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Theory of the stochastic differential equation (SDE) based on a Brownian
motion or a continuous semimartingale is now well developed. It provides a
fundamental tool not only for the reseach of the stochastic analysis but of the
stochastic control, filtering theory and mathematical finance. On the other
hand, stochastic differential equations with jumps based on Lévy processes are
not yet well understood. Many different types of the stochastic differential
equations are studied, owing partly to the variety of the Lévy processes.

In this paper, we will discuss a canonical SDE with jumps. Among many
SDE’s with jumps, the canonical one has some nice geometric and analytic
properties. In the next section, we give the defintion of the equation and state
basic properties of the solution. The main part of this paper is in Sections 2-4,
where we discuss the existence and the smoothness for the density function of
the distribution of the solution to the canonical SDE.

1. Canonical SDE.

Canonical stochastic differential equation with jumps was first introduced
by Marcus [11]. The solution of the equation has some nice geometric proper-
ties, similar to those of Stratonovitch SDE based on a Brownian motion. In this
section, we give the precise definition of the equation and state some basic prop-
erties of the solution, comparing it with that of the continuous Stratonovitch
SDE

A canonical SDE on R? is defined through an m-dimensional Lévy process
Z(t) = (Z*(t), ..., Z™(1)),0 < t < Ty and m + 1 vector fields Vg, V4, ..., V;, on
R%. It is denoted as follows.

ﬁt—no+/ V&, ds+2 V (&) 0z (s). (1)

Here, 79 is an R? valued random variable independent of Z(t) — Z(to),t > tg
such that F[[no|’] < oo holds for any p > 1. The integral of the right hand side
[ -0 Z7(s) is the canonical stochatic integral based on the Lévy process Z7(s).
In order to define it precisely, the Lévy-It6 decomposition of the Lévy process
Z(t) is needed. For any given ¢ > 0, Z(t) is decomposed as

Z(t) = Z(0) + o B(t //Mq (dsdz) + //W(s (dsdz) + bOt.  (2)

Here, B(t) is an m dimensional standard Brownian motion and o is an m X

m-matrix. Further, N(dsdz) is a Poisson random measure on [0,7p] x R™,

independent of B(t), such that its compensator is N (dtdz) = dtu(dz), where p

is the Lévy measure. Further, N =N —N. In the following, we set Z.(t) =
B(t) 4+ bt and Zy(t) = Z(t) — Z.(t).
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Let z = (2%, ..., 2™) € R™ and consider the vector field > 27V;. Suppose
that it is complete. We denote by ¢7(x),t € R the flow of diffeomorphism
generated by it. Thus its value at ¢ = 1 defines the map z — ¢ (x) : R — R¢
of a diffeomorphism for any z € R™.

Now the canonical stochastic differential equation is defined as follows.

[ vite) eazits) + "vj@s_)dz;‘(s)}

to to

ot m
& =m0+ Vo(ﬁs)ds"‘Z{

to j=1

D 627 ) — 6~ S Vi )AZi(s)

to<s<t,AZ(s)#0 j=1

Here, [ ---0dZJ(s) denotes the Stratonovitch integral and [ - - dZé(s) denotes
the It6 integral.

Thereom 1. Suppose that the vector fields V;,j = 0, ..., m are of C*-
class and that V; and their derivatives are all bounded. Then equation (1) has
a unique global solution.

The trajectries {&s,t0 < s < Tp} of the solution is right continuous and has
left hand limits. The jumps of & occur only when the jumps of Z(s) occur. If
Z(s) do not have jumps at s, then their trajectries move continuously like the
solution of the Stratonovitch SDE based on Z.(s). If Z(s) have jumps AZ(s) at
time s, then the trajectries of the solution jump from points &,— to ¢1AZ(S>(§S,).
That is, they fly from points {;_ along the integral curve of the vector fields
> AZ3(s)V; with infinite speed and land to qblAZ(s)(fs,). Then they repeat
the similar movement inductively.

We will list up properties ot the solutions.

