
����������	
���������

1

An E�cient Learning Scheme for Pattern Classi�cation Us-
ing Multi-layer Feed-forward Neural Networks ��

Kanad Keeniy, Kenji Nakayamayy, and Hiroshi Shimodairayyy,

SUMMARY This study highlights on the subject of weight
initialization in multi-layer feed-forward networks. Training data
is analyzed and the notion of critical point is introduced for de-
termining the initial weights and the number of hidden units.
The proposed method has been applied to arti�cial data, pub-
licly available cancer database and Devanagari characters. The
experimental results of arti�cial data show that the proposed
method takes almost 1/3 of the training time required for stan-
dard back propagation. In order to verify the e�ectiveness of the
proposed method, standard back propagation where the learning
starts with random initial weights has been applied to the cancer
database and Devanagari characters. The experimental results
indicate the the proposed weight initialization method results in
better generalization.
key words: Neural networks, pattern classi�cation, initial

weights, decision boundary, critical points

1. Introduction

Neural networks architectures have sparked of great in-
terest in recent years because of their intriguing learn-
ing capabilities. Several learning algorithms have been
developed for training the networks and out of them
Back Propagation [1] is probably most widely used.
The reason for the popularity is the underlying sim-
plicity and relative power of the algorithm. Its power
derives from the fact that unlike its precursors, the per-
ception learning rule [2], and the Widrow-Ho� learning
rule [3], it can be employed for training nonlinear net-
works of arbitrary connectivity. Since such networks
are often required for real-world applications, such a
learning procedure is critical. However the standard
back-propagation has the following drawbacks.

1. The learning procedure is time consuming. Train-
ing always starts from random initial weights and
the weight adjustment procedure is very slow

2. It is not clear as to how to construct an appropriate
network architecture. The number of hidden units

yThe author is with the Faculty of Information Systems
and Quantitative Sciences of Nanzan University

yyThe author is with the Faculty Elec. Eng. and Comp.
Science of Kanazawa University

yyyThe author is with the Faculty of Information Science
of Japan Advanced Institute of Science and Technology

��A part of this paper was presented at the International
Joint Conference on Neural Networks (IJCNN'99) and In-
ternational Conference on Computational Intelligence and
Multi-media Applications (ICCIMA'99)

for a particular problem can only be determined
by trial and error

In case of 1., it is widely known that the initial
weights of the network would largely e�ect the general-
ization performance. For example, two networks with
same architecture, when trained with totally di�erent
initial weights would produce di�erent results. Several
researchers have designed systems in which weights are
initialized so that the initial activity of the network cor-
responds to the successive rules, that may come from an
expert. Wilson has proposed Fast BPN [4], where the
initial parameters are determined by estimating the sig-
nal rank with general likelihood ratio test (GLRT) and
the singular value decomposition (SVD) of the GLRT
covariance matrix. However the disadvantage of their
method is that the number of hidden units can not ex-
ceed the input feature dimension. In order to tackle 1,
most of the researchers have mainly focused on improv-
ing the optimization procedure by dynamically adapt-
ing the learning rates [5] - [6]. On the other hand it has
been shown in [7] that training data selection is also
important.

In case of 2., the problem has been treated in var-
ious ways. One most common approach has been to
start with a large number of hidden units and then
prune the network once it is trained [8], [9]. However,
pruning does not always improve generalization. An-
other strategy for �nding a minimal architecture has
been to add or remove units sequentially [10], [11].

It is also well known that neural networks do not
make any assumption about the probability distribu-
tion functions of data and can solve complex prob-
lems with arbitrary decision boundary. Therefore, it
is desirable to investigate the learning characteristics of
the networks for �nding an estimate about the decision
boundary. However, there has been no signi�cant re-
search for �nding initial weights and minimal network
architecture by exploiting the characteristics of decision
boundary.

In the present study, the above mentioned draw-
backs of back propagation has been carefully investi-
gated and a method has been proposed for determining
the initial weights for input to hidden layer and estima-
tion of hidden units automatically.

