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Abstract

We present a note on iterated Hechler forcing based on [S], [B] and [F].

Introduction

We are interested in constructions of iterated forcing. We have gained an access to a construction in
[S] due to [B]. We are encouraged by a series of lectures by [F] at the set theory seminar, Nagoya university,
October through December 2001. We present a note on the very basic part of the construction.

§1. Fundamentals on Complete Sub-preorders, Reductions and Quotients

We review complete sub-preorders, reductions and quotient preorders.

1.1 Definition. Let P be a subset of a preorder Q. We consider P as a sub-preorder of Q. Namely,
1 ∈ P and the order on P is ≤Q �P . We call P is a complete sub-preorder of Q, if every maximal antichain
A in P remains a maximal antichain in Q. We write P <· Q to express P is a complete sub-preorder of Q.

For q ∈ Q, p ∈ P is called a reduction of q, if every p′ ≤ p in P is compatible with q in Q.
Let P <· Q and GP be a P -generic filter over V . The quotient preorder, denoted by Q/GP , is defined

in V [GP ] as follows; Q/GP = {q ∈ Q | for any a ∈ GP , we demand a and q are compatible in Q}. For
q, r ∈ Q/GP , we define r ≤ q, if r ≤ q in Q. So Q/GP is a sub-preorder of Q defined in V [GP ].

The following are from [K].

1.2 Lemma. (1) Let P <· Q and GQ be a Q-generic filter over V . Then GP = GQ ∩ P is a P -generic
filter over V .
(2) P <· Q iff (i); incompatibility preserved between P and Q and (ii); for any q ∈ Q, q has a reduction

p ∈ P .
(3) Let P <· Q and GP be a P -generic filter over V . Then Q/GP is a sub-preorder of Q with 1 ∈ Q/GP .

And even if Q is separative, it is not clear whether so is Q/GP .
(4) Let q ∈ Q and p ∈ P . Then p is a reduction of q iff p ‖−P“q ∈ Q/ĠP”. So being a reduction is a witness

and this should not be confused with q ‖−Q“p ∈ ĠQ ∩ P”.
(5) Let P <· Q, GP be a P -generic filter over V and H be a Q/GP -generic filter over V [GP ]. Then H is a

Q-generic filter over V with GP = H ∩ P = (Q/GP ) ∩ P .
(6) Let P <· Q and GQ be a Q-generic filter over V . Then GP = GQ ∩ P is a P -generic filter over V and
GQ is a Q/GP -generic filter over V [GP ].

Proof. For (1): (Directed): Let p0, p1 ∈ GP . Let D = {p ∈ P | either (p and p0 are incompatible in
P ) or (p and p1 are incompatible in P ) or (p ≤ p0, p1 in P )}. Then D is dense in P . Let A be a maximal
antichain in D and so A is a maximal antichain in P . Since we assume P <· Q, we have A ∩GQ �= ∅. Take
p3 ∈ A ∩GQ. Since p0, p1 ∈ GQ, we conclude p3 ≤ p0, p1 in P . Since p3 ∈ GP , we are done.

(Upward closed): Let p0 ∈ GP and p0 ≤ p in P . Then p ∈ GQ ∩ P = GP .

(Dense): Let A be a maximal antichain in P . Then A remains so in Q and so A ∩ GQ �= ∅. Hence
A ∩GP �= ∅.

For (2): Suppose P <· Q. Then since every two element incompatible set can be extended to a maximal
one, the preservation of incompatibility is immediate. Let q ∈ Q. We want to find a reduction p ∈ P of q.
Suppse to the contrary every p ∈ P failed to be a reduction of q. So for any p ∈ P , there is r ≤ p in P such
that r and q are incompatible in Q. This means D = {r ∈ P | r and q are incompatible in Q} is dense in P .
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Let A be a maximal antichain in D. Then A is a maximal antichain in P . Hence by assumption, A remains
a maximal antichain in Q. So there is some r ∈ A such that r and q are compatible. But this is contradicts
to q ∈ D.

Conversely, suppose incompatibility preserved between P and Q and every q ∈ Q has a reduction p ∈ P .
Take a maximal antichain A in P . We want to show that A remains a maximal antichain in Q. It remains
to show the maximality of A in Q. To this end take q ∈ Q and its reduction p ∈ P . Since A is a maximal
antichain in P , we have r ∈ A such that p and r are compatible in P . Say, t ≤ p, r in P . Then since p is a
reduction of q, it holds that t and q are compatible in Q. Hence we find r ∈ A which is compatible with q
in Q.

For (3): For any a ∈ GP , we know a ≤ 1 in Q. Hence a and 1 are certainly compatible in Q. Hence
1 ∈ Q/GP .

For (4): Suppose p ∈ P is a reduction of q ∈ Q. Let GP be a P -generic filter with p ∈ GP . Take any
a ∈ GP . Since a, p ∈ GP , we have b ∈ GP with b ≤ a, p in P . So b and q are compatible in Q. Hence a and
q are compatible in Q.

Conversely, suppose p ‖−P“q ∈ Q/ĠP ”. We want to show p is a reduction of q. To this end take r ≤ p
in P . Then r and q are compatible in Q. Thus p is a reduction of q.

For (5): (Directed): Since H ⊆ Q/GP ⊆ Q, we know that H ⊆ Q is directed.

(Upward closed): Let q ∈ H and q ≤ r in Q. Then for any a ∈ GP , a and q are compatible in Q. And
so are a and r. Hence r ∈ Q/GP and so r ∈ H .

(Dense): Let D be a dense subset of Q in V . We want to show D ∩H �= ∅. Let D′ = D ∩Q/GP . It
suffices to show D′ is dense in Q/GP . To this end let q ∈ Q/GP . Take p ∈ GP with p ‖−P“q ∈ Q/ĠP”.
Take any p′ ≤ p in P . Since p is a reduction of q, we know p′ and q are compatible in Q. Hence there is
d ∈ D with d ≤ p′, q in Q. Take a reduction pd ∈ P of d. Then pd and d are compatible in Q. So are pd and
p′ in Q and so in P . Take a′ ∈ P with a′ ≤ pd, p

′ in P . Then since a′ ≤ pd in P , we have a′ ‖−P “d ∈ Q/ĠP”
and d ≤ q in Q. Since we find a′ dense below p, we conclude that there is d ∈ D ∩Q/GP with d ≤ q. Hence
D ∩Q/GP is dense in Q/GP .

It is clear that H∩P ⊆ (Q/GP )∩P . To show (Q/GP )∩P ⊆ GP , let p ∈ (Q/GP )∩P . Then p ∈ Q/GP .
Hence p is compatible with every element in GP in Q and so in P . Therefore we have p ∈ GP . Since
H ∩ P ⊆ GP , we conclude these two P -generic filters are equal. So these relevant three sets are all equal.

For (6): GQ ⊆ Q/GP holds. And so GQ is a filter in Q/GP . Let D be a dense subset of Q/GP . We
want to show that GQ ∩D �= ∅. Let Ḋ be a P -name with Ḋ[GP ] = D. Take p ∈ GP such that p ‖−P“Ḋ is
dense in Q/ĠP ”. Let D′ = {q ∈ Q | ∃a, d ∈ P such that q ≤ a, d and a ‖−P“d ∈ Ḋ”}. It suffices to show
D′ is dense below p in Q. Take any r ≤ p with r ∈ Q. Take a reduction pr ∈ P of r. Then pr and p are
compatible in P . Take b ≤ pr, p in P . Since b ‖−P “r ∈ Q/ĠP and Ḋ is dense in Q/ĠP”, we have a ∈ P and
d ∈ Q such that a ≤ b in P , a ‖−P “d ∈ Ḋ” and d ≤ r in Q. Since a is a reduction of d, we have q ∈ Q such
that q ≤ a, d in Q. Since q ∈ D′ with q ≤ r in Q, we are done.

§2. The Hechler Forcing

We begin by introducing the Hechler Forcing D. This notion of focing is one of those which adds a
dominating real.

2.1 Definition. D = {(s, f) | s is an initial segment of f ∈ ωω}. We put the order (t, g) ≤ (s, f), if
t ⊇ s and g ≥ f pointwise.

We describe a picture behind this definition. Given (s, f), s stands for the initial segment of the Hechler
real ḣ : ω −→ ω and f is a commitment that f ≤ ḣ pointwise. (t, g) ≤ (s, f) means that we first end-extend
s to t while dominating f . Then we cook up a new stronger commitment g�[l(t), ω), where l(t) denotes the
length of t. We set g = t ∪ g�[l(t), ω) and so we would have g ≥ f pointwise.
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2.2 Lemma. (1) D is a p.o. set with the greatest element (∅, c0), where c0 denotes the constant function
with the only value 0.
(2) Let (t, g), (s, f) ∈ D with l(t) ≥ l(s). Then (t, g) and (s, f) are incompatible iff s �⊆ t or not (t ≥ f on

[l(s), l(t))). In particular, (t, g) and (s, f) are once incompatible, then so are they in any bigger universe.
(3) D is separative.
(4) D has the c.c.c.