1) Stochastic flows of diffeomorphisms. (Fujiwara-Kunita [4])

Denote the solution starting from z at time to as &, ¢(x). Then we can
take its nice modification with respect to parameters tg,t and x so that the
modification satisfies for almost all w,

1) For any to < t, the map z — &, ;(z); R¢ — R is an onto diffeomorphism.
2) &to,u = Etyu 0 &ty ¢ holds for any o < ¢ < w.
2) Coordinate free property. (Fujiwara [3])

Suppose that the vector fields Vp, ..., V;,, are tangent to a submanifold S of
RY. If the solution of the canonical SDE starts from a point of S, then its
trajectries are always on S. (Note that if we replace the canonical integral by
It6 integral, then the solution could leave from S.) Further, the definition of the
canonical SDE does not depend on the choice of the local coordinate. Hence its
defintion can be extended to any manifold.

3) Wong-Zakai approximation. (Kunita [6])
We will approximate the trajectries of the Lévy process Z(t) by a sequence
of continuous polygonal trajectries {Z,(¢)}:
k
Zo(t) = Z(E> + lt_in{z(@) - Z<E>}, i P L
n n n n n n
We will consider a sequence of stochastic ordinary differential equations.
m
Do) _ yion () + S Vion®)ZE(0), 9™ (1) =,

dt -
Jj=1



where ZJ (t) = 4 73 (t). The solution ¢, (t) is a continuous stochastic process.
For each t, the sequence {¢(™) (t)} converges weakly to the solution of the canon-
ical SDE (1).
4) The support theory of Stroock-Varadhan type. (Kunita [8])

We assume that b = lims_ b exists and is finite. Then the Lévy process
Z(t) is represented as

Z(t) = Z(0) + o B(t) +/t/ 2N (dsdz) + b°t.
0 J|z|>0

Let D be the set of all maps u : [0, 7] — R™ such that u(0) = 0 and u(t) are
right continuous with left hand limits. We associate the Skorohod topology to
D. We denote by U the set of all u € D which satisfies a) the number of jumps is
at most finite, b) Au(s) = u(s)—u(s—) € supp(u), where supp(u) is the support
of the Lévy measure u, and c) Set uc(t) = u(t) — ua(t), ua(t) = > ., Au(s).
Then u.(t) is a piecewise smooth and continuous function with values in R (the
image of the linear map A = ooT). Then the closure of U with respect to the
Skorohod topology is the support of the Lévy process Z(t) — Z(0).

Now we set

Vo =Vo+ > 00V, (3)
J

and consider an ordinary differential equation with jumps associated with u(t) €
U:
t m t
o) = o+ [ Vatee)ds+ Y [ Vileloiilsps
to j=1 to
Au(s
+ 3 10" (e(s-) —pls).

to<s<t

Let ¢¥(t) be its solution. We set ® = {¢¥% u € U,z € S}, where S is the
support of the distribution of 7y. It is a subset of D. Then the support S of the
canonical SDE (1) coincides with the closure of ® with respect to the Skorohod
topology.

Remark If the integral f0<|z\<1 |2|p(dz) is finite, then b° exists and is finite.
Hence for any stable process with exponent 0 < o < 1, b° exists. On the other
hand, if the Lévy measure j is symmetric, b° exists and is equal to 0 even if
I <lo|<1 |z|i(dz) is infinite. Hence for any symmetric stable process, b° exists
and is 0.

2. Existence and smoothness of the density of the distribution of
the solution.

In the canonical SDE, if the driving process Z(t) is a Brownian motion,
then the SDE coincides with the Stratonovitch SDE. In this case, if the set of
the vector fields {Vy, V4, ..., Vi, } satisfies Hormander’s hypoellipticity condition
(Hormander Condition (H)), then the distribution of the solution has a C'*°
density function. The fact has been proved by Malliavin, Kusuoka-Stroock and
others using the Malliavin calculus. In this paper, we discuss the existence and
smoothness of the density function for the canonical SDE with jumps, under
conditions which are slightly stronger than Hérmander condition (H).
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Similar problems have been studied for various type of SDE with jumps after
the fundamental work of Bismut. In Bismut [2], Bichteler-Gravereau-Jacod [1],
Leandre [10] and Komatsu-Takeuchi [5], the case where the Lévy measure has
a smooth density is studied. Recently, Picard [12] studied the case where the
Lévy measure satisfies a condition similar to ours but the coefficients (vector
fields) are nondegenerate.