This paper is divided into 6 sections. The next
section describes the pattern mapping characteristics of

��

Multi-layer Neural Networks (MLNN). The third sec-
tion presents the automatic method for generating ini-
tial weights for input to hidden layer connections. The
fourth section describes the database. Experimental
results of arti�cial, real world data are provided in the
Fifth section. Finally the last section is devoted to con-
clusion and further researches.

2. Pattern classi�cation characteristics of

MLNN

In any pattern classi�cation system, pattern mapping
or pattern classi�cation is equivalent to dividing an N
dimensional space where the patterns are distributed.
In case of multi-layer neural networks (MLNN), this N
dimensional space is divided by forming hyper-planes
with the help of synaptic weights of nonlinear neu-
rons. MLNNs do not make any assumption about the
probability distribution functions of the training data
and can solve complex problems with arbitrary deci-
sion boundary. The degree of freedom in placing the
decision boundary is very high. Therefore, neural net-
works are considered to be a good choice for pattern
classi�cation tasks.

Another most important aspect of neural networks
is learn-ability. In case of supervised learning, networks
can �nd optimal synaptic weights through learning.
However, since neural networks are nonlinear systems
and gradient descent is used to �nd a set of weights that
optimize the performance for a particular task, there is
always a possibility of getting stuck in local minima.
Therefore, global minima or optimal solution is not al-
ways guaranteed. Furthermore, the learning process is
time consuming and it is highly dependent on the prob-
lem that is to be solved.

If we assume that there are no overlap among the
distribution of training patterns, then pattern mapping
can be categorized in the following classes.

1. kX i �Xjk is small
V

kY i � Y jk is small

2. kX i �Xjk is small
V

kY i � Y jk is large

3. kX i �Xjk is large
V

kY i � Y jk is small

4. kX i �Xjk is large
V

kY i � Y jk is large

Here, X i and Xj belong to class !1 and !2, Y i

and Y j are the corresponding output vectors, and k � k
stands for the Euclidean norm. In case of 1., the prob-
lem is to map similar input vectors in a way such that
the corresponding output vectors also become similar.
In the second case, the input vectors are similar but
they are to be mapped as di�erent patterns in the out-
put space. The third case implies that the input pat-
terns that are far from each other in the input space are
to be mapped as similar patterns in the output space.
Finally, the 4th case means that the input patterns are

far from each other in the input space and they are to
be mapped as di�erent patterns in the output space.
Now, the pattern mapping of 1., 3., and 4. are not that
di�cult. However, in case of 2., the problem is to map
the patterns that are very close in the input space, as
di�erent patterns in the output space. In this case even
though the solution exists, due to the di�culty of the
problem the training process would be time consuming.
Therefore, the second type of pattern mapping results
in very slow learning and the possibility of arriving at
a local solution is very high.

For example, if we de�ne the connection weight
from the i'th input to the j'th hidden unit as wij then
the total input and output of the j'th hidden unit can
be de�ned as follows.

netj =
nX

i=1

wijxi + �j (1)

Oj = �(netj) (2)

�(netj) =
1

1 + e�netj
(3)

where, �(�) is the activation function and �j is the
bias. At the same time the total input to the k'th out-
put unit and the corresponding output can be de�ned
as follows.

netk =

jX

j=1

wjkOi + �k (4)

Ok = �(netk) (5)

where, �(�) is the same activation function as it was
with the hidden layer.

As mentioned earlier the similar patterns play a
critical role in learning. Suppose we have training pat-
terns x1n and x2�n that are very close in the input space
and the patterns belong to the class !1 and !2 respec-
tively. In this case, the network output would become
extremely sensitive. This is because the network output
must change rapidly for a small change in the input.

Now, if the decision boundary is far from the pat-
terns x1n and x2�n, then the corresponding outputs
would have the value O1n

�= O2�n
�= 0 or 1. However,

during the learning process, as the decision boundary
approaches x1n and x2�n the output of the correspond-
ing patterns approach the same value, and the learning
process becomes extremely slow. In this case, as the
decision boundary moves close to the pair x1n , x2�n
or enters the region between the pair, the amount of
weight correction becomes extremely small. To be spe-
ci�c, if we assume O1n

�= O2�n
�= some value y then the

��

amount of correction for the n'th pattern �n would be
as follows.

