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On the Notion of Forcing for The Complete Boundingness

MIYAMOTO Tadatoshi
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Abstract

We concentrate on a natural notion of forcing for the complete boundingness. We provide equivalences
so that the notion (1) preserves the first uncountable cardinal; (2) preserves the stationary subsets of the first
uncountable cardinal; (3) semiproper; (4) proper. It appears that there exist corresponding large cardinals
and combinatorial principles.

Introduction

We consider the notion of forcing for the complete boundingness. The complete boundingness has been
investigated by various people. The following are a few of the developments known to us.

• Generic Ultrapowers and the complete boundingness and various observations. ([B-M])
• The equivalence between the complete boundingness and what we call the Zapletal’s Conjecture. ([Y])
• An iterated forcing construction for the complete boundingness starting from the least regular cardinal
which has cofinally many measurables below. ([M])

We have been informed of the following.

• On the consistency of the complete boundingness with CH. ([S-L])
• The large cardinal hypothesis used is necessary. ([D-D])

The references [W] and [S] appear to be the origins of many things. In this note, we intend to give our
account which took place in the years betweeen 1998-2000 intermittently.

§1. Preliminary 1

We review the set of sets which are hereditarily of size less than a given regular uncountable cardinal.

1.1 Definition. Let θ > ω be a regular cardinal. We denote Hθ = {x | |TC(x) |< θ}, where TC(x)
denotes the transitive closure of x.

The following are basic closure properties of Hθ’s.

1.2 Proposition. Let θ > ω be a regular cardinal.

(1) x ∈ Hθ iff (x ⊂ Hθ and | x |< θ).
(2) | Hθ |= 2<θ.
(3) If y ∈ x ∈ Hθ, then y ∈ Hθ.
(4) If y ⊆ x ∈ Hθ, then y ∈ Hθ.
(5) <θHθ ⊂ Hθ.
(6) If x, y ∈ Hθ, then {x, y}, x× y,⋃ x ∈ Hθ.
(7) If Hθ |= “y = P (x)”, then y = P (x).
(8) If y =TC(P (x)) = P (x)∪TC(x) is of size < θ, then Hθ |= “y = P (x)”.
(9) Hθ ≺Σ1 Hχ for all regular χ with θ < χ.

(10) If V = L, then Lθ = Hθ.

We next summarize the definabilities of Hθ’s.

1.3 Proposition. Let both θ and χ be uncountable regular with 2<θ < χ.
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(1) Hθ ∈ Hχ.
(2) Let y = Hθ, then Hχ |= “y = {x | |TC(x) |< θ}”.
(3) If θ ∈M ≺ Hχ, then Hθ ∈M and so Hθ ∩M ≺ Hθ.

We review Hθ in generic extensions.

1.4 Proposition. Let P be a preorder and θ be uncountable regular with P ∈ Hθ. We denote V P for
the class of P -names in V .

(1) ‖−P“H
V [Ġ]
θ = {τĠ | τ ∈ Hθ ∩ V P }”.

Actually we have

(2) For any τ ∈ V P there is σ ∈ Hθ ∩ V P s.t. ‖−P “if τ ∈ HV [Ġ]
θ , then τ = σ”.

We next summerize elementary substructures in generic extensions.

1.5 Proposition. Let P be a preorder, θ be uncountable regular and N be a countable elementary
substructure with P ∈ N ≺ Hθ.

(1) For any formula ϕ(v1, · · · , vn), there is a formula ϕ∗(x, y, v1, · · · , vn) s.t.
for all p ∈ P and all τ1, · · · , τn ∈ V P p ‖−P“H

V [Ġ]
θ |= “ϕ(τ1, · · · , τn)”” iff Hθ |= “ϕ∗(p, P, τ1, · · · , τn)”.

(2) ‖−P“N [Ġ] = {τĠ | τ ∈ N ∩ V P } ≺ H
V [Ġ]
θ ”.

(3) ‖−P“If N ∪ {Ġ} ⊆ Ṁ ≺ H
V [Ġ]
θ , then N [Ġ] ⊆ Ṁ”.

§2. Preliminary 2

We review the semiproperness of preorders.

2.1 Definition. A preorder P is semiproper, if for all regular cardinals θ with P ∈ Hρ(P)+ ∈ Hθ, where
ρ(P ) =|TC(P ) |, and all countable elementary substructures N with P ∈ N ≺ Hθ, the following holds.

For any p ∈ P ∩N there is q ≤ p s.t. for any τ ∈ V P ∩N with ‖−P“τ ∈ ωV
1 ”, we have q ‖−P“τ ∈ N”.

Equivalently, q ‖−P “N [Ġ] ∩ ωV
1 = N ∩ ωV

1 ”.

2.2 Definition. Let A ⊇ ω1. A set S ⊆ [A]ω is semistationary, if

⋃
X∈S

{Y ∈ [A]ω | X ⊆ω1 Y }

is stationary in [A]ω, where X ⊆ω1 Y means that X ⊆ Y and X ∩ ω1 = Y ∩ ω1.

The following provides a model theoretic equivalence to the semiproperness.([S])

2.3 Thoerem. Let P be a preorder. The following are equivalent.

(1) P is semiproper.
(2) P preserves not only ω1 but also every semistationary set. Namely, if S ⊆ [A]ω is semistationary, then
‖−P“

⋃{Y ∈ ([A]ω)V [Ġ] | ∃X ∈ S X ⊆ω1 Y } is stationary in ([A]ω)V [Ġ]”.