Proof. For (1): This is easy by the definition of ≤.
For (2): Suppose (t, g) and (s, f) are compatible, then take (u, h) ≤ (t, g), (s, f). Since u ⊇ t, s, we have

s ⊆ t. Since u ≥ f on [l(s), l(u)), we have t ≥ f on [l(s), l(t)). Conversely, suppose s ⊆ t and t ≥ f on
[l(s), l(t)). Then we have (t,Max{f, g}) ≤ (t, g), (s, f).

For (3): Suppose (t, g) �≤ (s, f). We have two cases.

Case 1. l(t) ≥ l(s): Then s �⊆ t or not (g ≤ f pointwise). If the first alternative holds, then (t, g) and
(s, f) are incompatible. So suppose s ⊆ t and the second one holds, then take a sufficiently large integer n
so that not (g�n ≥ f on [l(s), n)). Hence (g�n, g) ≤ (t, g) and (g�n, g) and (s, f) are incompatible.

Case 2. l(t) < l(s): Take an integer m so that s(l(t)), g(l(t)) < m. Then (t∪{(l(t),m)}, t∪{(l(t),m)}∪
g[�l(t) + 1, ω)) ≤ (t, g) and (t ∪ {(l(t),m)}, t ∪ {(l(t),m)} ∪ g[�l(t) + 1, ω)) and (s, f) are incompatible, as
t ∪ {(l(t),m)} �⊆ s.

For (4): We know (s,Max{f, g}) ≤ (s, f), (s, g). Therefore D satisfies a strong form of c.c.c.

We introduce the Hechler real.

2.3 Lemma. (1) Let G be a D-generic filter over V . Let h = ⋃{s | (s, f) ∈ G}. Then h : ω −→ ω.
(2) Let G(h) = {(s, f) ∈ D | s ⊂ h and f ≤ h pointwise }. Then G(h) = G holds.
(3) In particular, if (s, f) ∈ G, then we have s ⊂ h and f ≤ h pointwise.
(4) For any f : ω −→ ω in V , we have f ≤∗ h.

Proof. For (1): By an easy density argument.

For (2): We first observe G ⊆ G(h). Let (s, f) = p ∈ G. Then s ⊂ h. For any integer n, take
(t, g) ∈ G such that (t, g) ≤ p and n ∈ dom(t). Then f(n) ≤ t(n) = h(n). Hence p ∈ G(h). We then
show that G(h) is directed. Let (s, f), (t, g) ∈ G(h). We may assume that l(t) ≥ l(s). We know that
(t,Max{f, g}) ≤ (s, f), (t, g) and (t,Max{f, g}) ∈ G(h). Hence G(h) is directed. We lastly observe that
G(h) is upward closed in D. Let (t, g) ∈ G(h) and (t, g) ≤ (s, f). Then s ⊆ t ⊂ h and f ≤ g ≤ h pointwise.
Hence (s, f) ∈ G(h). Therefore we conclude G = G(h).

For (3): This is immediate from (2).

For (4): Given (t, g) ∈ D, we have (t, t ∪ (Max{f, g}�[l(t), ω))) ≤ (t, g) and so f ≤∗ h holds.

§3. The Hechler Forcing D vs. The preorder P ∗ Ḋ

3.1 Definition. Let P be a notion of forcing. We set P ∗Ḋ = {(p, (s, ḟ)) | p ∈ P and p ‖−P “(s, ḟ) ∈ Ḋ”}.
Hence we are considering a dense subset of the two stage iteration of P followed by DV [GP ].

We introduce the canonical reduction.

3.2 Lemma. Let P be a preorder and Ḋ denote the Hechler forcing in V P .

(1) Let p ‖−P“(s, ḟ) ∈ Ḋ” and prepare any sequence 〈pn | n < ω〉 and g : ω −→ ω such that
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• p ≥ pn ≥ pn+1,
• pn ‖−P“g�n ⊂ ḟ”.

Then (s, g) is a reduction of (p, (s, ḟ)). More precisely, for any (t, k) ≤ (s, g), we have (1, (t, k)) and
(p, (s, ḟ)) are compatible in P ∗ Ḋ.
(2) And so D � {1} ∗ Ď = {(1, (š, f̌)) | (s, f) ∈ D} <· P ∗ Ḋ. This should not be confused with DV <· DV [GP ]

in V [GP ].

(3) If GP is P -generic over V and h is a Hechler real over V [GP ], then G(h) with respect DV (i.e. G(h)D
V

=
{(s, f) ∈ DV | s ⊂ h and h ≥ f pointwise }) is DV -generic over V and so h is simultaneously Hechler
over both V and V [GP ].

(4) Hence we do have if G is DV [GP ]-generic over V [GP ] , then G ∩ DV is DV -generic over V . (not over
V [GP ])

Proof. For (1): Let 〈pn | n < ω〉 and g be as in the statement. Since we simply keep deciding
the initial values of ḟ , there are many choices for them. Let (t, k) ≤ (s, g) in D. We want to show
(1, (t, k)) and (p, (s, ḟ)) are compatible in P ∗ D. Let n = l(t). Then we have pn ‖−P “g�n ⊂ ḟ”. Hence
(pn, (t,Max{k, ḟ})) ≤ (1, (t, k)), (p, (s, ḟ)), as for i < l(s), we have pn ‖−P “k(i) = t(i) = s(i) = g(i) = ḟ(i)”
and for i with l(s) ≤ i < n, we have pn ‖−P“t(i) = k(i) ≥ g(i) = ḟ(i)”. Hence pn ‖−P“Max{k, ḟ} = t on n”.

For (2): Notice that P ∗ Ḋ is dealt by its dense subset. We never go outside of this dense subset.
Namely, the first coodinate of the second entry is actually a finite sequence. We make sure that (1, (s1, f1))
and (1, (s2, f2)) are incompatible in {1} ∗ Ď iff so are they in P ∗ Ḋ. Suppose (1, (s1, f1)) and (1, (s2, f2)) are
compatible in {1} ∗ Ď. Take (1, (s3, f3)) ≤ (1, (s1, f1)), (1, (s2, f2)). Then ‖−P“(s3, f3)) ≤ (s1, f1), (s2, f2) in
Ḋ”. Hence (1, (s1, f1)) and (1, (s2, f2)) are compatible in P ∗ Ḋ.

Conversely, suppose (1, (s1, f1)) and (1, (s2, f2)) are compatible in P ∗ Ḋ. So there is p ∈ P such
that p ‖−P“(s1, f1) and (s2, f2) are compatible in Ḋ”. If (s1, f1) and (s2, f2) were incompatible in D, then
they would remain so in V [GP ]. Hence (s1, f1) and (s2, f2) are compatible in D. And so (1, (s1, f1)) and
(1, (s2, f2)) are compatible in {1} ∗ Ď.

For (3): {(p, (s, ḟ)) ∈ P ∗ Ḋ | p ∈ GP , s ⊂ h and h ≥ ḟ [GP ] pointwise } is P ∗ Ḋ-generic over V . Hence
{(s, f) ∈ DV | s ⊂ h and h ≥ f pointwise } is DV -generic over V .

For (4): Let h =
⋃{s | (s, f) ∈ G}. Then G = G(h) holds and so G ∩ DV = {(s, f) ∈ DV | s ⊂ h and

h ≥ f pointwise } which is DV -generic over V by (3).

We repeat the above in a more general setting.