In order that the distribution of the solution of the SDE driven by a Lévy
process has a density function, the Lévy process should have the same property.
Concerning this, we will introduce a nondegenerate Lévy process. Let A = oo .
It is a covariance matrix of the Gaussian part Z.(1) of Z(1). We will define the
infinitesimal covariance of Z4(t). Set

vis(p) = / ), () = [ Pute)

lz|<p

We assume that v(p) > 0,Vp > 0 and we define nonnegative symmetric matrices

B, and B by
B, = vij (p) , B=liminfB,
v(p) p—0

Thus B is the greatest lower bound of the matrices B, so that it satisfies,
(I, Bl) < liminf, .o (I, Byl), VI € R™. If the matrix A+ B is invertible, the
Lévy process is called nondegenerate.

Lemma 1. (Orey) (see Proposition 2.8.3 in Sato [13]) Suppose that the
Lévy process is nondegenerate and that the Lévy measure pu satisfies the order
condition

lim inf @ >0
p—0  p%
for some 0 < a < 2. Then the distribution of Z(t) — Z(0) has a C* density
function for any ¢ > 0.

We will consider the vector fields Vg, V1, ..., V,,, which define our SDE. Using
these vector fields, we set

20:{‘/1,...,‘/»,”}, Ej:{[VO,V],[V,;,V],z':1,...,m,V€ Zj71}7 7=12,..

where [, -] is the Lie bracket. If dimU;>o%;(z) = d is satisfied for any z € RY,
then {Vo, Vi, ..., Vi } is said to satisfy Hormander condition (H).

Theorem 2. (Kunita-Oh [9]) Suppose that the canonical SDE satisfies
the next two conditions.
(a) The Lévy process Z(t) is nondegenerate and the Lévy measure satisfies the
order condition for some a € (0, 2).
(b) The vector fields {Vp, V4, ..., Vi } satisfy the Hérmander condition (H).
Then for any no and ty < t < Tp, the distribution of the solution & has a density
function.

Let us next consider the smoothness of the density function. For this, we
have to look into the drift term of the SDE (1) in detail. Suppose that b° =
lims_o b? exists and is finite. Then b° can be regarded as the drift vector of the
Lévy process Z(t).



Let Vp be the vectof field of (3). We introduce another set of vector fields;

m

zA:() = 207 2.7 = {[V07V}+§ Z aij[w’ [V?/ VH? [V;’VLZ = 17 °cy m7V € ZA:j—1}7

ij=1

. (4)
for j = 1,2,... Then {Vi, V1, ..., Vi,} is said to satisfy the uniform Hormander
condition (H) if there exists a positive integer Ny, a nonnegative integer ng and
a positive constant C' such that

No

SN V@R > —S P, veeRe (5)

1 o
i=0ves, (1+[=1)

for any vector {. Our main result is stated as follows.

Theorem 3. Assume that b° exists and that {‘70, Vi, ..., Vi } satisfies the
uniform Hormander condition (H). Assume further that

Cl
1V ()] < 12

S @riaps" (©)

holds for any vector [ and V' € ij:‘]lflj. Then the law of & has a C'°°-density
for any ng and ty < t < Tp.

If the vector by does not exist, the statement of the result becomes more
complicated. Given § > 0, we set

Vo =Vo+ > WV (7)

i=1

and define

. . . 1 & ) .
0 =%, zgz{[vg,vHiZ[w,[w,vn,[w,w,z:1,...,m,v62§,1},

i,j=1
(8)
for j=1,2,...

Theorem 4. Assume that there exists a positive integer Ny, a nonnegative
integer ng and a positive number §g such that for any 0 < § < gy the inequality

No
S v@PEs 29 2 veeRY wieRr™, )
Jj=0yess (1 * m)nn

holds, where C(d) are positive numbers with the property lim infs_o C(8) /v(8)* =
0. Assume further that (6) holds for any vector [ and V € UN ¢, where C”

may depend on §. Then the distribution of & has a C'*°-density for any 79 and
to <t <Tp.

For the proof of these theorems, we will develope the Malliavin calculus on
the Wiener-Poisson space following the idea of Picard [12], who studied the
Malliavin calculus on the Poisson space.