�n = ��nOnj ; (6)

�n = (tn �On) �f(netn); (7)

where, Onj is the output of the j'th hidden unit. Now,
as the patterns x1n and x2�n are similar, the output of
the jth hidden unit would also become similar, that is

O1nj
�= O2�nj; (8)

and

�f(net1n) �= �f (net2�n): (9)

In this case, the weight correction will be as follows.

�1n +�2�n = �O1nj((t1n �O1n)

+(t2�n �O2�n)) �f(net1n): (10)

If it is assumed that the targets of the patterns are

t1n = 1; t2�n = 0; (11)

and the output of the patterns are

O1n = z;O2�n = z � �; (12)

then the weight correction would become as follows.

�1n +�2�n = �O1nj((t1n � z)

+(t2�n� (z � �))) �f (net1n)

= ((t1n + t2�n)� 2z + �) �f (net1n)

= (1� 2z + �) �f (net1n) (13)

Now at beginning of training, the decision bound-
ary would be far from x1n and x2�n and in that case
the correction of synaptic weights would not be small.
However, during the training process, as the decision
boundary moves towards x1n and x2�n, because of the
similarity of the patterns the output would approach
the same value. The most critical situation would take
place as z and k�k approach the value 0.5 and 0 respec-
tively. That is,

�1n +�2�n =

lim
z!0:5

lim
�!0

(1� 2z + �) �f (net1n) �= 0 (14)

Therefore, the correction of weights for these pat-
terns would become very small and as a result the learn-
ing process would become extremely slow.

On the other hand, if the patterns x1n and x2�n are
far from each other in the input space, even if the de-
cision boundary moves towards them the activation of
the corresponding outputs would not become the same
at the same time. Hence, the weight correction will not
become small.

Critical point

Decision boundary

Class1

Class2

Fig. 1 Critical points and decision boundary

3. Estimation of decision boundary

Here, the decision rule is to select the class corre-
sponding to the output neuron with the largest output.
For the sake of simplicity, the number of output unit is
set to two (two-class classi�cation problem). However,
the concept can be hopefully extended to multi-class
classi�cation problems. The decision boundary for a
multi-layer feed-forward network is de�ned as follows.

De�nition 1. The decision boundary between two
classes in a feed-forward neural networks is the locus of
points where both of the output neurons produce the
same activation.

If we de�ne the activation output unit i as Oi(x)
where x is an input vector and let d (x) = O1(x) �
O2(x), then the decision boundary can be de�ned as

fxjd (x) = 0g (15)

Next, the notion of Critical points is introduced as
follows.
De�nition 2. The set of critical points contains pairs of
data that satisfy the following condition:

min
k
(d(pi; qk)) = d(pi; qj); (16)

min
k

(d(pk; qj)) = d(pi; qj) (17)

where d(pi; qk) denotes the Euclidean distance between
the vector pi and qk.

If we denote the samples in class !1 as pi and sam-
ples in class !2 as qj then for each sample in class !1

and class !2, the set of critical points C can be de�ned
as

C = f(pi; qj)jmin
k

(d(pi; qk)) = d(pi; qj);

min
k
(d(pk; qj)) = d(pi; qj);pi 2 !1; qj 2 !2g (18)

A hyper-plane has to be placed in between the pair
of critical points. If the coordinate of the pair of criti-
cal points (pi; qk) are (xi; yk) and (ui; vk) then the ideal

hyper plane must go through the point (xi+ui)
2 ;

(yk+vk)
2

and the slope z of the straight line can be calculated
from the following equation.

vk � yk

ui � xi
� z = �1 (19)

In the present approach instead of starting from
scratch the initial weights for the hidden units connec-
tions are calculated from these critical points pairs.