3.3 Lemma. Let P <· Q. Then
(0) If GQ is Q-generic over V and ḟ is any P -name in V , then GP = GQ ∩ P is P -generic over V and ḟ

is a Q-name as well. However we have ḟ [GQ] =
ˇ̇
f [GP ] = ḟ [GP ] in V [GQ], where ˇ is taken with respect

to Q. Hence there are no real ambiguities. In particular, we have P ∗ ḊV [GP ] ⊆ Q ∗ ḊV [GQ].
(1) Let q ∈ Q and p ∈ P be any reduction of q. And let q ‖−Q“(s, ḟ) ∈ DV [GQ]” and prepare any sequence

of P -names 〈q̇n | n < ω〉 and a P -name ġ such that
• p ‖−P“q̇n is a descending sequence in the quotient Q/ĠP with q̇0 = q”. Namely, p ‖−P“∀a ∈ ĠP , we
have a and q̇n are compatible in Q and q̇n ≥ q̇n+1 in Q” and p ‖−P“ġ : ω −→ ω”.
• ‖−Q“If p ∈ GP and q̇n[GP ] ∈ ĠQ, then ġ[GP ]�n ⊂ ḟ , where GP = ĠQ ∩ V ”.
Then (p, (s, ġ)) ∈ P ∗ ḊV [GP ] is a reduction of (q, (s, ḟ)) ∈ Q ∗ DV [GQ]. Namely, for any (r, (t, k̇)) ≤

(p, (s, ġ)) in P ∗ ḊV [GP ], we have that (r, (t, k̇)) and (q, (s, ḟ)) are compatible in Q ∗ ḊV [GQ].
(2) And so P ∗ ḊV [GP ] <· Q ∗ ḊV [GQ]. This should not be confused with DV [GP ] <· DV [GQ] in V [GQ].
(3) If GQ is Q-generic over V and h is Hechler over V [GQ], then GP = GQ ∩ V is P -generic over V and

G(h) with respect to DV [GP ] (i.e. G(h)V [GP ] = {(s, f) ∈ DV [GP ] | s ⊂ h and h ≥ f pointwise }) is
DV [GP ]-generic over V [GP ]. So h is simultaneously Hechler over both V [GP ] and V [GQ].
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(4) If G is DV [GQ]-generic over V [GQ], then G∩DV [GP ] is DV [GP ]-generic over V [GP ], where GP = GQ∩P .
Proof. For (0): Since P ⊆ Q, we have ḟ is a Q-name as well. We show by induction on ∈V in V [GQ]

that ḟ [GQ] = ḟ [GP ]. ḟ [GQ] = {τ [GQ] | ∃p ∈ GQ such that (τ, p) ∈ ḟ}. But by induction, τ [GQ] = τ [GP ] for
any τ ∈ dom(ḟ). Hence ḟ [GQ] = {τ [GP ] | ∃p ∈ GP such that (τ, p) ∈ ḟ} = ḟ [GP ].

For (1): Take 〈q̇n | n < ω〉 and ġ as in the statement. We give some explanation to this. Since we may
simply keep deciding the values of the intial segments of ḟ in Q/GP in V [GP ] with p ∈ GP , we may construct
a descending sequence 〈qn | n < ω〉 in Q/GP and g : ω −→ ω such that qn ‖−V [GP ]

Q/GP
“g�n ⊂ ḟ [GP ∗ ĠQ/GP

]”,

where ĠQ/GP
denotes the canonical P -name for the Q/GP -generic filter over V [GP ]. Now back in V , we may

fix P -names for those qn’s and g. Notice that since p is a reduction of q, we certainly have p ‖−P “q ∈ Q/ĠP”.
So we may start deciding from q ∈ Q/GP . Therefore for any Q-generic filter GQ, if p ∈ GP = GQ ∩ P and
qn = q̇n[GP ] ∈ QG which is Q/GP -generic over V [GP ], we have ġ[GP ]�n ⊂ ḟ [GQ].

Suppose (r, (t, k̇)) ≤ (p, (s, ġ)) in P ∗ ḊV [GP ]. Let n = l(t). Since r ‖−P“q̇n ∈ Q/ĠP ”, we may take
a ≤ r in P and d ∈ Q so that a ‖−P“q̇n = d”. Since a is a reduction of d, we have b ≤ a, d in Q. We
have (b, (t,Max{k̇, ḟ})) ≤ (r, (t, k̇)), (q, (s, ḟ)) in Q ∗ ḊV [GQ]. To see this we need b ‖−Q“(t,Max{k̇, ḟ}) ≤
(t, k̇), (s, ḟ) in ḊV [ĠQ]”. To this end let GQ be any Q-generic filter with b ∈ GQ. Let GP = GQ ∩ P . Since
r, q ∈ GQ, we have p ∈ GP and d = q̇n[GP ] ∈ GQ. Hence g�n = ġ[GP ]�n ⊂ f = ḟ [GQ], (t, k) = (t, k̇[GP ]) ≤
(s, g) in DV [GP ]. Then for i < l(s), we have k(i) = t(i) = s(i) = g(i) = f(i). For i with l(s) ≤ i < n, we
have t(i) = k(i) ≥ g(i) = f(i). Hence we have t ⊂ Max{k, f} and so (t,Max{k, f}) ≤ (t, k), (s, f) in DV [GQ]

follows.

For (2): In view of (1), it remains to show that (p1, (s1, ġ1)) and (p2, (s2, ġ2)) are incompatible in
P ∗ ḊV [GP ] iff so they are in Q ∗ ḊV [GQ]. Suppose (p1, (s1, ġ1)) and (p2, (s2, ġ2)) are compatible in P ∗
ḊV [GP ]. Then we have (p3, (s3, ġ3)) ≤ (p1, (s1, ġ1)), (p2, (s2, ġ2)) in P ∗ ḊV [GP ]. Then p3 ≤ p1, p2 in Q as
well and p3 ‖−P “(s3, ġ3) ≤ (s1, ġ1), (s2, ġ2) in DV [ĠP ]”. Then by absoluteness we have p3 ‖−Q“(s3, ġ3) ≤
(s1, ġ1), (s2, ġ2) in DV [ĠQ]”. Hence (p3, (s3, ġ3)) ≤ (p1, (s1, ġ1)), (p2, (s2, ġ2)) in Q ∗ ḊV [GQ].

Conversely, suppose (p3, (s3, ġ3)) ≤ (p1, (s1, ġ1)), (p2, (s2, ġ2)) in Q ∗ ḊV [GQ]. Let GQ be Q-generic over
V with p3 ∈ GQ and set GP = GQ ∩ P . Then (s3, ġ3[GQ]) ≤ (s1, ġ1[GP ]), (s2, ġ2[GP ]) with respect to
DV [GQ] in V [GQ]. Hence (s1, ġ1[GP ]) and (s2, ġ2[GP ]) are compatible with respect to DV [GQ] in V [GQ]. If
they were incompatible in DV [GP ] in V [GP ], they would remain so in DV [GQ] in V [GQ] and this would be
a contradiction. Hence (s1, ġ1[GP ]) and (s2, ġ2[GP ]) are compatible with respect to DV [GP ] in V [GP ]. Say,
(s, k) ≤ (s1, ġ1[GP ]), (s2, ġ2[GP ]). Take a ≤ p1, p2 such that a ∈ GP and a ‖−P “(s, k̇) ≤ (s1, ġ1), (s2, ġ2)”.
Hence (a, (s, k̇)) ≤ (p1, (s1, ġ1)), (p2, (s2, ġ2)). We are done.

For (3): We know that G(h) = {(s, f) ∈ DV [GQ] | s ⊂ h and h ≥ f pointwise } is DV [GQ]-generic
over V [GQ]. Hence {(q, (s, ḟ)) ∈ Q ∗ ḊV [GQ] | q ∈ GQ and (s, ḟ [GQ]) ∈ G(h)} is Q ∗ ḊV [GQ]-generic over
V . So {(p, (s, ḟ)) ∈ P ∗ DV [GP ] | p ∈ GP , s ⊂ h and h ≥ ḟ [GP ]} is P ∗ ḊV [GP ]-generic over V . So
{(s, f) ∈ DV [GP ] | s ⊂ h and h ≥ f pointwise} is DV [GP ]-generic over V [GP ].

For (4): We know G = G(h)D
V [GQ]

and G(h)D
V [GP ]

= G(h)D
V [GQ] ∩ DV [GP ] is DV [GP ]-generic over

V [GP ]. Hence G ∩ DV [GP ] is DV [GP ]-generic over V [GP ].

§4. Introduction of Templates

4.1 Definition. Let (L,<) be a linear order. A template on (L,<) is a collection of subsets of L such
that

(1) ∅, L ∈ I,
(2) I is closed under finite (�= ∅) intersections and unions,

(3) For all y ∈ L, we have Ly = {x ∈ L | x < y} = ⋃{B ∈ I | B ⊆ Ly},

5



��

(4) If A ∈ I and x ∈ L \A, then A ∩ Lx ∈ I.
(5) There exists no strictly descending infinite sequence A0 ⊃ A1 ⊃ · · · ⊃ An ⊃ · · · through I.

We state a preview on how we use templates. We understand (1), (5) are for the start, the goal and
the process. We take (2) and (3) for granted. We use (4) in an inductive proof to show a strong form of
reductions exists.

4.2 Notation. Let I be a template on (L,<). For any A ∈ I and x ∈ A, we write

IA
x = {B ∈ I | B ⊆ Lx ∩A}.

Since I is well-founded, we have the depth function 〈A �→ Dp(A) | A ∈ I〉 such that each Dp(A) is an
ordinal and if B is a proper subset of A, then Dp(B) <Dp(A) holds. Notice that if x ∈ A ∈ I and B ∈ IA

x ,
then Dp(B) < Dp(A) holds.

