the axiom

P : (p ✄ q) ⊃ ✷(p ✄ q)
and closed under modus ponens, substitution and necessitation.

If we use ✷ as a primary operator, then we need one more axiom
J4 : (p ✄ q) ⊃ (✸p ⊃ ✸q)

to define interpretability logics. Here ✷ is not primary and we can prove (J4) in the logics defined in this
paper (see [Sas01]).

The aim of this paper is to give a cut-free sequent system for ILP using the method in [Sas01]. [Sas01]
first gave a cut-free system for a sublogic IK4 of IL, whose ✄-free fragment is the normal modal logic
K4 in a sense that ✷ is a primary. Using the system for a IK4 and a property of Löb’s axiom, a cut-free
system for IL was given.

Here, as in [Sas01], we first give a cut-free system for a sublogic IK4 + P of ILP, whose ✄-free
fragment is K4. The precise definitions of the logic IK4 and IK4+P we need here are given as follows.

By IK4, we mean the smallest set of formulas containing all the tautologies and axioms K, J1, J2,
J3, J5 and

4 : ✷p ⊃ ✷✷p,
and closed under modus ponens, substitution and necessitation. For a formula A and a logic L, L + A
is the smallest set of formulas including L ∪ {A} and closed under modus ponens, substitution and
necessitation.

Lemma 1.2.
(1) IL=IK4+L,
(2) ILP=IL+P=IK4+P+L.

In the next section we give a sequent system for IK4 + P . Cut-elimination theorem is shown in
Section 3. In Section 4, we give a sequent system for ILP.

2 A sequent system for IK4+P

In this section we introduce a sequent system GIK4P for IK4+P . We use Greek letters, possibly with
suffixes, for finite sets of formulas. The expression ΓA denotes the set Γ− {A}. In this paper, we often
use finite sets of ✄-formulas. So, it is useful to prepare symbols for them and we use Σ, possibly with
suffixes, for finite sets of ✄-formulas. For each prefix � ∈ {✷,✸,¬}, the expression �Γ denotes the set
{�A | A ∈ Γ}. Similarly, Γ ✄⊥ denotes {A ✄⊥ | A ∈ Γ}. By a sequent, we mean the expression

Γ→ ∆.

For brevity’s sake, we write

A1, · · · , Ak,Γ1, · · · ,Γ� → ∆1, · · · ,∆m, B1, · · · , Bn

instead of
{A1, · · · , Ak} ∪ Γ1 ∪ · · · ∪ Γ� → ∆1 ∪ · · · ∪∆m ∪ {B1, · · · , Bn}.

By Sub(A), we mean the set of subformulas of A. By Sub(Γ → ∆), we mean the set of subformulas of
each formula occurring in Γ ∪∆.

Our system GIK4P is defined from the following axioms and inference rules in the usual way.

Axioms of GIK4P
A → A
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⊥ →
Inference rules of GIK4P

Γ→ ∆
A,Γ → ∆

(T →)
Γ→ ∆

Γ→ ∆, A
(→ T )

Γ→ ∆, A A,Π → Λ
Γ,ΠA → ∆A,Λ

(cut)

Ai,Γ→ ∆
A1 ∧A2,Γ→ ∆

(∧ →i)
Γ→ ∆, A Γ→ ∆, B

Γ→ ∆, A ∧B
(→ ∧)

A,Γ→ ∆ B,Γ→ ∆
A ∨B,Γ→ ∆

(∨ →)
Γ→ ∆, Ai

Γ→ ∆, A1 ∨A2
(→ ∨i)

Γ→ ∆, A B,Γ→ ∆
A ⊃ B,Γ→ ∆

(⊃→)
A,Γ→ ∆, B

Γ→ ∆, A ⊃ B
(→⊃)

A, {B,X1, · · · , Xn}✄⊥,Σ→ B,X1, · · · , Xn Σ→ Y1 ✄ B · · · Σ→ Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn,Σ→ A ✄ B
(✄K4P )

where n = 0, 1, 2, · · · .

Note that in (✄K4P ), Σ might contain Xi ✄ Yi.

Definition 2.1. A proof figure in GIK4P for a sequent Γ→ ∆ is defined as follows:
(1) if a sequent S is an axiom in GIK4P, then S is a proof figure for S,

(2) if P1, · · · ,Pn are proof figures for sequents S1, · · · , Sn, and
S1 · · · Sn

S
is an inference rule in

GIK4P, then
P1 · · · Pn

S
is a proof figure for S.