��

Since, the weight vectors are orthogonal to the sep-
arating hyper-plane, the initial weights are generated in
the following way. First, the pair of critical points are
determined from the training data as mentioned above.
Next for all pair of critical points (p

i
; q

k
) the weight

vectors mn are generated by the following equation:

mn =
p
i
� q

k

kp
i
� q

i
k

(20)

and the biases �n are generated by the following equa-
tion:

�n = �mt

n �P = �
(pi � qk)

t

kp
i
� q

k
k
�
(pi + qk)

2
(21)

4. Databse

 ga

u a

0

 kha gha ca cha pa pha ba bha

ta da dha na ta tha da dha na

ya ra la va sa sa sa ha

kta pta ru tra sra sra sta dhra nja

tta

i u r e , h end

1 2 3 4 5 6 7 8 9

dva dbha dbaprattaddha

 ka

ja

ma

ksa

stha

a

0

Fig. 2 Some of the basic Devanagari characters

The proposed method has been applied to the can-
cer database obtained from the University of California
Machine Learning Repository (two-class classi�cation
problem) and Devanagari characters (multi-class clas-
si�cation problem). The cancer database is publicly
available and it contains 699 instances each having 9
attributes. The Devanagari database consists of 44 dif-
ferent characters (23 consonants, 13 c-c combinations,
3 vowels, 2 special characters and 3 numerals). Sixty
seven Devanagari characters taken from the text [12]
are shown in Figure. 2. The characters are stored in
the form of 16 � 16
oating point images. A details
about the Devanagari databse can be found in [13].

5. Experiments

5.1 Experiments with arti�cial data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Decision Boundary

"class1.output"
"class2.output"
"class1.orgdat"
"class2.orgdat"

"01.dat"
"10.dat"

Fig. 3 Decision boundary given by the proposed method

In the present approach the number of hidden units
is kept the same as the number of critical points cal-
culated from the training data. Two dimensional data
is used for training and testing. Five samples for each
class (in this case 2 classes) were randomly generated
for training. The network had two input units, two
output units and the number of hidden unit was set to
3. Training was continued until the mean square error
reach 0.001. For testing, 10000 samples were randomly
generated and the class to which the testing sample
falls is decided by considering the maximum activation
of the output units. The network could learn the train-
ing data with 3 hidden units. The decision boundary is
estimated from the output activation of the network in
respect to the testing samples as follows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Decision Boundary

"class1.output"
"class2.output"
"class1.orgdat"
"class2.orgdat"

"01.dat"
"10.dat"

Fig. 4 Decision boundary given by the Conventional Back-

propagation

For each testing sample correctly classi�ed as class
!1, �nd the nearest testing sample correctly classi�ed as
class !2. The same process is repeated for the testing
samples classi�ed as class !2. Now the line connect-
ing the pairs mentioned above must pass through the
decision boundary since the pair of samples correctly
classi�ed di�erently. The decision boundary given by
the network is shown in Figure 3, where each of the cal-
cuted pair of critical points are connected with a line.

��

In order to evaluate the e�ectiveness of the proposed
method another set of experiments were performed
by employing the conventional back-propagation algo-
rithm and the decision boundary is shown in Figure 4.
Next, the network was trained with �ve di�erent initial
weights (weights for hidden to output unit connection)
, and the result is summarized in Table 1.

Init weight Iteration Iteration
Proposed method Standard BP

Seed1 6345 21279
Seed2 6341 21347
Seed3 6251 21263
Seed4 6179 21050
Seed5 6224 22019
Mean 6268 21392

Table 1 Comparison of results

It can be seen in Table 1, that the iterations neces-
sary for the proposed method is less than 1/3 of that of
standard back-propagation. In case of standard back-
propagation, there is no other way than to cut and try
for determining the number of hidden units necessary
for solving a problem. In case of the proposed method,
the number of hidden unit is determined automatically.