43



44

3. Malliavin calculus

Let T' = [0, Tp]. Let € be the set of all continuous maps 7' — R such that
w1(0) = 0. Let Fy be its o-field. Pj is a probability measure on (1, F7) such
that W (t) := wi(t) is a standard Brownian motion. Let €2 be the set of all
integer valued measures wy on 7' x R™ such that wo(T x {0}) = 0. Let F be
its o-field. Let P, be a probability measure on (€2, F2) such that N(dtdz) :=
wa(dtdz) is a Poisson random measure and its intensity measure is N(dtdz) :=
dtu(dz). On the product space Q = Q; x Qq, F = F1 X Fa we define a product
measure P = P; x Ps. The triple (Q, F, P) is called the Wiener-Poisson space.

Now let F = F(wi,ws) be a random variable such that it is smooth in
the sense of Malliavin with respect to the first variable wy. The Malliavin-
Shigekawa derivative of F' with respect to the first variable w; is denoted by

1DV = (fp |Dfl,wt]F|2dt1 -+dt;)*/2. For p > 1 and positive integer k we

define the norm || [lx, by | [lx, = (EIFI]+ Y5, EIIDIF|P])/7. DA is the
space of random variables F' with finite norm.

Next for u = (t, 2) = (t, 2%, ..., 2™) € TxR™ we define themap &, : Q2 — Qs
by e wa(A) = wa(A N {u}¢). Further, we define the map &f : Qo — Q3 by
efwa(A) = wa(AN {u}®) + 1a(u). Since wy({u}) = 0 holds for almost all wy,
€,w = w holds a.s. P for any u. We define the difference operator D,, by

D,F=Foct —F

If it is differentiable with respect to z = (24, ..., 2™), we define d x m-matrix
0Dy . F by (0,1 Dy . F, ..., 0;mDy , F).

Set u = (uq,...,u) = ((t1,21), ..., (t, z1)) = (t,2) and |z| = maxi<i<i |2
For a = (a1, ..., aq), a; € {1,...m} we set 9% = .01 -+ 0zom. We define el =
ef o---gt and Dy = Dy, - D,,. Suppose D(t@F o €l is continuous with
respect to (t,z,v) and is differentiable with respect to z. We denote by DF»
the set of all F' such that 9 Dy F' exists, 05 Dy F o €} is continuous and satisfies

sup, E [fTw SUp 4 <1 |8§‘l~)<t7z)Fo E‘ﬂpdt] < o0.

Given a d-dimensional random variable F' belonging to Ngp(Dgp N f)k,p),
we define the Malliavin covariances R, and R by

R, = ((DE,DFj)Lz(T)) + /T (0Dy.0F)B, (0D, o F) dt,

R

(¢DF:, DEy1acry) + / (0D4 .0 F)B(0Dyo F)Tdt.
T

Theorem 5. (Kunita-Oh [9]) 1) Suppose that the Malliavin covariance
R is invertible a.s. Then the distribution of F' has a density.
2) Suppose that there exists pyp > 0 such that for any p > 1 and n,
sup sup E[sup (IR, 0ef1)™?] < Cpom, (10)
u€A(po)™ [l|=1  p<po
where A(po) = {(t,2);t € T,|2| < po}. Then the distribution of F' has a C'*°-
density function.

We shall apply the above theorem to the solution of the canonical SDE.
We shall only consider the case ¢ = 0 and ¢ = Tp. Set F = &r,. Then



F € ng (DR N ]3’“’1’)‘ We shall compute the Malliavin covariance. We can
show similarly as the case of diffusion that D;F' is represented as

D,F = (vgt}To(gt_)(Zw(gt_)aihj),j —1, m) a.e. dtdP.