As a corollary to the proof of the above theorem which is due to [S], we have

2.4 Corollary. Let P be a preorder and let ρ(P ) =|TC(P ) |. The following are all equivalent.

(1) P is semiproper.
(2) P preserves ω1 and every semistationary set in all [A]ω with ω1 ⊆ A.
(3) P preserves ω1 and every semistationary set in [Hρ(P)+ ]ω.

2



��

(4) {N ≺ Hρ(P)+ | P ∈ N and ∀p ∈ P ∩N∃q ≤ p q is (P,N)-semi-generic} contains a club.
(5) For all countable elementary substructure M of H(2ρ(P))+ with P ∈M and all p ∈ P ∩M , there is q ≤ p
s.t. q is (P,M)-semi-generic.

§3. The Principle CB

We consider the following combinatorial principle.

3.1 Definition. The complete boundingness (CB) holds, if for any f : ω1 −→ ω1, there is γ with
ω1 < γ < ω2 and a sequence 〈Xi | i < ω〉 of continuously increasing countable subsets of γ with

⋃{Xi | i <
ω1} = γ s.t. for all i < ω1 the order type of Xi is greater than f(i).

We first mention an equivalence to CB. The equivalence is the original to CB and due to [B-M] and
[W].

3.2 Proposition. The following are equivalent.

(1) CB holds.
(2) NSω1 is completely bounded. Namely, for any f : ω1 −→ ω1 there is γ ∈ (ω1, ω2), a bijection π : ω1 −→ γ
and a club C ⊆ ω1 s.t. for all δ ∈ C f(δ) < o.t.(π′′δ).

Among others, the following are observed in [B-M] and possibly in [W].

3.3 Theorem.
(1) If NSω1 is saturated, then NSω1 is completely bounded.
(2) If NSω1 is completely bounded, then ♦ω1 gets negated.

Then [Y] improved a result due to [B-M] to the following.

3.4 Theorem. The following are equivalent.

(1) NSω1 is completely bounded.
(2) The Zapletal’s Conjecture holds. Namely, for any club C ⊆ ω1, the pull-back C∗ = {X ∈ [ω2]ω |

o.t.(X) ∈ C} contains a club.
(3) For any f : ω1 −→ ω1 there are club many γ < ω2, bijections π : ω1 −→ γ and clubs C ⊆ ω1 s.t. for all
δ ∈ C f(δ) < o.t.(π′′δ).

We add the following to record.

3.5 Theorem. The following are equivalent.

(1) CB hold.
(2) For any regular θ ≥ ω2 and any countable Y ≺ Hθ, the canonical extension Z = {f(Y ∩ ω1) | f ∈ Y, f :
ω1 −→ Hθ} ≺ Hθ of Y satisfies Z ∩ ω1 = o.t.(Y ∩ ω2).

Proof. (1) implies (2): Fix θ, Y and Z. We first observe that the following always holds.

Claim 1. o.t.(Y ∩ ω2) ≤ Z ∩ ω1.

Proof. Let π : o.t.(Y ∩ ω2) −→ Y ∩ ω2 be the isomorphism. For any γ ∈ Y ∩ ω2, take a sequence
〈Xi | i < ω1〉 of continuously increasing countable subsets of γ s.t.

⋃{Xi | i < ω1} = γ. Since γ ∈ Y , we
may assume 〈Xi | i < ω1〉 ∈ Y . Let fγ : ω1 −→ ω1 be defined by fγ(i) = o.t.(Xi). We may assume fγ ∈ Y .
Note that

π�o.t.(γ ∩ Y ) : o.t.(γ ∩ Y ) −→ γ ∩ Y = XY ∩ω1 .

This map is the isomorphism. So we have

o.t.(γ ∩ Y ) = o.t.(XY ∩ω1 ) = fγ(Y ∩ ω1) ∈ Z ∩ ω1.
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But o.t.(Y ∩ ω2) = {o.t.(γ ∩ Y ) | γ ∈ Y ∩ ω2}. Thus ≤ holds.

But by CB, we get

Claim 2. o.t.(Y ∩ ω2) ≥ Z ∩ ω1.

Proof. Suppose f(Y ∩ ω1) < ω1. We may assume f ∈ Y with f : ω1 −→ ω1. By CB, we get
ω1 < γ < ω2 and a sequence 〈Xi | i < ω1〉 s.t. for all i < ω1 f(i) < o.t.(Xi). Since f ∈ Y , we may assume
γ, 〈Xi | i < ω1〉 ∈ Y . And so f(Y ∩ ω1) < o.t.(XY ∩ω1) and XY ∩ω1 =

⋃{Xi | i < Y ∩ ω1} = Y ∩ γ. Thus
f(Y ∩ ω1) < o.t.(Y ∩ γ) < o.t.(Y ∩ ω2).

(2) implies (1): Given f : ω1 −→ ω1, construct a sequence of canonical extensions 〈Yi | i < ω1〉. By this
we mean that

• f ∈ Y0 ≺ Hω2.
• Yi+1 = {g(Yi ∩ ω1) | g ∈ Yi and g : ω1 −→ Hω2} ≺ Hω2 .
• For limit i < ω1, we take Yi =

⋃{Yj | j < i} ≺ Hω2 .