5.2 Two-class classi�cation problem

Experiments were performed by employing the cancer
data base. It was divided into ten training and ten
test sets and a ten fold cross validation was performed.
In order to evaluate the e�ectiveness of the proposed
method another set of experiment was performed by
applying the standard back-propagation. The num-
ber of hidden unit was set to the number of critical
points given by the proposed method. The average ac-
curacy rate of the proposed method, standard back-
propagation and the results of applying Bayes decision
(assuming normal distribution for each category) rule
is shown in Table 2. On the other hand, the following

Method Accuracy (%)

Proposed 96.8
Standard BP 96.3
Bayes 95.27

Table 2 Average accuracy rate

linear programming methods for pattern recognition:
Multi Surface Method [18] (MSM), Robust Linear Pro-
gramming [19] (RLP), and Perturbed Robust Linear
Programming [20] (RLP-P) were also applied on the
same dataset and the results are summarized in Table
3.

It is clear from Table 3 that out of the three meth-
ods RLPP gives the best accuracy of 96.6 %. Now if
compared to Table. 2, it is clear that the proposed
method gives slightly better result than RLPP. On the
other hand, the superiority of the proposed method over

Method Accuracy (%)

MSM 92.6
RLP 96.4
RLP-P 96.6

Table 3 Average accuracy rate of linear programming meth-
ods

Bayes decision rule suggests that the boundary given by
the proposed method is reliable.

5.3 Multi-class Classi�cation problem

Here the proposed method is applied to Devanagari
characters for evaluating its applicability to multi-class
classi�cation problem. However, a di�erent approach
has been taken for representing the output layer. The
output layer coding method is thoroughly discussed in
[12]. However, for the bene�t of the readers a brief de-
scription of the method is given in the next subsection.

5.3.1 Automatic coding scheme

Split the 16 X 16 image
into four parts

Cluster each part

5 bit binary number

Feature vector

y y

yy

q q q q

C(n)

Map each element of q to a
l

l l llBinary number
encoder

1 2

3 4

1 432

nn

nn

(20−bit)

Fig. 5 Automatic coding procedure

One of the important aspect of information pro-
cessing is the way the information is represented. The
conventional approach of assigning a category to each
cell is reasonable in the sense that, the distance among
the codes is constant. However, this kind of approach
can not be taken for representing a large number of cat-
egories. Although binary representation appears to be
reasonable in the sense that it would require log

2
n bits

for representing n categories; they are not well suited
for network output representations because of the inter-
dependency of cells which make the learning di�cult.
For example, if we represent the numbers 7 and 8 in bi-
nary as 0 1 1 1 and 1 0 0 0 then irrespective of the fact
that the numbers are adjacent integers, 4 output units
will have di�erent value. Here, instead of a straight for-
ward binary coding method, a di�erent approach has
been taken and the method is as follows. At �rst each
training data xn (n = 1; � � � ; N) (16 � 16 pi xels) is
split into four parts (8 � 8 pixels) in the following way.

xn = (y
n1
;y

n2
;y

n3
;y

n4
)

��

As a result the following set of pattern is generated for
each part i = 1; � � � ; 4.

Yi = fy1i;y2i; � � � ;yNig

Next, each Yi (i = 1, 2, 3, 4) is clustered. Here the
LBG method [14] was applied for clustering and the
number of cluster was set to 16. After clustering, for
each !l (l = 1; � � � ; L) the cluster to which the part
belongs is checked and the �nal cluster is determined
by considering the maximum number of characters be-
longing to a speci�c cluster. So, in this way, for each
category !l there will be a four dimensional vector
q
l
= (ql1; ql2; ql3; ql4), where each element of the vec-

tor will correspond to the cluster to which the corre-

11011 11010 10111 10110 10011 10001 01111 01110 01101 01100 01011 01001 00111 00110 00011 00010

Fig. 6 Code assignment procedure

sponding part of the training sample belongs.Now, each
element of vector ql is mapped to a 5-bit binary pat-
tern. The binary patterns are hand picked and they are
mapped in a way such that for any two clusters whose
parent is the same, the Euclidean distance between the
binary patterns becomes one. This will somehow ensure
that the similar part (ql) of each category !l would get
similar codes. On the other hand, neglecting the bi-
nary patterns containing only 0's or 1's, the minimum
number of bits required to maintain this constraint is
5. The code assignment procedure is shown in Figure
6. Finally, ql is transformed to a feature vector which
is a 20-bit code. In this way for each training sample
xn (n = 1; � � � ; N) there will be a feature vector c(n)
with 20 elements. (Here (n) represents the category
number to which xn belongs.) The entire process is
summarized in Figure 5.