4.3 Definition. Let I be a template on (L,<). We plan to build a collection of preorders 〈P �A | A ∈ I〉
by recursion on Dp(A). Each P �A will consist of finite sequences whose domains are subsets of A. For any
x ∈ L with A ∈ IL

x , we write

P �A ∗ DV [GA]
x = {p ∪ {(x, (s, ḟ))} | p ∈ P �A, p ‖−P�A “(š, ḟ) ∈ DV [GA]

”},
where GA denotes the canonical P �A-name for the P �A-generic filters over V and DV [GA] names the

Hechler forcing in the generic extensions V [GA].

For {p ∪ {(x, (s, ḟ))} ∈ P �A ∗ DV [GA]
x , we may simply write

p�〈(s, ḟ)〉 = {p ∪ {(x, (s, ḟ))}
For q2 = p2

�〈(s2, ḟ2)〉, q1 = p1
�〈(s1, ḟ1)〉, we define

q2 ≤ q1 in P �A ∗ DV [GA]
x iff p2 ≤ p1 in P �A and p2 ‖−P�A “(š2, ḟ2) ≤ (š1, ḟ1) in DV [GA]”

4.5 Proposition. P �A ∗ DV [GA]
x is dense embeddable into the two stage itertaion P �A followed by the

Hechler forcing DV [GA].

§5. The Recursive Construction of P �A and The Induction Hypothesis

5.1 Definition. Let I be a template on (L,<). We construct a collection of preorders 〈P �A | A ∈ I〉
by recursion on α for all Dp(A) ≤ α such that

(1) P �A is a preorder with the greatest element ∅. P �A consists of a collection of finite sequences whose
domains are finite subsetes of A.

P �A = {∅} ∪
⋃
{P �B ∗ DV [GB ]

x | x ∈ A, B ∈ IA
x },

For p ∈ P �A and x ∈dom(p), we write p(x) = (sp
x, ḟ

p
x).

We set q ≤ p in P �A, if (1); dom(q) ⊇ dom(p) and (2); either (Type 0), (Type 1) or (Type 2) holds
exclusively, where
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(Type 0): p = ∅,
(Type 1): ∃x ∈ A∃B ∈ IA

x such that q, p ∈ P �B ∗DV [GB]
x and so x = Max dom(q) = Max dom(p) and

q ≤ p in P �B ∗ DV [GB ]
x ,

(Type 2): ∃ y ∈ A∃C ∈ IA
y such that y = Max dom(q), q�Ly, p ∈ P �C and q�Ly ≤ p in P �C.

(2) If C ⊆ B, then P �C is a complete sub-preorder of P �B. Denoted simply as P �C <· P �B.

(3) For C ⊆ B and p ∈ P �B, we associate p0 = p0(p,B,C) ∈ P �C such that

• dom(p0) = dom(p) ∩C,
• For any y ∈ dom(p0), we have sp0

y = sp
y,

• p0 is a reduction of p in P �C <· P �B,
• For any E,F ∈ I with C = B ∩E ⊆ B ∪E ⊆ F , p0 remains a reduction of p in P �E <· P �F . Namely,

For any q0 ≤ p0 in P �E, q0 and p are compatible in P �F.

§6. A Crutial Inductive Preparation with P �B ∗ DV [GB ]
x before Going into P �A

6.1 Lemma. Let C,B ∈ I such that Dp(B), Dp(C) < α and C ⊆ B. Then we have not only
P �C <· P �B but also P �C ∗ DV [GC ] <· P �B ∗ DV [GB ].

Proof. We inductively assume P �C <· P �B. This in turn entails P �C ∗ DV [GC ] <· P �B ∗ DV [GB ] by 3.3
Lemma.

6.2 Lemma. Let x ∈ L and B,C ∈ IL
x such that Dp(B), Dp(C) < α and C ⊆ B. For p ∈ P �B∗DV [GB ]

x ,
we may associate p0 = p0(p,B,C, x) ∈ P �C ∗ DV [GC ]

x such that

(1) x ∈ dom(p0)∩dom(p) and dom(p0) ∩B = dom(p) ∩ C,
(2) For any y ∈ dom(p0), we have sp0

y = sp
y,

(3) p0 is a reduction of p in P �C ∗ DV [GC ]
x <· P �B ∗ DV [GB]

x ,
(4) For any E,F ∈ IL

x such that Dp(E), Dp(F ) < α and C = B ∩E ⊆ B ∪E ⊆ F , p0 remains a reduction
of p in P �E ∗ DV [GE ]

x <· P �F ∗ DV [GF ]
x .

Proof. We have several steps.

Step 1: Let p ∈ P �B ∗ DV [GB]
x . We wrire p̄ = p�Lx. So we have p̄ ∈ P �B and

p = p̄�〈(sp
x, ḟ

p
x)〉.

By induction we have associated a reduction p̄0 = p0(p̄, B, C) ∈ P �C of p ∈ P �B such that it remains
a reduction in P �E <· P �F . By applying Lemma, we may fix 〈q̇n | n < ω〉 and ġ such that

• p̄0 ‖−P�C“q̇n are descending sequence in PB/GC with p̄ = q̇0 and ġ : ω −→ ω”,

• ‖−P�B“If p̄0 ∈ GC and q̇n[GC ] ∈ GB , then ġ�n = ġ[GC ]�n = ḟp
x�n, where GC = GB ∩ P �C”,

Then we may show [ Let p̄0 ∈ GC and n = | sp
x |. Take GB such that q̇n[GC ] ∈ GB with GB∩P �C = GC .

Then (q̇n[GC ] ≤)p̄ ∈ GB and so sp
x = ḟp

x [GB]�n. But ġ[GC ]�n = ḟp
x [GB]�n. So sp

x ⊂ ġ[GC ].]

• p̄0 ‖−P�C“sp
x ⊂ ġ”.
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Let us define
p0 = p0(p,B,C, x) = p̄0

�〈(sp
x, ġ)〉 ∈ P �C ∗ DV [GC ]

x .

We claim this p0 works. But (1), (2) are immediate by definition and (3) implied by (4). So we may
concentrate on (4).

Step 2: Let us take

q0 = q̄0
�〈(sq0

x , ḟ
q0
x )〉 ≤ p0 in P �E ∗ DV [GE]

x .

And so

q̄0 ≤ p̄0 in P �E.
Let m = | sq0

x | and p̄∗0 be a reduction of q̄0 in P �C <· P �E.
Step 3: Since we may show p̄∗0 and p̄0 are compatible in P �E [ Let p̄∗0 ∈ GC and q̄0 ∈ GE with

GC = GE ∩ P �C. Then (q̄0 ≤)p̄0 ∈ GE ∩ P �C = GC ], so are they in P �C. Hence wlog, we may assume

p̄∗0 ≤ p̄0 in P �C.
Step 4: We may further assume that p̄∗0 decides the value of q̇m to, say, b ∈ P �B. Hence we have

• p̄∗0 ‖−P�C“q̇m = b̌ ∈ PB/GC”,

• ‖−P�B“If p̄∗0 ∈ GC and b̌ ∈ GB , then ġ�m = ġ[GC ]�m = ḟp
x�m”.

Step 5: Notice that p̄∗0 is a reduction of b ∈ P �B. So we may take p̄+ ∈ P �B such that

p̄+ ≤ p̄∗0, b in P �B.

Step 6: Let p̄+0 = p0(p̄+, B, C) ∈ P �C. Since p̄+0 is a reduction of p̄+ in P �C <· P �B, we may show
that p̄+0 and p̄∗0 are compatible in P �C. [ Let p̄+0 ∈ GC and p̄+ ∈ GB with GC = GB ∩ P �C. Then
(p̄+ ≤)p̄∗0 ∈ GB ∩ P �C = GC .] So we may fix a ∈ P �C with

a ≤ p̄+0 , p̄
∗
0 in P �C.

Step 7: Since a ≤ p̄∗0 in P �C and p̄∗0 is a reduction of q̄0, we know a and q̄0 are compatible in P �E. So
we may fix q̄+0 ∈ P �E such that

q̄+0 ≤ a, q̄0 in P �E.

Step 8: So we have q̄+0 (≤ a) ≤ p̄+0 in P �E. But p̄+0 = p0(p̄+, B, C). By applying induction hypothesis,
it holds that p̄+ and q̄+0 are compatible in P �F . So we may fix q̄+ ∈ P �F such that

q̄+ ≤ p̄+, q̄+0 in P �F.

Let us define

q = q̄+ �〈(sq0
x ,Max{ḟ q0

x , ḟ
p
x})〉.