Then for any i < ω1, we have

f(i) ∈ Yi+1 ∩ ω1 = o.t.(Yi ∩ ω2).

We put Xi = Yi ∩ ω2 and γ =
⋃{Xi | i < ω1}. It is easy to see that γ < ω2 and this 〈Xi | i < ω1〉 works.

§4. The Notion of Forcing Q(f, κ) for CB

We introduce a natural partially ordered set to force CB. In the following, we typically consider either
κ = ω2 or κ is a measurable cardinal.

4.1 Definition. Let f : ω1 −→ ω1 and κ be a regular cardinal with κ ≥ ω2. We define
p = 〈Xp

i | i ≤ αp〉 ∈ Q(f, κ), if
• p is a sequence of continuously increasing countable subsets of κ of length αp + 1 < ω1.
• For all i ≤ αp f(i) < o.t.(Xp

i ).

For p, q ∈ Q(f, κ), we set q ≤ p, if q ⊇ p.

We first mention a density. The proof is a simplified version due to Y. Yoshinobu.

4.2 Lemma. For any p ∈ Q(f, κ), any countable subset X of κ and any α < ω1, we have q ≤ p s.t. if
αp < α, then αq = α and X ⊆ Xq

α.

Proof. Given p, X and α with αp < α, take a countable subset Y of κ so that X ∪ Xp
αp ⊆ Y and

o.t.(Y ) > sup{f(i) | αp < i ≤ α}. Let q = p ∪ {(i, Y ) | αp < i ≤ α}. This q works.

We consider equivalent conditions on Q = Q(f, κ) so that

(1) Q preserves ω1.
(2) Q preserves every stationary subset of ω1.
(3) Q is semiproper.
(4) Q is proper.

It turns out that we have a beautiful picture including CB and the Weak Chang’s Conjecture.

4



��

§5. Q(f, κ) May Preserve ω1

5.1 Proposition. Let Q = Q(f, κ). The following are equivalent.

(1) Q preserves ω1.
(2) Q is σ-Baire
(3) S(f, κ) = {X ∈ [κ]ω | X ∩ ω1 < ω1 and for all i ≤ X ∩ ω1 f(i) < o.t.(X)} is stationary.

Proof. (1) implies (2): Suppose Q preserved ω1. Let 〈Dn | n < ω〉 be a sequence of open dense subsets
of Q and p ∈ Q. By the density we take a sequence 〈Ẋi | i < ω1〉 of Q-names so that

• ‖−Q“
⋃
Ġ = 〈Ẋi | i < ωV

1 〉”.
We construct a sequence of Q-names 〈ṗn | n < ω〉 s.t.

• p ‖−Q“ṗn ≤ p and ṗn ∈ Dn ∩ Ġ”.
Since Q preserves ω1, we have ‖−Q“sup{αṗn | n < ω} < ω1”. Since ‖−Q“∀β < ω1 〈Ẋi | i ≤ β〉 ∈ Q”, we

have p ‖−Q“∃q ≤ p q ∈ ⋃{Dn | n < ω}”. So we have q ≤ p with q ∈ ⋃{Dn | n < ω}.

(2) implies (3): Let h : <ωκ −→ κ. We want to find X ∈ S(f, κ) s.t. X is h-closed. To this end take
a sufficiently large regular cardinal θ and a countable elementary substructure N with f, κ, Q, h ∈ N ≺ Hθ.
Notice that in every generic extension V [Ġ] via Q, we have

• N [Ġ] ∩ κ is h-closed.
• For all i < N [Ġ] ∩ ω1 f(i) ∈ N [Ġ] ∩ ω1.
• ⋃

Ġ = 〈Ẋi | i < ω1〉 ∈ N [Ġ].

Since ẊN[Ġ]∩ω1
= N [Ġ] ∩ κ,

• f(N [Ġ] ∩ ω1) < o.t.(N [Ġ] ∩ κ).
Since Q is σ-Baire,

ω1 ∈ X = N [Ġ] ∩ κ ∈ V.
We observe this X works. To see X ∈ S(f, κ), take i < X ∩ ω1. Then f(i) ∈ X ∩ ω1 < ω1. So we have
f(i) < o.t.(X). We also have f(X ∩ ω1) < o.t.(X). To see X is h-closed, notice that h ∈ N [Ġ] ≺ H

V [Ġ]
θ and

so h“<ω(N [Ġ] ∩ κ) ⊆ N [Ġ] ∩ κ. Namely, X is h-closed.

(3) implies (1): Suppose α < ω1 and p ‖−Q“ġ : α −→ ωV
1 ”. We want to find q ≤ p and β < ω1 s.t.

q ‖−Q“ġ“α ⊆ β”. By (3), we may take a sufficiently large regular cardinal θ and a countable elementary
substructure N with

• p, ġ, Q, α ∈ N ≺ Hθ.
• N ∩ κ ∈ S(f, κ).
And so,

• f(N ∩ ω1) < o.t.(N ∩ κ).
We construct a (Q,N)-generic sequence 〈pn | n < ω〉 with p0 ≤ p. Then we have

• sup{αpn | n < ω} = N ∩ ω1.
• ⋃{Xpn

αpn | n < ω} = N ∩ κ.
Let q =

⋃{pn | n < ω} ∪ {(N ∩ ω1, N ∩ κ)}.
Then q ≤ p is (Q,N)-generic. Hence q ‖−Q“ġ“α ⊆ N [Ġ] ∩ ωV

1 = N ∩ ωV
1 < ωV

1 ”.