We say that a sequent S is provable in GIK4P, and write S ∈ GIK4P, if there exists a proof figure
for S. We use P ,Q, possibly with suffixes, for proof figures.

Let P be a proof figure for Γ → ∆. In order to emphasize the end sequent of P , we also use the
expressions

P
{

...
Γ→ ∆

and
...

Γ→ ∆

}
P

instead of P .

Definition 2.2. A set SubFig(P) of a proof figure P is defined as follows:
(1) SubFig(P) = {P} if P is an axiom,

(2) SubFig(
P1 · · · Pn

Γ→ ∆
) = SubFig(P1) ∪ · · ·SubFig(Pn) ∪ {P}.

We call an element of SubFig(P) a subfigure of P and an element of SubFig(P)−{P} a proper subfigure
of P . As to the other terminology concerning the system, we mainly follow Gentzen [Gen35].

If n = 0, the inference rule (✄K4P ) has only one upper sequent and is of the following form:

A,B ✄⊥,Σ→ B

Σ→ A ✄ B

Hence

Lemma 2.3. There exist cut-free proof figures for → ⊥✄ A and → A ✄ A in GIK4P.

The main theorem in this section is
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Theorem 2.4. A ∈ IK4 + P iff → A ∈ GIK4P.

To prove the theorem above, we need some preparations.

By GIK4, we mean the system obtained from GIK4P by replacing (✄K4P ) by

A, {B,X1, · · · , Xn}✄⊥ → B,X1, · · · , Xn Σ→ Y1 ✄ B · · · Σ→ Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn,Σ→ A ✄ B
(✄K4)

By GIK4 + P , we mean the system obtained by adding the axiom
GP : A ✄ B → ✷(A ✄ B)

to GIK4.

[Sas01] proved cut-elimination theorem of GIK4 and the following two lemmas.

Lemma 2.5. There exist cut-free proof figures for → ⊥✄ A and → A ✄ A in GIK4.

Lemma 2.6. A ∈ IK4 iff → A ∈ GIK4.

Corollary 2.7. A ∈ IK4 + P iff → A ∈ GIK4 + P.

Lemma 2.8. → A ∈ GIK4 + P implies → A ∈ GIK4P.

Proof. It is sufficient to show that the axiom GP is provable in GIK4P and the inference rule (✄K4)
holds in GIK4P. Using (T →) and (✄K4P ), we can easily see that (✄K4) holds in GIK4P. The following
is the proof figure for GP :

B ✄ C → B ✄ C

B ✄ C → B ✄ C,⊥
⊥ → ⊥

B ✄ C,⊥ → ⊥
¬(B ✄ C), B ✄ C → ⊥
B ✄ C → ✷(B ✄ C)

.

 

Lemma 2.9. → A ∈ GIK4P implies → A ∈ GIK4 + P.

Proof. It is sufficient to show that the rule (✄K4P ) holds in GIK4 + P . We can see it by using the
following inference rule, the axiom X ✄ Y → ✷(X ✄ Y ) for X ✄ Y ∈ Σ, Lemma 2.5 and cut, possibly
several times.
A, {B, X1, · · · , Xn} ✄ ⊥,Σ → B, X1, · · · , Xn,¬Σ Σ → Y1 ✄ B · · · Σ → Yn ✄ B Σ → ⊥ ✄ B · · · Σ → ⊥ ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn, ✷Σ, Σ → A ✄ B
.

 
From Corollary 2.7, Lemma 2.8 and Lemma 2.9, we obtain Theorem 2.4.

3 Cut-elimination theorem for GIK4P

In this section, we prove cut-elimination theorem for GIK4P.

Theorem 3.1. If Γ→ ∆ ∈ GIK4P, then there exists a cut-free proof figure for Γ→ ∆ in GIK4P.

To prove the theorem, we need some lemmas.

Lemma 3.2. Let P1 and P2 be cut-free proof figures for Σ1 → A✄B and Σ2 → B ✄C, respectively.
Then there exists a cut-free proof figure for Σ1,Σ2 → A ✄ C.
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Proof. We use an induction on P1. If P1 is an axiom, then Σ1 = {A ✄ B}, and hence we have the
following cut-free proof figure for Σ1,Σ2 → A ✄ C.