Then we may show that q ∈ P �F ∗ DV [GF ]
x and that

q ≤ p, q0 in P �F ∗ DV [GF ]
x .

To see these, we observe q̄+ ≤ q̄+0 ≤ a ≤ p̄∗0 and q̄+ ≤ p̄+ ≤ b in P �F . Hence we conclude
• q̄+ ‖−P�F“ġ�m = ḟp

x�m”.

We also have q̄+ ≤ q̄+0 ≤ q̄0 and so

8
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• q̄+ ‖−P�F“(sq0
x , ḟ

q0
x ) ≤ (sp

x, ġ)”.

And so

• q̄+ ‖−P�F“sq0
x = Max{ḟ q0

x , ḟ
p
x}�m”.

Hence we have q ∈ P �F ∗ DV [GF ].

Since q̄+(≤ b) ≤ p̄ and q̄+(≤ q̄+0 ) ≤ q̄0, we conclude

q ≤ p̄�〈(sp
x, ḟ

p
x)〉, q̄�

0 〈(sq0
x , ḟ

q0
x )〉 in P �F ∗ DV [GF ]

x .

§7. Basic Properties of P �A with Dp(A) = α

7.1 Lemma. P �A is a preorder for all A ∈ I with Dp(A) = α.

Proof. (reflexive): Let p ∈ P �A.
Case 0: p = ∅: ∅ is a greatest element. So p ≤ p.

Case 1: p ∈ P �B ∗ DV [GB]
x for some x ∈ A and B ∈ IA

x : Then p�Lx ∈ P �B and so p�Lx ≤ p�Lx in
P �B. Since p�Lx ‖−P�B“(sp

x, ḟ
p
x) ≤ (sp

x, ḟ
p
x) in DV [GB ]”, we have p ≤ p in P �A.

(transitive): Let r ≤ q ≤ p in P �A.
Case 0: p = ∅: Then r ≤ p in P �A.
Case 1: p ∈ P �B ∗ DV [GB ]

x for some x ∈ A and B ∈ IA
x : Since dom(r) ⊇ dom(q) ⊇ dom(p), we have

B1, B2 ∈ IA
x such that q ≤ p in P �B1 ∗ DV [GB1 ]

x and r ≤ q in P �B2 ∗ DV [GB2 ]
x . Let C = B1 ∪ B2. Then

C ∈ IA
x , q ≤ p in P �C ∗ DV [GC ]

x and r ≤ q in P �C ∗ DV [GC ]
x . Hence r ≤ p in P �C ∗ DV [GC ]

x and so r ≤ p in
P �A.

7.2 Lemma. Let x ∈ A ∈ I with Dp(A) = α and B ∈ IA
x . For any p = p̄�〈(sp

x, ḟ
p
x)〉 ∈ P �B ∗ DV [GB ]

x ,
we have p̄ ∈ P �A and p ≤ p̄ in P �A.

Proof. Since p̄ ∈ P �B, we have either (1); p̄ = ∅ or (2); There exists z ∈ B and C ∈ IB
z such that

p̄ ∈ P �C ∗ DV [GC ]
z . Since z ∈ (B ⊂ )A and IB

z ⊂ IA
z , we have p̄ ∈ P �A in either case.

Since x = Max dom(p) ∈ A, B ∈ IA
x , p̄ ∈ P �B and p�Lx = p̄ ≤ p̄ in P �B, we have p ≤ p̄ in P �A.

7.3 Lemma. Let D ⊂ A such that D,A ∈ I and Dp(D) < Dp(A) = α. Then P �D ⊂ P �A.
Proof. Let p ∈ P �D.
Case 0: p = ∅: Then p ∈ P �A.
Case 1: p ∈ P �E ∗ DV [GE]

z for some z ∈ D and E ∈ ID
z : Since z ∈ A and E ∈ IA

z , we have
P �E ∗ DV [GE ]

z ⊂ P �A.

7.4 Lemma. Let D ⊂ A such that D,A ∈ I and Dp(D) < Dp(A) = α. Then P �D is a sub-preorder of
P �A. Namely, for p, q ∈ P �D, we have q ≤ p in P �D iff q ≤ p in P �A.

Proof. Suppose q ≤ p in P �D.
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Case 0: p = ∅: Then q ≤ p in P �A.
Case 1: p ∈ P �E ∗ DV [GE ]

x for some x ∈ D and E ∈ ID
x : We may assume that q ≤ p in P �E ∗ DV [GE ]

x .
Since x ∈ A and E ∈ IA

x , we conclude q ≤ p in P �A.
Case 2: q�Ly ≤ p in P �E for y = Max dom(q) ∈ D and some E ∈ ID

y : Since y ∈ A and ID
y ⊂ IA

y , we
conclude q ≤ p in P �A.

Conversely, suppose q ≤ p in P �A.
Case 0: p = ∅: Then q ≤ p in P �D.
Case 1: q ≤ p in P �B ∗ DV [GB]

x for some x ∈ A and B ∈ IA
x : Since p, q ∈ P �D, we have E1, E2 ∈ ID

x

such that x ∈ D, p ∈ P �E1 ∗ DV [GE1 ]
x and q ∈ P �E2 ∗ DV [GE2 ]

x . Let E = E1 ∪ E2 and C = B ∪ E1 ∪ E2.
Then E ∈ ID

x and C ∈ IA
x . Since P �B ∗ DV [GB ]

x <· P �C ∗ DV [GC ]
x , we have q ≤ p in P �C ∗ DV [GC ]

x . Since
P �E ∗ DV [GE ]

x <· P �C ∗ DV [GC ]
x , we conclude q ≤ p in P �E ∗ DV [GE ]

x and so in P �D.
Case 2: q�Ly ≤ p in P �B for y = Max dom(q) ∈ A and some B ∈ IA

x : Let x = Max dom(p).
Take E1 ∈ ID

x and E2 ∈ ID
y such that p ∈ P �E1 ∗ DV [GE1 ]

x and q ∈ P �E2 ∗ DV [GE2 ]
y . Since dom(p) ⊆

dom(q)∩Ly ⊆ E2, we have x ∈ E2 ⊆ E1 ∪E2. So E1 ∈ IE1∪E2
x . Since E1 ∪E2 ∈ ID

y , we have P �(E1 ∪E2).

Since p ∈ P �E1 ∗ DV [GE1 ]
x , we have p ∈ P �(E1 ∪ E2). Since B ∪ E1 ∪ E2 ∈ IA

y , we have P �(B ∪ E1 ∪ E2).
Since P �B <· P �(B ∪ E1 ∪ E2), we have q�Ly ≤ p in P �(B ∪ E1 ∪ E2). Since q�Ly, p ∈ P �(E1 ∪ E2) and
P �(E1 ∪E2) <· P �(B ∪E1 ∪E2), we have q�Ly ≤ p in P �(E1 ∪E2). Since E1 ∪E2 ∈ ID

y , we conclude q ≤ p
in P �D.

7.5 Lemma. Let D ⊂ A such that D,A ∈ I and Dp(D) < Dp(A) = α. Then for p, q ∈ P �D, we have
q and p are incompatible in P �D iff q and p are incompatible in P �A.

Proof. Suppose r ≤ q, p in P �D, then so they are in P �A.
Conversely, suppose r ≤ q, p in P �A for some r ∈ P �A. We may assume that | r | is the least among

those r.

Case 0: Either p = ∅ or q = ∅: Then it is immediate that p and q are compatible in P �D.
Case 1: p ∈ P �E1 ∗ DV [GE1 ]

x and q ∈ P �E2 ∗ DV [GE2 ]
x for some x ∈ D and E1, E2 ∈ ID

x : So x = Max
dom(p) = Max dom(q). Since r ≤ p in P �A, we have

Subcase 1: r ≤ p in P �B ∗ DV [GB]
x for some B ∈ IA

x : Then by taking a union of two B’s in IA
x , we

may assume that r ≤ q in P �B ∗ DV [GB]
x as well. Since

P �B ∗ DV [GB ]
x , P �(E1 ∪ E2) ∗ DV [GE1∪E2 ]

x <· P �(B ∪E1 ∪ E2) ∗ DV [GB∪E1∪E2 ]
x ,

we may conclude p and q are compatible in P �(E1 ∪ E2) ∗ DV [GE1∪E2 ]
x . Hence so they are in P �D.

Subcase 2: r�Ly ≤ p in P �B for y = Max dom(r) and some B ∈ IA
y : Then by taking a union of two

B’s in IA
y , we may assume that r�Ly ≤ q in P �B as well. Then r�Ly ≤ q, p in P �A. This contradicts the

least choice of r. Hence this subcase does not occure.