To complete the picture at this level, let us recall
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5.2 Definition. The Weak Chang’s Conjecture holds, if there is no f : ω1 −→ ω1 s.t. for all β < ω2,
{i < ω1 | fβ(i) < f(i)} contains a club, where fβ denotes the β-th canonical function.

The following is known.

5.3 Lemma. The following are equivalent.

(1) The Weak Chang’s Conjecture holds.
(2) For any regular cardinal θ ≥ ω2 and any p ∈ Hθ, there is δ < ω1 s.t. sup{o.t.(N ∩ ω2) | p ∈ N ≺ Hθ ,
N is countable and N ∩ ω1 = δ} = ω1.

The following completes the picture at this level. The implication (1) implies (2) is due to [Y].

5.4 Proposition. The following are equivalent.

(1) For all f : ω1 −→ ω1, Q(f, ω2) preserves ω1.
(2) The Weak Chang’s Conjecture holds.

Proof. (1) implies (2): Suppose f : ω1 −→ ω1. We assume S(f, ω2) ⊆ {X ∈ [ω2]ω | X ∩ ω1 < ω1 and
f(X ∩ ω1) < o.t.(X)} is stationary. So for each X ∈ S(f, ω2), there is β ∈ X s.t. o.t.(β ∩X) = f(X ∩ ω1).
By applying the Pressing Down Lemma, we get β < ω2 and a stationary set T ⊆ S(f, ω2) s.t. for any
X ∈ T , we have β ∈ X and f(X ∩ ω1) = o.t.(X ∩ β). Hence {γ < ω1 | f(γ) = fβ(γ)} is stationary. Hence
{i < ω1 | fβ(i) < f(i)} does not contain any club.

(2) implies (1): Let f : ω1 −→ ω1. We want to show S(f, ω2) is stationary. To this end let π :<ωω2 −→
ω2. We need to find X ∈ S(f, ω2) which is π-closed. By the Weak Chang’s Conjecture, if we take θ = ω3

and c = (f, π), then there is δ < ω1 s.t.

sup{o.t.(N ∩ ω2) | c ∈ N ≺ Hω3 and N ∩ ω1 = δ} = ω1.

We calculate f(δ) < ω1 and may choose N so that

• c ∈ N ≺ Hω3 .
• N ∩ ω1 = δ and o.t.(N ∩ ω2) > f(δ).

Let X = N ∩ ω2. Then X is π-closed and f(X ∩ ω1) = f(δ) < o.t.(N ∩ ω2) = o.t.(X). So we have
X ∈ S(f, ω2).

So we have the exact consistency strength concerning the preservation of ω1.

5.5 Corollary. The following are equiconsistent.

(1) For all f ∈ ω1ω1, Q(f, ω2) preserves ω1.
(2) There is an almost < ω1-Erdős cardinal.

Proof. See [D-P] or [D-L].

5.6 Proposition. If the Weak Chang’s Conjecture holds, then there is no simplified (ω1, 1)-morasses.
And so ω2 is strongly inaccessible in L.

Proof. Suppose to the contrary, we had a simplified (ω1, 1)-morass

〈θi, Fij | i < j ≤ ω1〉

s.t.
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• θ0 = 1 and θω1 = ω2.
• 0 < θi < ω1.

• For i < j < ω1, we have | Fij |≤ ω.

• For any f ∈ Fij , f : θi −→ θj is ∈-preserving.
• Fii+1 = {idθi, fii+1}, where there is σi < θi and θi+1 = θi + (θi − σi).

And,

fii+1(α) =
{
α if α < σi,
θi + (α− σi) o.w.

• For limit j ≤ ω1, θj =
⋃{f“θi | f ∈ Fij}.

• For i < j < k ≤ ω1, we have Fjk ◦ Fij = Fik.
• For limit j ≤ ω1, i1, i2 < j and f1 ∈ Fi1j, f2 ∈ Fi2j , there is k with i1, i2 < k < j and there are g1 ∈ Fi1k,
g2 ∈ Fi2k and h ∈ Fkj s.t. f1 = h ◦ g1 and f2 = h ◦ g2.
The following is well-known (see [V]).

5.7 Lemma. If f, g ∈ Fij, α, β ∈ θi and f(α) = g(α), then α = β and f�α = g�α.
Now we define f : ω1 −→ ω1 by f(i) = θi.

Claim. S(f, ω2) = {X ∈ [ω2]ω | X ∩ ω1 < ω1 and ∀i ≤ X ∩ ω1 f(i) < o.t.(X)} is not stationary.

Proof. Define

C = {X ∈ [ω2]ω | ∀ξ, η ∈ X with ξ < η∃i < X ∩ ω1 < ω1∃ξ̄, η̄ < θi∃f ∈ Fiω1 f(ξ̄) = ξ, f(η̄) = η}.

We observe that this C is a club disjoint from S(f, ω2). To see C is a club, we mention the unboundedness
of C. Given Y ∈ [ω2]ω, take a sufficiently large regular cardinal θ and a countable elementary substructure
N with Y, 〈θi, Fij | i < j ≤ ω1〉 ∈ N ≺ Hθ. Let X = N ∩ ω2. Then we have Y ⊂ X. If ξ, η ∈ X, then there
is i < ω1, f ∈ Fiω1, ξ̄, η̄ ∈ θi s.t. f(ξ̄) = ξ and f(η̄) = η. By the elementarity, we may assume i < X ∩ ω1.