A → A

using (T →) twice, and (→ T )
A,C ✄⊥, A ✄⊥,Σ2 → C,A

...
Σ2 → B ✄ C

}
P2

A ✄ B,Σ2 → A ✄ C

If P1 is not axiom, then there exists an inference rule I that introduces the end sequent of P1. We only
show the case that I is (✄K4P ) since the other cases can be shown easily. The inference rule I is of the
form

A, {B,X1, · · · , Xn}✄⊥,Σ′
1 → B,X1, · · · , Xn Σ′

1 → Y1 ✄ B · · · Σ′
1 → Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn,Σ′
1 → A ✄ B

where Σ1 = Σ′
1∪{X1 ✄Y1, · · · , Xn ✄Yn}. Clearly, there exist cut-free proof figures for the upper sequents

of I. Using the induction hypothesis and P2, there exists a cut-free proof figure for Σ′
1,Σ2 → Yi ✄ C for

each i = 1, · · · , n. Using (✄K4) below, we obtain the lemma.

A, {B, X1, · · · , Xn} ✄ ⊥,Σ′
1 → B, X1, · · · , Xn Σ′

1, Σ2 → Y1 ✄ C · · · Σ′
1, Σ2 → Yn ✄ C

X1 ✄ Y1, · · · , Xn ✄ Yn, Σ′
1, Σ2 → A ✄ C

 

Lemma 3.3. If there exists a cut-free proof figure for Σ → A ✄ B, then either one of the following
two holds:

(1) there exists a cut-free proof figure for Σ→,
(2) for some subsets Σ1 and Σ2 of Σ, there exist cut-free proof figures for

A,B ✄⊥, {X ✄⊥ | X ✄ Y ∈ Σ1},Σ2 → {X | X ✄ Y ∈ Σ1}, B
and

Σ2 → Y ✄ B, for each Y ∈ {Y ′ | X ✄ Y ′ ∈ Σ1}.
Proof. We use an induction on the cut-free proof figure P for Σ → A ✄ B. If P is an axiom, then

{A ✄ B} = Σ and by Lemma 2.3, there exist cut-free proof figures for

A,B ✄⊥, A ✄⊥ → A,B and → B ✄ B.

Hence (2) holds.
If P is not axiom, then there exists an inference rule I that introduces the end sequent of P . If I is

(→ T ), then (1) holds. If I is (T →), then by the induction hypothesis, we obtain the lemma. If I is
(✄K4P ), then (2) holds.  

It is known that Theorem 3.1 follows from the following lemma.

Lemma 3.4. Let P� be a cut-free proof figure for Γ → ∆,X and Pr be a cut-free proof figure for
X,Π→ Λ. Let P be the proof figure

P�

{
...

Γ→ ∆,X

...
X,Π→ Λ

}
Pr

Γ,ΠX → ∆X ,Λ
.

Then there exists a cut-free proof figure for the end sequent of P.
Proof. The degree d(P) of P is defined as d(X). The left rank R�(P) and the right rank Rr(P) of P

are defined as usual. We use an induction on R�(P) + Rr(P) + ωd(P). We only treat the case that P ,
P� and Pr are of the following forms.
P�:

5



��

P�
0

{
...

C,X� ✄⊥,ΣL → X�

...
ΣL → Y �

1 ✄ D

}
P�

1 · · ·
...

ΣL → Y �
m ✄ D

}
P�

m

Σ�,ΣL → C ✄ D

Pr:

Pr
0

{
...

A,Xr ✄⊥,ΣR → Xr

...
ΣR → Y r

1 ✄ B

}
Pr

1 · · ·
...

ΣR → Y r
n ✄ B

}
Pr

n

C ✄ D,Σr,ΣR → A ✄ B

P :

P�

{
...

Σ�,ΣL → C ✄ D

...
C ✄ D,Σr,ΣR → A ✄ B

}
Pr

Σ�,ΣL,Σr
C✄D,ΣR

C✄D → A ✄ B

where
Σ� = {X�

1 ✄ Y �
1 , · · · , X�

m ✄ Y �
m},

Σr = {Xr
1 ✄ Y r

1 , · · · , Xr
n ✄ Y r

n },
X� = {X�

1, · · · , X�
m, D},

Xr = {Xr
1 , · · · , Xr

n, B}
and C ✄ D ∈ Σr ∪ ΣR.

By P� and Pr
0 , we have the following proof figure for each j = 1, · · · , n:

P�

{
...