Case 2: p ∈ P �E1 ∗ DV [GE1 ]
x and q ∈ P �E2 ∗ DV [GE2 ]

y for some x, y ∈ D with x < y and some E1 and
E2 such that E1 ∈ ID

x , E2 ∈ ID
y : We may assume that x ∈ E2 as I is a template. So E1 ∈ IE1∪E2

x and
E1 ∪ E2 ∈ ID

y . We have q�Ly, p ∈ P �(E1 ∪ E2).

Subcase 1: y = Max dom(r) and r ≤ q in P �C ∗ DV [GC ]
y for some C ∈ IA

y : Then we may assume
r�Ly ≤ p in P �C. We have C ∪ E1 ∪ E2 ∈ IA

y . Since P �C,P �(E1 ∪ E2) <· P �(C ∪ E1 ∪ E2), we know q�Ly

and p are compatible in P �(E1 ∪E2), say, r̄′ ≤ q�Ly, p. Let r′ = r̄′ �〈q(y)〉. Then r′ ∈ P �D and r′ ≤ q, p in
P �D holds.
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Subcase 2: y < z = Max dom(r) and r�Lz ≤ q in P �E for some E ∈ IA
z : We may assume that

r�Lz ≤ p in P �E as well. So r�Lz ≤ q, p in P �A. But this contradicts the least choice of r. Hence this case
does not occur.

§8. Technical Lemmas

8.1 Lemma. (Initial segments are again conditions) Let A ∈ I, Dp(A) ≤ α, p ∈ P �A and x ∈ dom(p).
Then there exists B ∈ IA

x such that p�Lx ∈ P �B and p�Lx ‖−P�B“(sp
x, ḟ

p
x) ∈ DV [GB ]”.

Proof. By induction on | dom(p) |. Let x0 = Max dom(p). So x ≤ x0 in L. There exists C ∈ IA
x0

such
that p̄ = p�Lx0 ∈ P �C and p̄ ‖−P�C“(sp

x0
, ḟp

x0
) ∈ DV [GC ]”.

Case 1: x = x0: We are done.

Case 2: x < x0: Since x ∈ dom(p̄), we may apply induction hypothesis to this shorter p̄. There is
B ∈ IC

x such that p̄�Lx = p�Lx ∈ P �B and p�Lx ‖−P�B“(sp
x, ḟ

p
x) ∈ DV [GB]”. Since IC

x ⊂ IA
x , we are done.

8.2 Lemma. (Intitial segments are weaker than their mother) Let A ∈ I, Dp(A) ≤ α, p ∈ P �A and
x ∈ dom(p). Then p�Lx, p�Lx

�〈p(x)〉 ∈ P �A and p ≤ p�Lx
�〈p(x)〉 ≤ p�Lx in P �A.

Proof. By induction on | dom(p) |. Let y = Max dom(x). Take B ∈ IA
y such that p ∈ P �B ∗ DV [GB]

y .

Case 1: x = y: Since p�Ly ≤ p�Lx in P �B, we have p = p�Lx
�〈p(x)〉 ≤ p�Lx in P �A.

Case 2: x < y: Notice p�Ly ∈ P �A and x ∈dom(p�Ly). So by induction, p�Ly ≤ (p�Ly)�Lx
�〈p(x)〉 ≤

(p�Ly)�Lx in P �A and so p�Ly ≤ p�Lx
�〈p(x)〉 ≤ p�Lx in P �A. But p ≤ p�Ly in P �A. Hence p ≤

p�Lx
�〈p(x)〉 ≤ p�Lx in P �A.

8.3 Lemma. (Tails are tails) Let E ∈ I with Dp(E) ≤ α, q ≤ p in P �E and x = Max dom(p). Then
there exists Ē ∈ IE

x such that q�Lx
�〈q(x)〉 ≤ p in P �Ē ∗ DV [GĒ]

x .

Proof. By induction on the length of q�(x,E), where q�(x,E) = {(z, q(z)) | x < z, z ∈dom(q)}.
Case 1: q�(x,E) = ∅: q�Lx

�〈q(x)〉 = q ≤ p in P �E. So we are done.
Case 2: q�(x,E) �= ∅: Let y = Max dom(q). Then there exists E1 ∈ IE

y such that q ∈ P �E1 ∗ DV [GE1 ]
y

and q�Ly ≤ p in P �E1. By induction, we have Ē ∈ IE1
x ⊂ IE

x such that q�Lx
�〈q(x)〉 = (q�Ly)�Lx

�〈q(x)〉 ≤
p in P �Ē ∗ DV [GĒ ]

x .

8.4 Lemma. (Tails are tails in end-extensions) Let E,F ∈ I such that E ⊆ F end-extension, Dp(E),
Dp(F ) ≤ α, p, q̄ ∈ P �E, q ∈ P �F , q̄ is an initial segment of q and q ≤ p in P �F . Then q̄ ≤ p in P �E.

Proof. By induction on the length of the tail q \ q̄.
Case 1: q = q̄: Then q̄ = q ≤ p in P �F . Since P �E is a sub-preorder of P �F , we have q̄ = q ≤ p in

P �E.
Case 2: q \ q̄ �= ∅: Let y = Max dom(q) and take F1 ∈ IF

y such that q�Ly ≤ p in P �F1. We may assume
that E ⊆ F1 end-extension. By induction we have q̄ ≤ p in P �E.
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8.5 Lemma. (Replacing an initail segment by a stronger condition) Let A ∈ I, Dp(A) ≤ α, p ∈ P �A,
x ∈ dom(p), B ∈ IA

x , p�Lx ‖−P�B“(sp
x, ḟ

p
x) ∈ DV [GB ]”, and a ≤ p�Lx

�〈(sp
x, ḟ

p
x)〉 in P �B ∗ DV [GB ]

x . Then

(1) a�p�(x,A) ∈ P �A,
(2) a�p�(x,A) ≤ p in P �A,

where p�(x,A) = {(sp
y, ḟ

p
y ) | y ∈dom(p) and x < y}.

Proof. By induction on | dom(p) |. Let x0 = Max dom(p). So x ≤ x0 in L.

Case 1: x = x0: Then p�(x,A) = ∅ and a ≤ p in P �B ∗ DV [GB ]
x implies a ≤ p in P �A.

Case 2: x < x0: Then p̄ = p�Lx0 ∈ P �C and p̄ ‖−P�C“(sp
x, ḟ

p
x) ∈ DV [GC ]” for some C ∈ IA

x0
. We may

assume that B ⊆ C.
We have C ∈ I, Dp(C) < α, p̄ ∈ P �C, x ∈ dom(p̄), B ∈ IC

x , p̄�Lx ‖−P�B“(sp̄
x, ḟ

p̄
x) ∈ DV [GB]”, and

a ≤ p̄�Lx
�〈(sp̄

x, ḟ
p̄
x)〉 in P �B ∗ DV [GB]

x . Hence by induction a�p̄�(x,C) ∈ P �C and a�p̄�(x,C) ≤ p̄ in P �C.
Hence a�p�(x,A) ∈ P �C ∗ DV [GC ]

x ⊂ P �A and a�p�(x,A) ≤ p in P �A.

8.6 Lemma. (Replacing an initial segment by a stronger condition with an added-value at x) Let F ∈ I
with Dp(F ) ≤ α, x ∈ F , E ∈ IF

x , q ∈ P �F , x �∈ dom(q), q�Lx ∈ P �E, r ∈ P �E ∗ DV [GE ]
x with r�Lx ≤ q�Lx

in P �E. Then r�q�(x,F ) ∈ P �F and r�q�(x, F ) ≤ q in P �F .
Proof. By induction on the length of the tail q \ (q�Lx).

Case 1: q = q�Lx: Then q�(x, F ) = ∅. But r ≤ q in P �F .
Case 2: q\(q�Lx) �= ∅: Let y = Max dom(q). Then x < y. Take F1 ∈ IF

y such that q ∈ P �F1 ∗DV [GF1 ]
y .

We may assume that {x} ∪ E ⊆ F1 and so E ∈ IF1
x . By induction we have r�q�(x,F1) ≤ q�Ly in P �F1.

Hence r�q�(x,F ) = r�q�(x,F1)�〈q(y)〉 ≤ q in P �F .

§9. Reductions and Complete Sub-preorders of P �A

9.1 Lemma. Let B,C ∈ I such that C ⊆ B and Dp(B), Dp(C) ≤ α. For each p ∈ P �B, we may
associate p0 = p0(p,B,C) ∈ P �C such that

• dom(p0) = dom(p) ∩ C,
• For any y ∈ dom(p0), we have sp0

y = sp
y,

• p0 is a reduction of p in P �C <· P �B,
• For any E,F ∈ I such that C = B ∩E ⊆ B ∪E ⊆ F and Dp(E), Dp(F ) ≤ α, p0 remains a reduction
of p in P �E <· P �F . Namely,

For any q0 ≤ p0 in P �E, q0 and p are compatible in P �F.