5.3.2 Recognition process

In the present approach, training process is di-
vided into two phases. In the �rst phase, the network
is trained with the training data in a usual way. In
the second phase, the training data is fed to the net-
work and the output vectors given by the network are
employed for forming the prototypes for each category.
The prototype formation process is as follows.

Input(xn) (n = 1; : : : ; N)
?

NN

?Output t

t

R

o = (o1; o2; : : : ; oK)
(K = dimension of o)
Test modeLearn mode

t

	

m1 =
1

N1

X

x2!1

o

m2 =
1

N2

X

x2!2

o

...

mM =
1

NM

X

x2!M

o

d1 =

KX

k=1

j ok �m1k j
2

d2 =

KX

k=1

j ok �m2k j
2

.

..

dM =

KX

k=1

j ok �mMk j
2

Fig. 7 Recognition process

dM�
= min dM =) M�: recognized category

m1 =
1

N1

X

x2!1

o

m2 =
1

N2

X

x2!2

o

...

m
M

=
1

NM

X

x2!M

o

Here N and o stand for the number of samples
used for each category during training and the output
vector respectively. These prototypes are later used for
recognition.

During evaluation, Euclidean distance has been
taken among the prototypes formed in the second phase
of training and the output vector given by the network
during test. The whole process, from formation of pro-
totype vectors to evaluation process is summarized in
Figure 7.

Here the target outputs are generated by employ-
ing the proposed automatic coding scheme. This solves
the problem of output layer representation. The next
issues are related to network architecture and initial
weights.

Instead of performing trial and error, the number
of hidden unit is determined by employing the knowl-
edge of critical points. In this case the straight forward
approach of setting the number of hidden unit to the
number of calculated critical points pairs could not be
applied due to the enormous number of critical points.
Therefore, the pair of critical points are sorted based
on the distance between each pair. Next, the number
of hidden unit is determined by �xing a threshold value
dmax over the distance. In this way if dmax set to x

results in u hidden units, then �rst u critical points are
employed for calculating the initial weights and biases.
This way of selecting the critical points is reasonable

��

in the sense that the patterns that stay close to each
other in the input space would largely e�ect the learn-
ing process.

5.3.3 Results

The relation of dmax and the number of hidden units
is given in Table. 4.

dmax 2.0 2.2 2.4 2.5 3.0
Hidden units 35 46 57 61 76
Table 4 Relation of dmax and # hidden unit

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Hidden unit

Method1
 Method2

Training epoch (X 10)
3

35 46 57 61 76

Fig. 8 Training epoch (Method1 Vs Method2)

97.5

 98

98.5

 99

99.5

100

35 40 45 50 55 60 65 70 75 80

C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
a
t
e

(
%
)

"training-error-method1"
"training-error-method2"

Fig. 9 Classi�cation rate (Training data : Method1 Vs
Method2)

The performance of the proposed automatic cod-
ing procedure could have been compared to the con-
ventional output layer representation where each of the
output unit represents a single category, however this
is not considered in the present study. This is because

92.5

 93

93.5

 94

94.5

 95

95.5

 96

96.5

 97

97.5

35 40 45 50 55 60 65 70 75 80

C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
a
t
e

(
%
)

idd i

"test-error-method1"
"test-error-method2"

Fig. 10 Classi�cation rate (Testing data : Method1 Vs
Method2)

if the real world problems where the number of cate-
gory to be recognized is too large (for example Kanji)
is considered then it is unrealistic to apply the conven-
tional method that would require much more storage
and/memory than the proposed method.

In order to evaluate the e�ect of the proposed
method, one set of experiments were performed by
employing only automatic coding procedure(Method1),
and another set of experiments were performed by em-
ploying both automatic coding and automatic weight
initialization procedure(Method2). However, in both of
the cases, the learning parameters were kept the same.
The experimental outcomes are shown in Figure. 8, 9,
and 10.