Here &; is the solution of equation (1) and V& 7, is the Jacobian matrix of the
diffeomorphism &; ,. It is invertible. On the other hand, F' o E?;ﬁ is written as

Foel

Gy = & 1, © ¢F 0 &—. By the mean value theorem, we get

Dy F = Ve g, (650 &) ( 3 Vi o gt,)), ae. dtdP.

i

Therefore, dDyoF = V& 1,(&—)V(&-), where, V(z) = (Vi(z),..., Vin(z)).
Consequently the Malliavin covariance R is written by

R:/TVQ“t,TO(ft_)V(ft_)(A+B)V(ﬁt_)TV&,TO(&_)Tdt, as. P (11)

Instead of the above, it is convenient to consider the modified Malliavin covari-
ance R = (Véo,1,) T R(Véo,1,) 1T It is written as

R:/O‘ (Veor) VeV ()T (Veor)dt. 12)

We have

Theorem 6. (1) The distribution of F' = {7, has a density if the modified
Malliavin covariance R is invertible a.s. P.
(2) The distribution of F' = &g, has a C-density if the modified Malliavin
covariance R is invertible and the inverse satisfies

sup sup B((TRoctl)™) <00, Wp>1 (13)
u€A(po)™ |I|=1
for some py > 0.

Theorem 2 can be verified using the first part of the above theorem. Given a
vector field V', we shall consider a right continuous semimartingale Yy (t) =
IT(V& )~V (&). Then the modified Malliavin covariance is represented by
TRE=Yyex, J30 1Yo (1)t

Lemma 2. (Kunita-Oh [9]) Yy () is written as

t m
Yol = ¥+ [ 0 )ds+ 3oy [V (sjam (14)
0 =
t t
v (s— AN v (s— dn.
+/O /w (s, 2)l +/O /‘M D(s—, 7))z
where,
V(1) = 17(Veo) V3. V] + 5 3 aulVis IV, VI
Q=1

+f /‘ZK&(%J)— (V65 V(65 0 &) — V(&) — 0 #1Vi, VI(E) N
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YWty = [M(Véor)  V; VI,
Yt 2) = 17 (Vo) "0 (2)V (&),

and ¥q(z) = ®1(2)/|2-
Proof of Theorem 2. It is convenient to consider the following family of
vector fields
/ 0 RS , .
o ="%0, %j={Vo,V]+3 > ayVi, [V, VIL Vi, V]i = 1, om, V € 3554,
ij=1
for j =1,2,... Then it holds U2\ = U%,%;. Hence if Hérmander’s Condition
(H) is satisfied, then U; ¥ (x ) R4 holds for any = € RY.

Now suppose that for a vector [, ITRI = 0 holds a.s. Then, we have
1T(Véo) V(&) = 0 for 0 < Vt < Tp a.s. for any V € Xf). We apply Lemma
2 for Yy (t) = 17 (Vo) "1V (&). Then each term of the right hand side of (12)

is 0. Therefore, for any V € Xj, we have Yéo)(t) =0, O'in‘Sj)(t) = 0 for
i=1,..,mand Y‘Sl)(t7 z) = 0 for z € Supp(u). Consider the second and the
third equality. The second implies

> aiYiv,vi(t)Yiy,.v) = 0.
Note that 0« Y‘ﬁl)(t, z)‘ = Yjv,,v)(t). Then the third one implies
2=0
wayv Yiv,.v) =0.

Since A + B is invertible, We get Yiv,,v)(t) = 0 for any i = 1,.
We shall next consider Y (t) Using the above equality, it is written simply
as

YO0 = (Té0.) Vo, VI+ 5 3 Vi, [V, VIIHE).

Since it is 0, we have obtained the equality Yy (t) = 0 for any V € X.

Repeating this argument, we have Yy (¢) = 0 for any V € X%, 0 < Vt < Tp.
Now it holds dimU;X(z) = d by Hérmander condition (H). Therefore we get
1 = 0. Hence R and R are invertible a.s.

4. Smooth densities of distributions of solutions to canonical SDE

4.1. Another density theorem.

We shall introduce a modified uniform Hérmander condition. Given ¢ > 0,
we define a linear transformation W) of vector fields by

R 1 m
ngV = [‘/()67 V] + by Z aij[viv [V]7 V”
ij=1

Jr/0<|z|g5 ((¢1Z)*V —V- Z[Vi7 V]z’) w(dz),

i=1



where (¢7 %)+ is the differential of the diffeomorphism ¢;°. We may consider
WSV as a modification of the vector field [V, V]. We define

TG =%, T5={UV,[V,V]i=1,..mVeT]_ }, j=12, ..