Proof. We have 3 cases.

Case 0: p = ∅: Let p0 = p0(p,B,C) = ∅.
Since ∅ is a greatest element in every P �F , we are done.
For the remaining two cases, let p = p̄�〈(sp

x, ḟ
p
x)〉 ∈ P �B̄ ∗ DV [GB ]

x , x = Max dom(p) ∈ B and
B̄ = B̄(p,B) ∈ IB

x .

Case 1: x �∈ C: Let p0 = p0(p,B,C, ) = p0(p̄, B̄, C̄) ∈ P �C̄, where C̄ = C ∩ B̄.
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We observe

dom(p0) = dom(p̄) ∩ C̄ = dom(p̄) ∩ B̄ ∩C = dom(p̄) ∩C = dom(p) ∩ C.

We show p0 remains a reduction in P �E <· P �F . To this end, let q0 ≤ p0 in P �E. Since x �∈ C and
C = B ∩E, we have x �∈ E. Since I is a template, we have

Ē = E ∩ Lx ∈ I and so Ē ∈ IE
x .

C̄ = B̄ ∩C = B̄ ∩B ∩ E = B̄ ∩ Lx ∩ E = B̄ ∩ Ē.
Let q̄0 = q0�Lx. Then

Claim. We have q̄0 ≤ p0 in P �Ē.
Proof. Let y = Max dom(q̄0). Then y ∈ dom(q0) ∩ Ē. By Lemma (Initial segements are conditions),

there exists E1 ∈ IE
y such that q̄0 = q0�Ly

�〈q0(y)〉 ∈ P �E1 ∗ DV [GE1 ]
y . Since IE

y = IĒ
y , we have q̄0 ∈ P �Ē.

Since p0 ∈ P �C̄ ⊆ P �Ē, we also have p0 ∈ P �Ē. Since Ē ⊂ E end-extension, by Lemma (Tails are tails
in end-extensions), we conclude q̄0 ≤ p0 in P �Ē.

Since p0 ∈ P �Ē remains a reduction of p̄ ∈ P �(B̄∪Ē), we have r̄ ≤ p̄, q̄0 in P �(B̄∪Ē). Let r = r̄�〈p(x)〉.
Since r̄ ≤ p̄ in P �(B̄ ∪ Ē), we have r ∈ P �(B̄ ∪ Ē) ∗ DV [GB̄∪Ē ]

x and so r ≤ p in P �F .
Since Ē ⊂ E end-extension and x �∈ dom(q0), we may apply Lemma (Replacing an initial segment

by a stronger condition with an added value at x). Hence we have r�q0�(x,E) ≤ q0 in P �E. We have
r�q0�(x,E) ≤ r in P �E by Lemma (Initial segments are weaker than their mother). Hence r�q0�(x,E) ≤
q0, p in P �F .

Case 2: x ∈ C: Let p0 = p0(p, B̄, C̄, x) ∈ P �C̄, where C̄ = B̄ ∩ C.
We observe

dom(p0) = (dom(p̄) ∩ C̄) ∪ {x} = (dom(p̄) ∩ B̄ ∩ C) ∪ {x} = (dom(p̄) ∩C) ∪ {x} = dom(p) ∩C.

We show p0 remains a reduction of p in P �E <· P �F . To this end, let q0 ≤ p0 in P �E. By Lemma (Tails
are tails), we may take Ē ∈ IE

x such that q0�Lx
�〈q0(x)〉 ≤ p0 ∈ P �Ē ∗ DV [GĒ]

x and so q0�Lx ≤ p0�Lx in
P �Ē. Since C̄ ∈ IE

x , we may assume that C̄ ⊆ Ē. And so

C̄ = B̄ ∩C = (B̄ ∩ C) ∩ Ē = B̄ ∩B ∩E ∩ Ē = B̄ ∩ Ē.
Since p0 remains a reduction of p in P �Ē∗DV [GĒ]

x <· P �(Ē∪B̄)∗DV [GĒ∪B̄ ]
x , we have r ≤ p, q0�Lx

�〈q0(x)〉
in P �(B̄ ∪ Ē) ∗ DV [GB̄∪Ē ]

x . Hence by Lemma (Replacing an initial segment by a stronger condition), we
have r�q0�(x,F ) ≤ q0 in P �F . By Lemma (Initial segments are weaker than thier mother), we have
r�q0�(x,F ) ≤ r ≤ p in P �F . So q0 and p are compatible in P �F .

§10. The Complete Sub-preorder P �B ∗ DV [GB ]
x <· P �A

10.1 Lemma. (Adding a value at x is dense): For any p ∈ P �A and any x ∈ A, there is q ∈ P �A such
that q ≤ p in P �A and x ∈ dom(q).

Proof. By induction on the length of p�(x,A).
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Case 0: p = ∅: Take anyq ∈ P �∅ ∗ DV [G∅]
x . Then q ≤ p in P �A.

Case 1: p�(x,A) = ∅: Let z = Max dom(p�Lx). Then z < x. We may assume p = p�Lx. Then by
Lemma (initial segments are conditions), there is B ∈ IA

z such that p ∈ P �B ∗ DV [GB ]
z . Take C ∈ IA

x with
{z} ∪B ⊆ C. Then p ∈ P �C. Take any q ∈ P �C ∗ DV [GC ]

x with q ≤ p in P �A.
Case 2: p�(x,A) �= ∅: Let y = Max dom(p). Then x < y. Take C ∈ IA

y such that p ∈ P �C ∗ DV [GC ]
y .

We may assume x ∈ C. By induction, we have q̄ ≤ p�Ly in P �C with x ∈ dom(q̄). Then q = q̄�〈p(y)〉 ≤ p

in P �C ∗ DV [GC ]
y . Hence q ≤ p in P �A.

10.2 Lemma. Let A ∈ I, x ∈ A, B ∈ IA
x . Then P �B ∗ DV [GB]

x <· P �A holds.

Proof. We have several steps.

(subset): We know P �B ∗ DV [GB ]
x ⊂ P �A.

(sub-preorder): Let p1, p2 ∈ P �B ∗ DV [GB]
x . Let us write p1 = p̄1

�〈s1, ḟ1)〉 and p2 = p̄2
�〈s2, ḟ2)〉. We

want to show p2 ≤ p1 in P �B ∗ DV [GB]
x iff p2 ≤ p1 in P �A. Suppose p2 ≤ p1 in P �B ∗ DV [GB]

x . Then it is
immediate that p2 ≤ p1 in P �A. Conversely suppose p2 ≤ p1 in P �A. Then there exists C ∈ IA

x such that
p2 ≤ p1 in P �C ∗ DV [GC ]

x . Since

P �B ∗ DV [GB ]
x , P �C ∗ DV [GC ]

x <· P �(B ∪ C) ∗ DV [GB∪C ]
x ,

we have p2 ≤ p1 in P �B ∗ DV [GB ]
x .

(incompatibilites): We want to show p2 and p1 are incompatible in P �B ∗ DV [GB ]
x iff p2 and p1 are

incompatible in P �A. Suppose p2 and p1 are compatible in P �B ∗ DV [GB]
x , say p3 ≤ p1, p2 in P �B ∗ DV [GB ]

x .
Then so they are in P �A. Conversely, suppose p2 and p1 are compatible in P �A, say p ≤ p1, p2 in P �A. And
so p ∈ P �A. But by Lemma (Tails are tails), we know p�Lx

�〈p(x)〉 ≤ p1, p2 in P �B ∗ DV [GB ]
x .

(reductions): For any p ∈ P �A, there is a reduction p0 ∈ P �B ∗ DV [GB ]
x of p. Namely, for any q0 ≤ p0

in P �B ∗ DV [GB ]
x , q0 and p are compatible in P �A.

Case 1: x ∈ dom(p): By Lemma (initial segments are conditions), we may take Ā ∈ IA
x such that

p�Lx
�〈p(x)〉 ∈ P �Ā ∗ DV [GĀ]

x . We may assume that B ⊆ Ā. Let p0 = p0(p�Lx
�〈p(x)〉, Ā, B, x) ∈ P �B ∗

DV [GB]
x . Then this p0 is a reduction of p�Lx

�〈p(x)〉 in P �B ∗ DV [GB ]
x P <· P �Ā ∗ DV [GĀ]

x . Hence q0 and
p�Lx

�〈p(x)〉 are compatible in P �Ā ∗ DV [GĀ]
x . Let r̄ ≤ q0, p�Lx

�〈p(x)〉 in P �Ā ∗ DV [GĀ]
x . Then by Lemma

(Replacing an initial segment by a stronger condition), we have r̄�p�(x,A) ≤ p in P �A. By Lemma (initial
segments are weaker than mother), we have r̄�p�(x,A) ≤ r̄ in P �A and so q0 and p are compatible in P �A.