We next mention that ifX ∈ C, then θX∩ω1 ≥ o.t.(X). And so f(X∩ω1) ≥ o.t.(X). Hence X �∈ S(f, ω2).
To show this, we define p : X −→ θX∩ω1 by p(ξ) = ξ̄, where there is gξ ∈ FX∩ω1ω1 gξ(ξ̄) = ξ. It is easy to
show that this p is ∈-preserving.

If there is no (ω1, 1)-morasses in V , then ω2 is strongly inaccessible (see [D]).

§6. Q(f, κ) May Preserve Every Stationary Subset of ω1

6.1 Proposition. The following are equivalent.

(1) Q(f, κ) preserves every stationary subset of ω1.

(2) S(f, κ) = {X ∈ [κ]ω | X ∩ ω1 < ω1 and for all i ≤ X ∩ ω1 f(i) < o.t.(X)} is projectively stationary.
Namely, for any stationary subset T of ω1, we have {X ∈ S(f, κ) | X ∩ ω1 ∈ T} is stationary.

Proof. (1) implies (2): Let T be a stationary subset of ω1. We need to show that {X ∈ S(f, κ) | X∩ω1 ∈
T} is stationary. To this end let π : <ωκ −→ κ be given. We want to find X ∈ S(f, κ) s.t. X ∩ ω1 ∈ T and
X is π-closed. Take any Q(f, κ)-generic filter G over V and we argue in V [G]. Let

⋃
G = 〈Xi | i < ω1〉

be a sequence forced. Back in V , take a sufficiently large regular cardinal θ and a sequence of countable
elementary substructures 〈Ni | i < ω1〉 of Hθ s.t. N0 contains f, π and relevant names. Then in V [G], we
form the sequence of countable elementary substructures 〈Ni[G] | i < ω1〉 of HV [G]

θ . Since G ∈ N0[G], we
have 〈Xi | i < ω1〉 ∈ N0[G]. Since we assume T remains stationary and {δ < ω1 | Nδ [G]∩ω1 = Nδ ∩ω1 = δ}
is a club, we may take δ < ω1 s.t. Nδ[G] ∩ ω1 = δ ∈ T . Notice that we have Xδ = Nδ [G] ∩ κ. And so
f(δ) < o.t.(Nδ[G] ∩ κ). Let X = Nδ[G] ∩ κ ∈ V . Then it is easy to check that this X works.
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(2) implies (1): Since S(f, κ) is projectively stationary, it is stationary. Hence Q(f, κ) is σ-Baire. Let
T ⊆ ω1 be stationary, p ∈ Q(f, κ) and p ‖−Q(f,κ)“Ċ ⊆ ω1 be a club”. We want to find q ≤ p and δ ∈ T

s.t. q ‖−Q(f,κ)“δ ∈ Ċ”. To this end take a sufficiently large regular cardinal θ and a countable elementary
substructure N s.t.

• p, Ċ, Q(f, κ), f ∈ N ≺ Hθ.
• δ = N ∩ ω1 ∈ T .
• N ∩ κ ∈ S(f, κ).
And so,

• f(δ) < o.t.(N ∩ κ).
Let 〈pn | n < ω〉 be a (Q(f, κ), N)-generic sequence with p0 ≤ p. Then

• sup{αpn | n < ω} = δ.
• ⋃{Xpn

αpn | n < ω} = N ∩ κ.
Let q =

⋃{pn | n < ω} ∪ {(δ,N ∩ κ)}. Then it is easy to see that q ≤ p and q is (Q(f, κ), N)-generic.
And so q ‖−Q(f,κ)“Ċ ∈ N [Ġ] and δ = N ∩ ω1 = N [Ġ] ∩ ω1 ∈ Ċ”.

The complete picture at this level is as follows. Though we may not know the exact consistency strength
of this level.

6.2 Proposition. The following are equivalent.

(1) For all f ∈ ω1ω1, Q(f, ω2) preserves every stationary subset of ω1.
(2) For all f ∈ ω1ω1, S(f, ω2) is projectively stationary.
(3) For any constant c and any regular cardinal θ ≥ ω2 with c ∈ Hθ, {δ < ω1 | sup{o.t.(N∩ω2) | c ∈ N ≺ Hθ

and N ∩ ω1 = δ} = ω1} contains a club. (A strong form of the Weak Chang’s Conjecture.)

Proof. We have seen (1) iff (2).

(2) implies (3): Suppose not. Then there must be a regular cardinal θ and a constant c ∈ Hθ s.t. A =
{δ < ω1 | sup{o.t.(N ∩ω2) | c ∈ N ≺ Hθ and N ∩ω1 = δ} = ω1} does not contain any club. So we may define
a function f : ω1 −→ ω1 s.t. for δ ∈ ω1 − A, f(δ) = sup{o.t.(N ∩ ω2) | c ∈ N ≺ Hθ and N ∩ ω1 = δ} < ω1.
Since S(f, ω2) is projectively stationary, we may take a countable elementary substructure N s.t.

• c ∈ N ≺ Hθ.
• δ = N ∩ ω1 ∈ ω1 − A.
• f(δ) < o.t.(N ∩ ω2).

