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Löb’s axiom and cut-elimination theorem1

Katsumi Sasaki2

Abstract

We consider Löb’s axiom in modal logics. By adding it to the smallest
normal modal logic K, we obtain provability logic GL, which is complete
for the formal provability interpretation in Peano arithmetic PA (see Solo-
vay [Sol76]). So, GL and Löb’s axiom has been considered as one of the
most important modal logics and axioms.

A cut-elimination theorem for GL was proved in Valentini [Val83].
Valentini uses an induction on degree, rank and width. The first two
parameters are used in the standard proof of cut-elimination theorem
presented in Gentzen [Gen35], but the proof for GL needs the third one
width. The theorem was also proved semantically in Avron [Avr84]. Avron
proved it by using completeness of GL. However, the completeness cannot
be obtained by the standard method, i.e., the canonical model. Here we
can see the difficulty to deal with GL.

The normal modal logic K4 is a sublogic of GL, which is obtained
from K by adding the transitivity axiom. K4 is much easier to deal with
than GL. A cut-elimination theorem and completeness for K4 are given
by the standard method mentioned above.

GL is also obtained by adding Löb’s axiom to K4. So, the knowledge
of K4 is useful for the discussion of GL. In this paper, we give another
proof of the cut-elimination theorem for GL using a cut-free system for
K4 and a property of Löb’s axiom.

1 Introduction

We use lower case Latin letters for propositional variables. Formulas are de-
fined, as usual, from the propositional variables and the logical constant ⊥
(contradiction) by using logical connectives ∧ (conjunction), ∨ (disjunction) ⊃
(implication) and ✷ (necessity). We use upper case Latin letters, possibly with
suffixes, for formulas. We use Greek letters for finite sets of formulas. By ✷Γ,
we mean the set {✷A | A ∈ Γ}.

Definition 1.1. The degree d(A) of a formula A is defined inductively as
follows:

(1) d(p) = 1, for each propositional variable p,
(2) d(⊥) = 1,
(3) d(A ∧ B) = d(A ∨ B) = d(A ⊃ B) = d(A) + d(B) + 1,
(4) d(✷A) = d(A) + 1.
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By K4, we mean the smallest set of formulas containing all the tautologies
and axioms

✷(p ⊃ q) ⊃ (✷p ⊃ ✷q) and ✷p ⊃ ✷✷p

and closed under modus ponens, substitution and necessitation, i.e., A ∈ K4
implies ✷A ∈ K4. By GL, we mean the smallest set of formulas containing all
the theorems in K4 and Löb’s axiom

L(p) = ✷(✷p ⊃ p) ⊃ ✷p.

and closed under modus ponens, substitution and necessitation.

By a sequent, we mean the expression

Γ → ∆.

For brevity’s sake, we write

A1, · · · , Ak,Γ1, · · · ,Γ� → ∆1, · · · ,∆m, B1, · · · , Bn

instead of

{A1, · · · , Ak} ∪ Γ1 ∪ · · · ∪ Γ� → ∆1 ∪ · · · ∪ ∆m ∪ {B1, · · · , Bn}.
By Sub(Γ → ∆), we mean the set of subformulas of each formula in Γ ∪ ∆.

The sequent style system GK4 for K4 is defined from the following axioms
and rules in the usual way.

Axioms of GK4
A → A

⊥ →
Inference rules of GK4

Γ → ∆
A,Γ → ∆

(T →)
Γ → ∆

Γ → ∆, A
(→ T )

Γ → ∆, A A,Π → Λ
Γ, Π− {A} → ∆− {A}, Λ(cut)

Ai,Γ → ∆
A1 ∧ A2,Γ → ∆

(∧ →i)
Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧ B
(→ ∧)

A,Γ → ∆ B,Γ → ∆
A ∨ B,Γ → ∆

(∨ →)
Γ → ∆, Ai

Γ → ∆, A1 ∨ A2
(→ ∨i)

Γ → ∆, A B,Γ → ∆
A ⊃ B,Γ → ∆

(⊃→)
A,Γ → ∆, B

Γ → ∆, A ⊃ B
(→⊃)

Γ, ✷Γ → A

✷Γ → ✷A
(✷K4)
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The following two lemmas can be proved in the usual way.

Lemma 1.2. → A ∈ GK4 if and only if A ∈ K4.

Lemma 1.3. If Γ → ∆ ∈ GK4, then there exists a cut-free proof figure for
Γ → ∆ in GK4.

The sequent style system GGL for GL is the system obtained from GK4
by replacing (✷K4) by the following inference rule:

✷A,Γ, ✷Γ → A

✷Γ → ✷A
(✷GL).

The following lemma can also be proved in the usual way.

Lemma 1.4. → A ∈ GGL if and only if A ∈ GL.

Definition 1.5. A subfigure of a proof figure P is defined as follows:
(1) P is a subfigure of P ,

(2) if P =
P1

Γ → ∆
, then each subfigure of P1 is a subfigure of P ,

(3) if P =
P1 P2

Γ → ∆
, then each subfigure of P1 or P2 is a subfigure of P .