Σ�,ΣL → C ✄ D

...
A,Xr ✄⊥,ΣR → Xr

}
Pr

0

Σ�,ΣL, (A,Xr ✄⊥,ΣR)C✄D → Xr

We note the degree and the left rank of the figure above are the same as those of P and the right rank
is smaller. Using the induction hypothesis and (T →), possibly several times, we obtain a cut-free proof
figure Qr

0 for
A,Xr ✄⊥,Σ�,ΣL,ΣR

C✄D → Xr.

Similarly, by P� and Pr
j , we have the following proof figure for each j = 1, · · · , n:

P�

{
...

Σ�,ΣL → C ✄ D

...
ΣR → Y r

j ✄ B

}
Pr

j

Σ�,ΣL,ΣR
C✄D → Y r

j ✄ B

and using the induction hypothesis, we obtain a cut-free proof figure Qr
j for the end sequent of the figure

above.
If C ✄ D �∈ Σr, then by Qr

0, Qr
j and (✄K4P ), we obtain the cut-free proof figure for the end sequent

of P .
Assume that C ✄D ∈ Σr = {Xr

1 ✄Y r
1 , · · · , Xr

n ✄Y r
n }. Without loss of generality, we also assume that

C ✄ D = Xr
1 ✄ Y r

1 �∈ Σr − {Xr
1 ✄ Y r

1 }. We divide into the cases.
The case that C = D = ⊥: By Pr

0 , we have the following proof figure Q1:

⊥ → ⊥
⊥,⊥✄⊥ → ⊥
→ ⊥✄⊥

...
A, {B,⊥, Xr

2 , · · · , Xr
n}✄⊥,ΣR → B,⊥, Xr

2 , · · · , Xr
n

}
Pr

0

(A, {B,Xr
2 , · · · , Xr

n}✄⊥,ΣR)⊥✄⊥ → B,⊥, Xr
2 , · · · , Xr

n

We note that d(Q1) = d(⊥ ✄ ⊥) = d(⊥ ✄ D) = d(P), 1 = R�(Q1) = R�(P) and Rr(Q1) < Rr(P).
Using the induction hypothesis, we obtain a cut-free proof figure for the end sequent of the figure
above. Using the axiom ⊥ →, (cut) and the induction hypothesis, we obtain a cut-free proof figure
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for (A, {B,Xr
2 , · · · , Xr

n} ✄ ⊥,ΣR)⊥✄⊥ → (B,Xr
2 , · · · , Xr

n)⊥. Using (T →) and (→ T ), possibly several
times, we obtain a cut-free proof figure for

A, {B,Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D → B,Xr

2 , · · · , Xr
n.

Using Qr
2, · · · ,Qr

n and (✄K4P ), we have a cut-free proof figure for the end sequent of P .
The case that C = ⊥ and D �= ⊥: By Qr

0, we have the following proof figure Q2:

⊥ → ⊥
⊥,⊥✄⊥ → ⊥
→ ⊥✄⊥

...
A, {B,⊥, Xr

2 , · · · , Xr
n}✄⊥,Σ�,ΣL,ΣR

C✄D → B,⊥, Xr
2 , · · · , Xr

n

}
Pr

0

(A, {B,Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D)⊥✄⊥ → B,⊥, Xr

2 , · · · , Xr
n

We note that d(Q2) = d(⊥ ✄ ⊥) < d(⊥ ✄ D) = d(P). Using the induction hypothesis, we obtain a
cut-free proof figure for the end sequent of the figure above. Using the axiom ⊥ →, (cut) and the
induction hypothesis, we obtain a cut-free proof figure for (A, {B,Xr

2 , · · · , Xr
n} ✄ ⊥,Σ�,ΣL,ΣR)⊥✄⊥ →

(B,Xr
2 , · · · , Xr

n)⊥. Using (T →) and (→ T ), possibly several times, we obtain a cut-free proof figure for

A, {B,Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D → B,Xr

2 , · · · , Xr
n.

Using Qr
2, · · · ,Qr

n and (✄K4P ), we have a cut-free proof figure for the end sequent of P .
The case that C �= ⊥: By P�

0, Lemma 2.3 and (✄K4P ), we have the following cut-free proof figure:

P�
0

{
...

C, {D,X�
1, · · · , X�

m}✄⊥,ΣL → D,X�
1, · · · , X�

m

...
ΣL → ⊥✄⊥

· · ·
...