But o.t.(N ∩ ω2) ∈ {o.t.(M ∩ ω2) | c ∈M ≺ Hθ and M ∩ ω1 = δ} and so o.t.(N ∩ ω2) ≤ f(δ). This is a
contradiction.

(3) implies (2): Let T ⊆ ω1 be stationary and π : <ωω2 −→ ω2 be given. We want to find X ∈ S(f, ω2)
s.t. X ∩ ω1 ∈ T and X is π-closed. Let θ = ω3 and c = (π, f). Then by (3), we have δ ∈ T s.t.
sup{o.t.(N ∩ ω2) | c ∈ N ≺ Hω3 and N ∩ ω1 = δ} = ω1.

We calculate f(δ) < ω1 and fix a countable elementary substructure N s.t.

• f(δ) < o.t.(N ∩ ω2).
• c ∈ N ≺ Hω3 .
• N ∩ ω1 = δ.

Let X = N ∩ ω2. Then it is easty to check that X ∈ S(f, ω2) works.
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§7. Q(f, κ) May Be Semiproper

7.1 Proposition. The following are equivalent.

(1) Q(f, κ) is semiproper.
(2) For all regular cardinals θ ≥ (2κ)+ and all countable elementary substructures N∗ of Hθ with κ, f ∈ N∗,

there is a countable elementary substructure M∗ of Hθ s.t. N∗ ⊆ω1 M
∗ and f(M∗ ∩ω1) < o.t.(M ∗∩κ).

(3) For any club D ⊆ [Hκ+ ]ω there is a club C ⊆ [Hκ+ ]ω s.t. for any X ∈ C, there is Y ∈ D s.t. X ⊆ω1 Y
and Y ∩ κ ∈ S(f, κ).

Proof. (1) implies (2): Let Q = Q(f, κ). Suppose Q is semiproper. In particular Q preserves ω1 and so
Q is σ-Baire.

Claim 1. E = {N ∈ [Hκ+ ]ω | ∃M ∈ [Hκ+ ]ω N ⊆ω1 M ≺ Hκ+ f(M ∩ ω1) < o.t.(M ∩ κ)} contains a
club.

Proof. Suppose not. We write H = Hκ+ for short. Let

S = {N ∈ [H ]ω | N ≺ H and N �∈ E}.

Hence S is stationary. Now let G be any Q-generic filter over V . Then S remains semistationary in
V [G]. Let 〈Xi | i < ω1〉 =

⋃
G. It is routin to see that

C = {M ∈ [H ]ω |M ≺ H and XM∩ω1 =M ∩ κ}

is a club. So we have countable sets N,M ∈ V s.t.

• N ∈ S and N ⊆ω1 M ≺ H .
• XM∩ω1 =M ∩ κ.
And so

• f(M ∩ ω1) < o.t.(M ∩ κ).
Hence N ∈ E. However, this contradicts to N ∈ S.

Claim 2. Let θ be a regular cardinal with θ ≥ (2κ)+. If N∗ ≺ Hθ is countable with κ, f ∈ N∗, then
there is a countable M∗ s.t. N∗ ⊆ω1 M

∗ ≺ Hθ and f(M∗ ∩ ω1) < o.t.(M ∗ ∩ κ).
Proof. Since Hκ+ ∈ Hθ, we have

Hθ |= “E = {N ∈ [Hκ+ ]ω | ∃M ∈ [Hκ+ ]ω N ⊆ω1 M ≺ Hκ+ f(M ∩ ω1) < o.t.(M ∩ κ)} contains a club.”

So we may assume that a club as such belongs to N∗. Hence N = N∗ ∩Hκ+ is in the club. Therefore
we may take a countable M ≺ Hκ+ s.t. N ⊆ω1 M and f(M ∩ ω1) < o.t.(M ∩ κ). Let

M∗ = {g(s) | g ∈ N∗, g : <ωκ −→ Hθ, s ∈ <ω(M ∩ κ)}

Then since every function from <ωκ to κ belongs to Hκ+ , we have

• N∗ ⊆ω1 M
∗ ≺ Hθ.

• M ∩ κ =M∗ ∩ κ.
And so

• f(M∗ ∩ ω1) < o.t.(M ∗ ∩ κ).

9
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(2) implies (3): Let D ⊆ [Hκ+ ]ω be a given club. Take a sufficiently large regular cardinal θ. Let C be
a club in [Hκ+]ω contained in {N∗ ∩Hκ+ | κ,D, f ∈ N∗ ≺ Hθ}. Now if X ∈ C, then there is N∗ ≺ Hθ s.t.
X = N∗ ∩Hκ+ and κ,D, f ∈ N∗ ≺ Hθ. By (2), we have M∗ s.t. N∗ ⊆ω1 M

∗ and M∗ ∩ κ ∈ S(f, κ). Since
D ∈ N∗ ⊆ M∗ and D is a club, we have M∗ ∩Hκ+ ∈ D. Let Y = M∗ ∩Hκ+ . Then Y ∈ D, X ⊆ω1 Y and
Y ∩ κ ∈ S(f, κ).

(3) implies (1): Let θ be a regular cardinal so that Q(f, κ), Hκ+ ∈ Hθ. Take a club D ⊆ {M∗ ∩Hκ+ |
M∗ ≺ Hθ}. By (2) we have a club C in [Hκ+ ]ω as such. Let E = {N∗ ≺ Hθ | N∗ ∩Hκ+ ∈ C}. This E is a
club in [Hθ]ω.