A proof figure Q is called a proper subfigure of a proof figure P if Q is a
subfigure of P and Q = P .

2 A property of Löb’s axiom

In this section, we show a property of Löb’s axiom.

Definition 2.1. The expression ✷nA is defined inductively as follows:
(1) ✷0A = A,
(2) ✷k+1A = ✷(✷kA).

The following lemma is important for the proof of cut-elimination theorem.

Lemma 2.2. ✷nL(A) → L(A) ∈ GK4, for any n ≥ 0.

Proof. By an induction on k, we can show

✷k+1L(A) → ✷kL(A) ∈ GK4
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for any k ≥ 0. Using cut, possibly several times, we obtain the lemma. �

Corollary 2.3. For any n ≥ 0,

Γ → ∆ ∈ GGL if and only if Γ → ∆ ∈ GK4+ ✷nL(p),

where GK4+ ✷nL(p) is the system obtained by adding → ✷nL(A) to GK4 as
an axiom.

Lemma 2.4. Let P be a proof figure for Γ → ∆ in GK4+✷n+1L(p). Then
there exist formulas A1, · · · , Am such that

✷n+1L(A1), · · · , ✷n+1L(Am),Γ → ∆ ∈ GK4.

Proof. We use an induction on the number #(P ) of axioms of the form
→ ✷n+1L(A) in P . If #(P ) = 0, then P is a proof figure for Γ → ∆ in
GK4. Suppose that #(P ) > 0 and the lemma holds for any P ∗ such that
#(P ∗) < #(P ). Then there exists an axiom → ✷n+1L(A1) in P for some A1.
For a subfigure Q of P , we define h(Q) as follows:

(1) h(A → A) =
A → A

✷n+1L(A1), A → A
,

(2) h(⊥ →) =
⊥ →

✷n+1L(A1),⊥ → ,

(3) h(→ ✷n+1L(A)) =
→ ✷n+1L(A)

✷n+1L(A1) → ✷n+1L(A)
, where A = A1,

(4) h(→ ✷n+1L(A1)) = ✷n+1L(A1) → ✷n+1L(A1),

(5) h(
P1 · · · Pk

Γ → ∆
) =

h(P1) · · · h(Pk)
✷n+1L(A1),Γ → ∆

if the inference rule that intro-

duces Γ → ∆ is not (✷K4),

(6) h(
P1

✷Γ → ✷A
) =

h(P1)
using (T →), possibly several times

L(A1),Γ, ✷n+1L(A1), ✷Γ → A

✷n+1L(A1), ✷Γ → ✷A

if the inference

rule that introduces ✷Γ → ✷A is (✷K4).
Note that h(P ) is a proof figure for

✷n+1L(A1),Γ → ∆

satisfying #(h(P )) < #(P ). Using the induction hypothesis, we obtain the
lemma. �

3 Cut-elimination

In this section, we prove the following theorem using the cut-free system GK4
and Lemma 2.4.
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Lemma 3.1. If Γ → ∆ ∈ GGL, then there exists a cut-free proof figure for
Γ → ∆ in GGL.

To prove the theorem above, we provide some preparations.

Definition 3.2. By GGL∗, we mean the system obtained from GGL by
adding the inference rule (✷K4) in GK4.

Definition 3.3. Let P be a cut-free proof figure in GGL∗. We define
dep✷(P ) as follows:

(1) dep✷(A → A) = dep✷(⊥ →) = 0,

(2) dep✷(
P1 · · · Pn

Γ → ∆
)

=
{

dep✷(P1) + 1 if I is (✷K4) or (✷GL)
max{dep✷(P1), · · · , dep✷(Pn)} otherwise

where I is the inference rule that introduces Γ → ∆ in
P1 · · · Pn

Γ → ∆
.

Lemma 3.4. Let P be a cut-free proof figure for

✷nΠ,Γ → ∆

in GGL∗. If dep✷(P ) < n and Π∩Sub(Γ → ∆) = ∅, then there exists a cut-free
proof figure for Γ → ∆ in GGL∗.

Proof. We use an induction on P . If Π = ∅, the lemma is obvious. Suppose
that Π = ∅ and the lemma holds for any proper subfigure of P . Then P is
not axiom, and hence, there exists an inference rule I that introduces the end
sequent of P . Here we only show the case that I is either (✷K4) or (✷GL) since
the other case can be shown by the induction hypothesis. The inference rule I
is of the form:

Λ, ✷n−1Π, ✷n,Π,Γ′, ✷Γ′ → A

✷nΠ, ✷Γ′ → ✷A

where Λ ∈ {{✷A}, ∅} and ✷Γ′ → ✷A is Γ → ∆. Let P1 be the proof figure
that introduces the upper sequent of I. Since I is either (✷K4) or (✷GL), we
have dep✷(P1) < dep✷(P ) < n, and thereby, dep✷(P1) < n − 1. Also we have
(Π ∪ ✷Π) ∩ Sub(Γ → ∆) = ∅. Since Sub(Λ,Γ′, ✷Γ′ → A) ⊆ Sub(Γ → ∆), we
have (Π ∪ ✷Π) ∩ Sub(Λ,Γ′, ✷Γ′ → A) = ∅. Using the induction hypothesis,
there exists a cut-free proof figure for Λ, Γ′, ✷Γ′ → A in GGL∗. Using (✷K4)
or (✷GL), we obtain the lemma. �

By P(✷A), we mean the set of each cut-free proof figure P in GGL∗ such
that the inference rule introducing the end sequent of P is either (✷K4) or (✷GL)
and its principal formula in the succedent is ✷A.
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Definition 3.5. We define a mapping h✷C on the set of cut-free proof
figures in GGL∗ as follows:

(1) h✷C(A → A) =
A → A

✷C, A → A
,

(2) h✷C(⊥ →) =
⊥ →

✷C,⊥→ ,

(3) h✷C(
P1 · · · Pn

Γ → ∆
) =

h✷C(P1) · · · h✷C(Pn)
✷C, Γ → ∆

if
P1 · · · Pn

Γ → ∆
∈ P(✷D)

for any ✷D,

(4) h✷C(
P1

✷Γ → ✷A
) =

h✷C(P1)
using (T →), possibly several times

✷A, C, Γ, ✷C,Γ→ A

✷C, Γ → ✷A

if
P1

✷Γ → ✷A
∈

P(✷A) for each A = C,

(5) h✷C(
P1

✷Γ → ✷C
) =

✷C → ✷C

using (T →), possibly several times
✷C, Γ → ✷C

if
P1

✷Γ → ✷C
∈

P(✷C).

By #✷(P ), we mean the sum of the number of inference rule (✷K4) in P
and the number of inference rule (✷GL) in P .

Lemma 3.6. Let P be a cut-free proof figure for Γ → ∆ in GGL∗. If there
exists a subfigure Q ∈ P(✷C) of P , then h✷C(P ) is a cut-free proof figure for
✷C, Γ → ∆ such that #✷(P ) > #✷(h✷C (P )) and dep✷(P ) ≥ dep✷(h✷C(P )).

Proof. By an induction on P .

Lemma 3.7. Let P be a cut-free proof figure for

✷2n+2Π,Γ → ∆

in GGL∗, where n is the number of elements in {C | ✷C ∈ Sub(Γ → ∆)}.
Then there exists a cut-free proof figure for Γ → ∆ in GGL∗.

Proof. We use an induction on #✷(P ) + ω(dep✷(P )). We note that

✷n+1Π ∩ Sub(Γ → ∆) = ∅
and the end sequent of P can be expressed as

✷n+1(✷n+1Π),Γ → ∆.

If dep✷(P ) < n + 1, then by Lemma 3.4, we obtain the lemma. Suppose that
dep✷(P ) ≥ n + 1 and the lemma holds for any proper subfigure of P . Then
there exists a sequence

P1, · · · , Pn+1, · · · , Pdep✷(P )



��

of subfigures of P satisfying
(1) Pi ∈ P(✷Ci) for some Ci,
(2) Pi+1 is a proper subfigure of Pi.

We note Ci ∈ Sub(Γ → ∆) for i ≤ n + 1. So, there exist i and j such that
Ci = Cj and 1 ≤ i < j ≤ n + 1. On the other hand, Pi is of the form

P ′
i

✷Γ′
i → ✷Ci

Using Lemma 3.6, h✷Ci(P ′
i ) is a cut-free proof figure for ✷Ci,Γ′

i, ✷Γ′
i → Ci such

that #✷(P ′
i ) > #✷(h✷Ci(P ′

i )) and dep✷(P ′
i ) ≥ dep✷(h✷Ci(P ′

i )).
By P ′, we mean the figure obtained from P by replacing P ′

i by h✷Ci (P ′
i ).

Since
✷Ci,Γ′

i, ✷Γ′
i → Ci

✷Γ′
i → ✷Ci

is an inference rule in GGL∗, P ′ is a cut-free proof figure for the end sequent of
P such that #✷(P ) > #✷(P ′) and dep✷(P ) ≥ dep✷(P ′). Using the induction
hypothesis, we obtain the lemma. �

Lemma 3.8. Let P be a cut-free proof figure for Γ → ∆ in GGL∗. Then
there exists a cut-free proof figure for Γ → ∆ in GGL.

Proof. By replacing each inference rule (✷K4) in P by

Γ, ✷Γ → A

✷A,Γ, ✷Γ → A

✷Γ → ✷A

we obtain a cut-free proof figure in GGL. �

Proof of Theorem 3.1. Let n be the number of elements in {C | ✷C ∈
Sub(Γ → ∆)}. By Corollary 2.3 and Lemma 2.4, there exist formulas A1, · · · , Am

such that
✷2n+2L(A1), · · · , ✷2n+2L(Am),Γ → ∆ ∈ GK4.

Using Lemma 1.3, there exists a cut-free proof figure for the above sequent in
GK4, and hence, in GGL∗. Using Lemma 3.7, there exists a cut-free proof
figure for Γ → ∆ in GGL∗. Using Lemma 3.8, we obtain the theorem. �
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