ΣL → ⊥✄⊥
{D,X�

1, · · · , X�
m}✄⊥,ΣL → C ✄⊥

If D = ⊥, then using Pr
0 , we have the following proof figure P1:

...
...

P�
0 ΣL → ⊥✄⊥ · · · ΣL → ⊥✄⊥

X� ✄⊥,ΣL → C ✄⊥
...

A, {B,C,Xr
2 , · · · , Xr

n}✄⊥,ΣR → B,C,Xr
2 , · · · , Xr

n

}
Pr

0

{D,X�
1, · · · , X�

m}✄⊥,ΣL, (A, {B,Xr
2 , · · · , Xr

n}✄ ⊥,ΣR)C✄⊥ → B,C,Xr
2 , · · · , Xr

n

and note that d(P1) = d(C ✄ ⊥) = d(C ✄ D) = d(P), 1 = R�(P1) = R�(P) and Rr(P1) < Rr(P). Using
the induction hypothesis, we obtain a cut-free proof figure for the end sequent of the figure above. Using
(T →) and (→ T ), possibly several times, we obtain a cut-free proof figure P2 for

A, {B,D,X�
1, · · · , X�

m, Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D → B,C,Xr

2 , · · · , Xr
n.

If D �= ⊥, then using Qr
0, we have the following proof figure P3:

...
...

P�
0 ΣL → ⊥✄⊥ · · · ΣL → ⊥✄⊥

X� ✄⊥,ΣL → C ✄⊥
...

A, {B,C,Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D → B,C,Xr

2 , · · · , Xr
n

}
Qr

0

{D,X�
1, · · · , X�

m}✄⊥,ΣL, (A, {B,Xr
2 , · · · , Xr

n}✄⊥,Σ�,ΣL,ΣR
C✄D)C✄⊥ → B,C,Xr

2 , · · · , Xr
n

and note that d(P3) = d(C ✄ ⊥) < d(C ✄ D) = d(P). Using the induction hypothesis, we obtain a
cut-free proof figure for the end sequent of the figure above. Using (T →) and (→ T ), possibly several
times, we obtain a cut-free proof figure P4 for the end sequent of P2.

By P2, P4 and P�
0, we have the following proof figure:

P2( or P4)

...
C, {D,X�

1, · · · , X�
m}✄⊥ → D,X�

1, · · · , X�
m

}
P�

0

A, {B,D,X�
1, · · · , X�

m, Xr
2 , · · · , Xr

n}✄⊥ → B,D,X�
1, · · · , X�

m, Xr
2 , · · · , Xr

n
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We note the degree of the figure above is smaller than that of P . Using the induction hypothesis, we
obtain a cut-free proof figure P5 for the end sequent of the figure above.

By Qr
1 and Lemma 3.3, either one of the following two holds:

(1) there exists a cut-free proof figure for Σ�,ΣL,ΣR
C✄D →,

(2) for some subsets Σ1 and Σ2 of Σ� ∪ ΣL ∪ ΣR
C✄D, there exist cut-free proof figures for

D,B ✄⊥, {X ✄⊥ | X ✄ Y ∈ Σ1},Σ2 → {X | X ✄ Y ∈ Σ1}, B
and

Σ2 → Y ✄ B, for each Y ∈ {Y ′ | X ✄ Y ′ ∈ Σ1}.
If (1) holds, we obtain the lemma, immediately. Assume that (2) holds. Then by P5 and (cut) whose cut
formula is D, we have the following proof figure:

...
P5 D,B ✄⊥, {X ✄⊥ | X ✄ Y ∈ Σ1},Σ2 → {X | X ✄ Y ∈ Σ1}, B

A,D ✄⊥,∆✄⊥,Σ2 → B,X�
1, · · · , X�

m, Xr
2 , · · · , Xr

n, {X | X ✄ Y ∈ Σ1}
where ∆ is the succedent of the end sequent. We note that the degree of the proof figure above is
d(D) < d(C ✄D) = d(P). Using the induction hypothesis, we have a cut-free proof figure P6 for the end
sequent of the figure above.

By (2), Lemma 2.3 and (✄K4P ), we have a cut-free proof figure for

B ✄⊥, {X ✄⊥ | X ✄ Y ∈ Σ1},Σ2 → D ✄⊥.