Case 2: x �∈dom(p): Take any extension p′ ≤ p in P �A with x ∈ dom(p′). Then by Case 1, we have a
reduction p0 of p′. Since p′ ≤ p in P �A, p0 is a reduction of p as well.

§11. Hechler Reals via P �L

11.1 Definition. Let GL be a P �L-generic filter over V . For x ∈ L, we define

hx =
⋃
{sp

x | p ∈ GL, x ∈ dom(p)}.

11.2 Lemma. Let GA = GL ∩ (P �A) and GB
〈x〉 = GL ∩ (P �B ∗ DV [GB ]
x ) for all A ∈ I, x ∈ A and

B ∈ IA
x . Then GA is a P �A-generic filter over V and GB
〈x〉 is a P �B ∗ DV [GB ]

x -generic filter over V .
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Proof. We know P �B ∗ DV [GB ]
x <· P �A <· P �L.

11.3 Lemma. (1) hx : ω −→ ω,
(2) hx =

⋃{sp
x | p ∈ GA, x ∈dom(p)} for any A ∈ I with x ∈ A,

(3) hx =
⋃{sp

x | p ∈ GB
〈x〉} for any B ∈ IL
x ,

(4) hx is simultaneously Hechler over all V [GB] with B ∈ IL
x . By this we mean that G(hx)D

V [GB ]
= {(s, f) ∈

DV [GB ] | s ⊂ hx and hx ≥ f pointwise } is a DV [GB ]-generic filter over V [GB],
(5) For x < y in L, we have hx(n) < hy(n) for all but finitely many n < ω.

Proof. For(1) and (2): By a density argument. For A ∈ I, x ∈ A and n < ω, let DAxn = {q ∈ P �A |
x ∈dom(q) and sq

x is longer than n}. We may show DAxn is a dense subset of P �A by induction on Dp(A).
Hence both hx and

⋃{sp
x | p ∈ GA, x ∈dom(p)} are functions from ω into ω. By the definition of hx, we

have hx ⊇
⋃{sp

x | p ∈ GA, x ∈dom(p)}. Hence they are equal.

For (3): By a density argument. For n < ω, we may show {q ∈ P �B ∗ DV [GB]
x | sq

x is longer than n} is
dense in P �B ∗ DV [GB]

x . Hence
⋃{sp

x | p ∈ GB
〈x〉} is a function from ω into ω. By the definition of hx, we
have hx ⊇

⋃{sp
x | p ∈ GB
〈x〉}. Hence they are equal.

For (4): P �B ∗ IV [GB ]
x is a dense subset of two stage iteration P �B followed by the Hechler forcing

DV [GB]. Since
⋃{sp

x | p ∈ GB
〈x〉} is a Hechler real over V [GB], we conclude so is hx by (3).

For (5): Let x < y. Take any A ∈ IL
y with x ∈ A. This is possible since I is a template. Then

hx ∈ V [GA] by (2). But by (3), hy is Hechler over V [GA]. Hence we are done.

§12. Identifying What the P �A’s add

12.1 Lemma. Let x ∈ L, B ∈ IL
x and p ∈ P �B ∗ DV [GB]

x . The following are equivalent.

• p ∈ GB
〈x〉,

• p�Lx ∈ GB , sp
x ⊂ hx and hx ≥ ḟp

x [GB ] pointwise.

Proof. Suppose p ∈ GB
〈x〉. Then p ≤ p�Lx in P �L. Hence p�Lx ∈ GL ∩ (P �B) = GB . Since hx is
Hechler over V [GB] and p = p�Lx

�〈(sp
x, ḟ

p
x)〉 ∈ GB
〈x〉, we have sp

x ⊂ hx and hx ≥ ḟp
x [GB ] pointwise.

Conversely, suppose p�Lx ∈ GB, sp
x ⊂ hx and hx ≥ ḟp

x [GB ] pointwise. Since hx ∈ V [GB
〈x〉], this state-
ment holds in V [GB
〈x〉]. Take q ∈ GB
〈x〉 such that q ‖−

P�B∗DV [GB ]
x

“p�Lx ∈ GB , sp
x ⊂ ḣx and ḣx ≥ ḟp

x [GB ]

pointwise”. We may assume q�Lx ≤ p�Lx and sq
x is at least as long as sp

x. Since q ‖−P�B∗DV [GB ]
x

“sp
x, s

q
x ⊂ ḣx”,

we have q�Lx ‖−P�B“sp
x ⊆ sq

x”. We claim q ≤ p in P �B ∗ DV [GB]
x and so p ∈ GB
〈x〉. To show the claim,

we want q�Lx ‖−P�B“ḟ q
x ≥ ḟp

x pointwise”. Let a ≤ q�Lx, | sp
x |≤ n < ω and m < ω be sufficiently large,

say, | sq
x |, n < m < ω. We may assume a decides the value of ḟ q

x�m, say, a ‖−P�B“ḟ q
x�m = t and so

t ⊃ sq
x”. Then a�〈(t, ḟ q

x)〉 ≤ q and so a�〈(t, ḟ q
x)〉 ‖−P�B∗DV [GB ]

x
“ḟ q

x[GB ]�m = t = ḣx�m ≥ ḟp
x [GB ]�m”.

Hence a ‖−P�B“ḟ q
x(n) ≥ ḟp

x(n)” and so q�Lx ‖−P�B“ḟ q
x ≥ ḟp

x pointwise”.

12.2 Lemma. For all A ∈ I, we have GA =
⋃{GB
〈x〉 | x ∈ A, B ∈ IA

x }.
Proof. Let p ∈ GA. Then there is x ∈ A and B ∈ IA

x such that p ∈ P �B ∗ DB[GB ]
x . Hence p ∈

GL ∩ (P �B ∗ DB[GB ]
x ) = GB
〈x〉. Conversely, GB
〈x〉 = GL ∩ (P �B ∗ DB[GB ]

x ) ⊆ GL ∩ (P �A) = GA.
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12.3 Lemma. Let A ∈ I and p ∈ P �A. The following are equivalent.
• p ∈ GA,
• For all x ∈ dom(p), there exist B ∈ IA

x such that p�Lx ∈ GB, sp
x ⊂ hx and hx ≥ ḟp

x [GB] pointwise.

Proof. Suppose p ∈ GA. Then for any x ∈ dom(p), there is B ∈ IA
x such that p ≤ p�Lx

�〈p(x)〉 in P �A.
Hence p�Lx

�〈p(x)〉 ∈ GA∩(P �B∗DV [GB ]
x ) = (GL∩P �A)∩(P �B∗DV [GB ]

x ) = GL∩(P �B∗DV [GB ]
x ) = GB
〈x〉.

Therefore p�Lx ∈ GB, sp
x ⊂ hx and hx ≥ ḟp

x [GB ] pointwise.
Conversely, for all x ∈ dom(p), there exist B ∈ IA

x such that p�Lx
�〈p(x)〉 ∈ GB
〈x〉. If p = ∅, then

p ∈ GA trivially. If p �= ∅, then at the largest x ∈ dom(p), we have p = p�Lx
�〈p(x)〉 ∈ GB
〈x〉 ⊆ GA.

12.4 Lemma. For all A ∈ I, we have V [GA] = V [〈hx | x ∈ A〉].
Proof. It suffices to show GA ∈ V [〈hx | x ∈ A〉] by induction on Dp(A) in V [GL]. We have seen that

GA is definable in terms of 〈GB | x ∈ A, B ∈ IA
x 〉 and 〈hx | x ∈ A〉.

In V [〈hx | x ∈ A〉], we define 〈G(B) | x ∈ A, B ∈ IA
x 〉 by recursion on Dp(B) such that

G(B) defined as GB is in terms of 〈G(C) | z ∈ B, C ∈ IB
z 〉 and 〈hz | z ∈ B〉 when each G(C) is a

P �C-generic filter over V . Otherwise, say, G(B) = ∅.
By induction on Dp(B), we may show G(B) = GB . Hence 〈GB | x ∈ A, B ∈ IA

x 〉 ∈ V [〈hx | x ∈ A〉].
Therefore GA ∈ V [〈hx | x ∈ A〉].

12.5 Lemma. For any x ∈ L, hx is simultaneously Hechler over V [〈hz | z ∈ A〉] for all A ∈ IL
x .

Proof. Immediate by previous Lemmas.

Note. In general we do not have hx is Hechler over V [〈hz | z < x〉]. But we do have {hz | z < x} ⊆⋃{V [〈hz | z ∈ A〉] | A ∈ IL
x }.
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