Claim. If N∗ ∈ E, then there is M∗ s.t. N∗ ⊆ω1 M
∗ ≺ Hθ and M∗ ∩ κ ∈ S(f, κ).

Proof. Suppose N∗ ∈ E. Then N = N∗ ∩ Hκ+ ∈ C. So there is M ∈ D s.t. N ⊆ω1 M and
M ∩ κ ∈ S(f, κ). Let

M∗ = {g(s) | g ∈ N∗, g : <ωκ −→ Hθ, s ∈ <ω(M ∩ κ)}.
Since every function from <ωκ to ω1 is in Hκ+ , we may check that

• N∗ ⊆ω1 M
∗ ≺ Hθ.

• M ∩ κ ⊆M∗.
• N∗ ∩ ω1 = N ∩ ω1 =M ∩ ω1 =M∗ ∩ ω1.

And so

• M∗ ∩ κ ∈ S(f, κ).

Now for any N∗ ∈ E with Q = Q(f, κ) ∈ N∗ and p ∈ N∗ ∩Q, we take M∗ as claimed. We want to find
q ≤ p s.t. q is (Q,N∗)-semi-generic. To this end we may take any (Q,M∗)-generic sequence 〈pn | n < ω〉
with p0 ≤ p. Then by the density, we know

• N∗ ∩ ω1 =M∗ ∩ ω1 = sup{αpn | n < ω}.
• κ ∩M∗ =

⋃{Xpn

αpn | n < ω}.
Let q =

⋃{pn | n < ω} ∪ {(M∗ ∩ω1,M
∗∩ κ)}. Then q ≤ p is (Q,M∗)-generic and so q is (Q,N∗)-semi-

generic. Since E is a club, we are done.

7.2 Note. The Weak Reflection Principle implies a statement with similar form as (3) at ω2 (see p.669
in [W]). Namely, suppose for any stationary S ⊆ [ω2]ω, there is α with ω1 < α < ω2 s.t. S∩ [α]ω is stationary.
Then for any club D ⊆ [ω2]ω, there is a club C ⊆ [ω2]ω s.t. for any X ∈ C, there is Y ∈ D s.t. X ⊆ω1 Y
and X �= Y .

7.3 Corollary. (1) If κ is measurable, then Q(f, κ) is semiproper for all f.
(2) If the Strong Chang’s Conjecture holds, then Q(f, ω2) is semiproper for all f.

Proof. Let us recall the Strong Chang’s Conjecture. For all sufficiently large regular cardinals θ and
any countable elementary substructure N of Hθ, there is a countable elementary substructure M of Hθ s.t.
N ⊆ω1 M and N ∩ ω2 �= M ∩ ω2. In either case, we know that countable elementary substructures are
streched while preserving the intersection with ω1.

7.4 Note. (1) The Reflection Principle implies The Strong Chang’s Conjecture (p.59 in [B]).
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(2) If we Levy collapse a measurable cardinal, then The Strong Chang’s Conjecture holds (p.603 and also
see p.615 in [S]).

§8. Q(f, κ) May Be Proper

We now finish the picture at the highest level.

8.1 Proposition. The following are equivalent.

(1) Q(f, κ) is proper.
(2) For all regular cardinals θ ≥ | TC(Q(f, κ)) |+ and all countable elementary substructures N∗ of Hθ with

κ, f ∈ N∗, we have f(N∗ ∩ ω1) < o.t.(N∗ ∩ κ).
(3) S(f, κ) contains a club.

Proof. (1) implies (2): Let θ be a regular cardinal with θ ≥| TC(Q(f, κ)) |+. Take any countable
elementary substructure N∗ ≺ Hθ with κ, f ∈ N∗. Notice that we have Q(f, κ) ∈ N∗. We must observe
f(N∗ ∩ ω1) < o.t.(N ∗ ∩ κ). To do so we may take any q ∈ Q(f, κ) which is (Q(f, κ), N∗)-generic and any
Q(f, κ)-generic filter G with q ∈ G. Let

⋃
G = 〈Xi | i < ω1〉 ∈ N∗[G]. Notice that XN∗[G]∩ω1 = N∗[G] ∩ κ

holds. Since q is (Q(f, κ), N∗)-generic, we have N∗ ∩ κ = N∗[G] ∩ κ. Since f(N∗ ∩ ω1) < o.t.(XN∗∩ω1) and
XN∗∩ω1 = N∗ ∩ κ, we are done.

(2) implies (3): Take a sufficiently large regular cardinal θ and a club D ⊆ {N∗ ∩ κ | κ, f ∈ N∗ ≺ Hθ}.
By (2), if X ∈ D, then we have f(X ∩ ω1) < o.t.(X).

(3) implies (1): Let θ be a sufficiently large regular cardinal. Suppose N∗ is a countable elementary
substructure of Hθ s.t. κ, f ∈ N∗. Notice that we have Q(f, κ), S(f, κ) ∈ N∗. Since S(f, κ) contains a
club, we have N∗ ∩ κ ∈ S(f, κ). Hence f(N∗ ∩ ω1) < o.t.(N ∗ ∩ κ). Now take any p ∈ Q(f, κ) ∩ N∗ and
construct any (Q(f, κ), N∗)-generic sequence below p. The sequence has a lower bound. The bound is a
(Q(f, κ), N∗)-generic condition. Since there are club many N∗, we conclude Q(f, κ) is proper.