It is clear from Figure. 8, that the number of train-
ing epoch required for the combination of the proposed
methods is less than the case where only automatic cod-
ing procedure is employed.

In Figure 9, 10 it can be seen that the com-
bined method results in better performance against
both training and testing data. Now both of Method1
and Method2 gave same performance for training data
with 57 hidden units (Figure. 9). However, compared
to Method1, Method2 gave better performance with re-
spect to testing data (Figure. 10). This assures that the
combined method (Method2) produces better solution.
Therefore, the results indicate that the initial weights
are e�ective for faster training and better solution.

6. Conclusion

It has been successfully shown through experiments
that the a priori related to decision boundary can be
employed for determining the initial weights of a net-
work. Compared to standard back-propagation the pro-
posed method reduces training time. The method has
been successfully applied to the publicly available can-

��

cer database and Devanagari characters. The method
also determines the number of hidden units automati-
cally.

However, in the present stage the pair of critical
points are selected based on a threshold over the dis-
tance between the pair of critical points, which can be
considered as a local approach. Hence, some other cri-
terion for selecting the pair of critical points in case of
complex class boundary is to be further investigated.

Acknowledgement

The author would like to thank the Education Center
for Information Processing (ECIP) of Tohoku Univer-
sity for providing the Devanagari database. They are
also grateful to Masayuki Kimura, Susumu Horiguchi
and Kazunori Kotani of Japan Advanced Institute of
Science and Technology for their valuable comments.

References

[1] Rumelhart, McClelland, and the PDP Research Group,
\Parallel Distributed Processing," The MIT Press, 1989.

[2] Rosenblatt,F : Two Theorems of Statistical Separability in
the Perceptron;Proceedings of a Symposium on the Mecha-

nization of Thought Process, Her Majesty's Stationary Of-

�ce, London,1959,421-456.
[3] Widrow, B., and Ho�, M.E: Adaptive Switching Cir-

cuits;Institute of Radio Engineers, Western Electronic Show
and Convention, Convention Record,part4,1960,96-104.

[4] David H. Kil, Frances B. Shin, \Pattern recognition and
Prediction with applications to Signal Characterization,"
AIP PRESS, 1996, pp. 134-138.

[5] Riedmiller, Martin and Braun : RPROP - A fast Adaptive
learning algorithm; Technical report Universitat Karlsruhe,
1992.

[6] Y. Riedmiller, Martin and Braun : RPROP - A fast Adap-
tive learning algorithm; Technical report Universitat Karl-
sruhe, 1992.

[7] K. Hara and K. Nakayama: Training Data Selection
Method for Neural Networks; IEICE Trans. of Inf. Syst.

Society of Japan, Fundamentals, Vol.E81-A, No.3, pp. 374-
381, March 1998.

[8] M. C. Mozer, P. Smolensky: Skelitonization : A technique
for trimming the fat from a network via relevance assess-
ment; in Advances in neural information processing sys-

tems, 1, pp. 107-115, 1989.
[9] J. Sietsma and Dow : Neural network pruning - why and

how;Proceeding of the second international conference on
neural networks, pp. 326-333, July 1988.

[10] Fahlman, E. Scott: An empirical study of learning speed in
back propagation networks; Technical report CMU-CS-88-

162, 1988.
[11] T. Ash: Dynamic node creation in back propagation net-

works; Connection Science, 1(4), pp. 365-375, 1989.
[12] H. Kern and Bunyiu Nanjio: Saddharmapundarika, ST.-

PETERSBOURG, 1912.
[13] K. Keeni, H. Shimodaira, T. Nishino, Y. Tan \ Recognition

of Devanagari Characters Using Neural Networks," Trans-
action of Information and Systems Society of Japan, IEICE
TRANS.INF. &SYST., VOL. E79-D, No. 5,May 1996.

[14] Y. Linde, A. Buzo, and R. M. Gray : An algorithm for vec-
tor quantizer design;IEEE Trans. Comm., COM-28:84-95,

January 1980