Using P6, we have the following proof figure:

...
B ✄⊥, {X ✄⊥ | X ✄ Y ∈ Σ1},Σ2 → D ✄⊥ P6

A,∆ ✄⊥,Σ2 → B,X�
1, · · · , X�

m, Xr
2 , · · · , Xr

n, {X | X ✄ Y ∈ Σ1}
Since C �= ⊥, the degree of the proof figure above is d(D ✄⊥) < d(C ✄ D) = d(P). Using the induction
hypothesis, we have a cut-free proof figure P7 for the end sequent of the figure above.

On the other hand, by P�
i , Qr

1 and Lemma 4.2, we obtain a cut-free proof figureQ�
i for Σ

�,ΣL,ΣR
C✄D →

Y �
i ✄B for each i = 1, · · · ,m. Using P7, Qr

2, · · · ,Qr
n, (2), (T →), possibly several times, and (✄K4P ), we

obtain a cut-free proof figure for the end sequent of P .  

4 A sequent system for ILP

In this section, we introduce a sequent system GILP for ILP. A cut-elimination theorem for GILP is
conjectured to be given by using the system GIK4P and a property of Löb’s axiom. The method is used
in [Sas01] to give a cut-elimination theorem for IL.

Definition 4.1. The system GILP is obtained from GIK4P by replacing (✄K4P ) by the following
inference rule:

A, A ✄ ⊥, {B, X1, · · · , Xn} ✄ ⊥, Σ → B, X1, · · · , Xn Σ → Y1 ✄ B · · · Σ → Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn, Σ → A ✄ B
(✄LP )

where n = 0, 1, 2, · · · .

Theorem 4.2. A ∈ ILP iff → A ∈ GILP.

To prove the theorem above, we need some preparations.

8

��



��

Definition 4.3. By GIK4P+L, we mean the system obtained from GIK4P by adding Löb’s axiom

→ ✷(✷A ⊃ A) ⊃ ✷A.

Corollary 4.4. A ∈ ILP iff → A ∈ GIK4P + L.

Proof. From Theorem 2.4.  

Lemma 4.5. → A ∈ GIK4P + L implies → A ∈ GILP.

Proof. By the following figures, we can see that Löb’s axiom → ✷(✷A ⊃ A) ⊃ ✷A is provable in
GILP and (✄K4P ) holds in GILP.

¬A,✷A,⊥ ✄⊥,✷(✷A ⊃ A)→ ⊥,¬(✷A ⊃ A) → ⊥✄⊥
¬(✷A ⊃ A) ✄⊥ → ¬A ✄⊥ (✄LP )

A, {B, X1, · · · , Xn} ✄ ⊥,Σ → B, X1, · · · , Xn

A, A ✄ ⊥, {B,X1, · · · , Xn} ✄ ⊥, Σ → B, X1, · · · , Xn Σ → Y1 ✄ B · · ·Σ → Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn, Σ → A ✄ B
(✄LP )

 

Lemma 4.6. (A ∧ (A ✄ ⊥))✄ B → A ✄ B ∈ GIK4P + L.

Proof. In [Sas01], it was proved that

(A ∧ (A ✄⊥)) ✄ B → A ✄ B ∈ GIK4 + L,

where GIK4 + L is the system obtained by adding → ✷(✷A ⊃ A) ⊃ ✷A to GIK4. On the other hand,
in Lemma 2.8, we show that (✄K4) holds in GIK4P. Hence we obtain the lemma.  

Lemma 4.7. → A ∈ GILP implies → A ∈ GIK4P + L.

Proof. By the following figure, Lemma 4.6 and cut, the inference rule (✄LP ) holds in GIK4P + L.

A, A ✄ ⊥, {B, X1, · · · , Xn} ✄ ⊥,Σ → B, X1, · · · , Xn

A, A ∧ (A ✄ ⊥), {B,X1, · · · , Xn} ✄ ⊥, Σ → B, X1, · · · , Xn

A ∧ (A ✄ ⊥), {B,X1, · · · , Xn} ✄ ⊥, Σ → B, X1, · · · , Xn Σ → Y1 ✄ B · · ·Σ → Yn ✄ B

X1 ✄ Y1, · · · , Xn ✄ Yn, Σ → (A ∧ (A ✄ ⊥)) ✄ B

 

From Corollary 4.4, Lemma 4.5 and Lemma 4.7, we obtain Theorem 4.2.
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