In the following, the equivalences (2)-(5) are due to [Y].

8.2 Theorem. The following are equivalent.

(1) For any f : ω1 −→ ω1, Q(f, ω2) is proper.
(2) CB holds.
(3) For any f : ω1 −→ ω1, {X ∈ [ω2]ω | f(X ∩ ω1) < o.t.(X)} contains a club.
(4) For any club C ⊆ ω1, {X ∈ [ω2]ω | o.t.(X) ∈ C} contains a club.
(5) For any club C ⊆ ω1, there is γ with ω1 < γ < ω2 and a sequence of continuously increasing countable
subsets 〈Xi | i < ω1〉 of γ s.t. for all i < ω1, we have o.t.(Xi) ∈ C.

Proof. We know (1) iff (3).

(3) implies (2): Let f : ω1 −→ ω1. Let g(i) = sup{f(j) | j ≤ i}. Take a sufficiently large regular
cardinal θ. We then choose a continously increasing countable elementary substructures 〈Ni | i < ω1〉 s.t.

• Ni ≺ Hθ.
• f(i) ≤ g(i) ≤ g(Ni ∩ ω1) < o.t.(Ni ∩ ω2).

Let Xi = Ni∩ω2 for each i < ω1. Since
⋃{Ni∩ω1 | i < ω1} = ω1, we have

⋃{Ni∩ω2 | i < ω1} = γ < ω2

for some γ. Hence this γ and the Xi’s work.

(2) implies (1): Let θ be a sufficiently large regular cardinal. Let N be a countable elementary sub-
structure of Hθ with Q(f, ω2) ∈ N . Since we assume CB, we may assume that there is γ, 〈Xi | i < ω1〉 ∈ N
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s.t. for all i < ω1 f(i) < o.t.(Xi). Let p ∈ Q(f, ω2) ∩ N . Since f(N ∩ ω1) < o.t.(XN∩ω1 ) and XN∩ω1 =⋃{Xi | i < N ∩ ω1} ⊆ N ∩ γ ⊂ N ∩ ω2, we have f(N ∩ ω1) < o.t.(N ∩ ω2). Hence any (Q(f, ω2), N)-generic
sequence below p would have a lower bound. And any lower boud q ≤ p would be (Q(f, ω2), N)-generic.

(3) implies (4): Let θ be a sufficiently large regular cardinal. By (3) we know that if N is countable and
N ≺ Hθ, then for any f ∈ ω1ω1∩N , we have f(N∩ω1) < o.t.(N∩ω2). Therefore ifM = {f(N∩ω1) | f ∈ N},
then o.t.(N ∩ ω2) =M ∩ ω1 holds. Here κ = ω2 is crutial in Q(f, κ). Let C ⊆ ω1 be a club. If C ∈ N ⊂M ,
then M ∩ ω1 ∈ C and so o.t.(N ∩ ω2) ∈ C. Therefore {X ∈ [ω2]ω | o.t.(X) ∈ C} contains a club induced by
the N ∩ ω2’s.

(4) implies (3): Given f : ω1 −→ ω1, let C = {i < ω1 | ∀j < i f(j) < i}. Then C is a club. By
(4) {X ∈ [ω2]ω | o.t.(X) ∈ C} contains a club. But if o.t.(X) ∈ C, X ∩ ω1 < ω1 and ω1 ∈ X, then
X ∩ ω1 < o.t.(X) and so f(X ∩ ω1) < o.t.(X).

(4) implies (5): Let θ be a sufficiently large regular cardinal. Let C ⊆ ω1 be a club. If N is countable
and C ∈ N ≺ Hθ, then we may assume that o.t.(N ∩ ω2) ∈ C. Now start to construct a sequence of
countable elementary substructures 〈Ni | i < ω1〉 of Hθ with C ∈ N0. Since

⋃{Ni ∩ ω1 | i < ω1} = ω1, we
have

⋃{Ni ∩ ω2 | i < ω1} = γ < ω2 for some γ. Let Xi = Ni ∩ ω2. Then the Xi’s and γ work.

(5) implies (2): Let f : ω1 −→ ω1. We consider g(i) = sup{f(j) | j ≤ i} and C = {i < ω1 | ∀j <
i g(j) < i} which is a club. By (5), we have γ and 〈Xi | i < ω1〉 s.t. for all i < ω1 o.t.(Xi) ∈ C.
Since

⋃{Xi | i < ω1} = γ and ω1 < γ, D = {i < ω1 | ω1 ∈ Xi and Xi ∩ ω1 = i} is a club. Let
〈iα | α < ω1〉 enumerate D. For α < ω1, we have α ≤ iα and iα = Xiα ∩ ω1 < o.t.(Xiα). So we have
f(α) ≤ g(α) ≤ g(iα) = g(Xiα ∩ ω1) < o.t.(Xiα). Hence γ and 〈Xiα | α < ω1〉 work.

8.3 Corollary. The following is consistent. CB holds and ω1 holds. Hence Q(f, ω2) are all proper
(and so semiproper), yet the Chang’s Conjecture ( and so the Strong Chang’s Conjecture) fails.

Proof. Force ω1 with the initial segments over any model where CB holds. Since the notion of forcing
is ω2-Baire, CB gets preserved.
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