These can be regarded as a modification of 2‘; of (8). {Vo,V1,..., Vi } is said
to satisfy the modified uniform Hérmander condition (H) for 6 if there exists a
positive integer Ny, a nonnegative integer ng and a positive constant C's such
that

No C.
SN IV@P > 2>, VzeR! (15)
i=0 vers (1+Jzl)me

for any vector .
Theorems 3-4 stated in Section 2 can be obtained easily from the following
theorem.

Theorem 7 Assume that {Vp,Vq,..., V;,} satisfy the modified uniform
Hoérmander condition (H) for some §. Assume further that (6) holds for any
vector [ and V' € U;yzollf‘?, Then the law of {7, has a C'*°-density.

4.2. Estimate of Norris’ type.

The proof of Theorem 7 is very long. Here we give the outline of the proof
of the above theorem. The complete proof will be discussed elsewhere.

We want to prove, under the modified uniform Hoérmander condition (H),
that for any p > 1 and n, there exists Cp, > 0,e9 > 0 such that

sup sup P(ITRoefl < &) < Cppe? (16)
u€A(po)" |I|=1

holds for any 0 < e < g, where R is the modified Malliavin covariance (12).
Indeed, if the the above holds valid, then sup,,e 4 () SUPj|=1 E[(IT Roef1)~P] <
oo and the assertion of the theorem follows. In order to prove (16), we need an
estimate similar to the one obtained by Kusuoka-Stroock and Norris in case of
diffusion.

Let b7(t),€7(t) = (e1 (1), ..., €3 (1)), f7 () = (f1 (£), .o, fu(1)), 97 (£, 2), W7 (¢, 2)
be left continuous predictable processes, continuous with respect to the param-
eter z € R™,v € I', where I' is a compact space. We consider a semimartingale

t t
=y [+ Y [ pan
0 —Jo

o [+ | t [ (1)

where a?(¢) is also a semimartingale represented by

() =a" + /Ot b (s)ds + Z/Ot €] (s)dW!

t ot
+/ / m(s,z)dNJr/ / R (s, z)dN.
0 J|z|<é 0 J|z|>6
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We set w7 (t)? = [gm 97 (L, 2)%p(dz), vV (£)? = [gm h7(t, 2)?p(dz) and

07(t) = Ia”(t)\2+|6”(t)\2+\f”(t)|2+|u7(t)|2+\b”(t)|2+|v”(t)|2+‘81ll>pé h7 (¢, 2)[*.

We assume that
cp = E[sup 07(15)’)] < oo (18)

tyy

holds for any p > 1. We set §7(¢,2) = g (tz)

2]

Lemma 3. (c.f. Komatsu-Takeuchi [5]) Let Y;” be a semimartingale rep-
resented as above. Let 3 > 0 be a number such that a(l + §) < 2 and let
q,r > 0 be such that ¢ > 4r and r > WIHB) Then for any Cy > 0 and p > 1,
there exists g > 0 and C}, > 0 such that the inequality

P{/r (/OTO [y |2 /\52”'dt>7r(d'y) < e, /r </0T (a7 ()2 + | £ (t)[?)dt
o a7y 2 —207 34 »
+/0 /m G7(t,2)* Nem P dt it (dz))ﬂ(d'y) > Ce} < CpeP (19)

holds for all 0 < € < g9, C' > Cy and probability measures m on I'. Here,

fp(dz) = ——< |21, (2] u(dz). (20)

( )

4.3. Outline of the proof of Theorem 7.

We want to prove Theorem 7 by applying the second part of Theorem 6. It
is convenient to introduce the following notations. We set § = R™UR™U{A}.
Elements of R™ and R™ are denoted by y = (3, ..., y™) and z = (2%, ..., 2™),
respectively. Associated with a vector field V', we define a stochastic process
Yy (t,u) with parameter u € S by

Yv(t,A) = lT(me)*l\I";V(&)

Yo(ty) = ZZT Véo,) 1[%7V}<£t)||
i=1
Volts) = 1T(Ve) 2y,

||

Let W (dsdy) be a Gaussian orthogonal random measure on [0, 7] x R™ such
that E[W (dsdy)] = 0 and oW; = fot Jam yW (dsdy). Then the intensity mea-
sure E(W (dsdy)?) = dsw(dy) satisfies ([gn y'3/w(dy)) = A. We set w(dy) =
|y|?w(dy). Then Lemma 2 implies

t t
Yo(t) = YV(0)+/O Yv(sf,A)ds+/O [ Yol lylaw

t t
+// Yv(s—,z)|z\dN+// Yy (s—,2)|z|dN. (21)
0 |z|<é 0 Jl|z|>6
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Set
To
Ey, = { Z / Yy (t—)|dt < 5}7
Vel 0
To
B, = { Z / / [Yy (t—, u)|? /\E_Qﬁr/thus(l+ﬁ)r/q(du) < El/q}.
Vel 0 S

Here v, is a measure on S such that v. equals w on ﬁm, equals fi. on R™ and
equals da on A. By applying Lemma 3 we can show

P(EyN Eyp) < mCpeP. (22)

We will continue the above argument inductively. Let j > 1. We will define
a family of j-th step semimartingales with spatial parameter associated with
a given vector field V. We set W(A)V = WV, U(y)V = 3, [Vi, Vi /|y| and
U(2)V = ®1(2)V/|z|. Define for u;,...,u1 € S, ¥(uj,...,u1)V = ¥(uj)o---o
U(up)V and

Yv (t, Ujy e uy) = lT(Vfo,t)_l‘I’(Ujv e u) V(&)

We will apply Lemma 3 again by setting 7(d\) = v.au (duy) - - - Ve (dur),
where ¢(j) = (1+ B)rq=7,5 = 1,2, .... Set for 0 < ¢ < &9,

Ej =
To -7 =3
Z / /|Yv(t—,u]~, enu)2A g=2hra dtvqo (duj) - - - Veay (dug) < e? 7 5.
Ve 0

Then it holds '
P(E;NES,) <2 mCpe?, j=1,2,... (23)

for all 0 < e < eq.
Now, we have the relation

Ey C (EoﬁEf)U(ElﬁES)U"'U(ENOfl ﬂEICVO)UG,

where
G:EoﬂElﬂ‘“ﬁENo,

and Ny is a positive integer appearing in (15). We want to get the estimate of
P(Ep). We have already obtained the following estimate.

S‘l‘lp PUNG (B N ES ) < 2N mNoCpe?. (24)
L|l|=1

In the following, we will get the estimate

sup P(G) < Cje?, (25)
L|l=1

for all 0 < € < gp. If this is verified, then (24) and (25) imply

To
Py |/0 Yy (t=))2dt < €) < CpeP.

VeXo
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Hence we get (16) in the case where u =0 and n = 0.

In order to prove (25), we will sum up all random variables which define
sets Eoy, E1, ..., En,. Note that it depends on €. We denote it by K.. Then it is
written as

To
K. = / L7 (Ve )t 6 )dt,
0
where

La)= 3 {\lTV(m)P

Vel
No B
JrZ/4~/<\ZT\I/(uj,...,ul)V(gv)\Z/\E*qu ]>1/Eq(1>(duj)~-~V5q(1>(du1)}.
j=1

We can obtain the lower bound of L (I, z), making use of the modified Hormander
condition (H).

Lemma 4. Assume the modified uniform Hoérmander condition (H) for
some & > 0. Then there exists 0 < ¢y < 1 such that the inequality
Aecs i

4 (L fz))re

Le(l,z) >

holds for any 0 < e < go. Here, A1 is the minimum eigen value of the matrix
A+ B and Ay = min{\y, 1}. Further, Ny is a positive integer and Cj is a positive
constant appearing in (15).

The proof is omitted.
The above lemma leads to

A /T° T (V&)
0

K t,
T4 (1+ [&—[mo

if e < g9. Now, if w € G, we have the inequality K.(w) < Z;V:”O e’ <
(No + 1) " if £1/7 < 1. Therefore, we have G C {K. < (No + 1)e? "°}.
Further, for any ! with |I| = 1, we have

To 1T —12 -1 T
O (V&) 1o 2 no

by using Jensen’s inequality. Therefore,

o ANoca12
GC / Ve 21+ & |)rodt > —2L=370 4
{0 Ve P01+ eyt > gl St
Then we get P(G) < C;EP by Chebyschev’s inequality. We have thus obtained
the estimate (25) for all 0 < € < &p.
So far we proved .
sup P(ITRI < ¢) < Ce?.
l1|=1

Then we can easily reduce the stronger assertion (16) to the above.
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