目 次

まえがき		i
記 号 表		xi
第1章 手	法の紹介による進化の過程	1
1.1 正	規分布モデルにおけるパラメトリック多重比較法	1
1.1.1	分散分析法を超える多重比較法が必要とされる意義	1
1.1.2	分散が同一のモデルでのすべての平均相違	3
1.1.3	分散が同一とは限らないモデルでのすべての平均相違	4
1.1.4	対照群の平均との相違	5
1.1.5	分散の相違	6
1.1.6	平均母数に順序制約がある場合の手法	7
1.2 ノ	ンパラメトリック法	9
1.2.1	すべての平均相違	9
1.2.2	対照群の平均との相違	10
1.2.3	平均母数に順序制約がある場合の手法	11
1.2.4	設定条件の緩和	13
1.3 手	法を実行するために導入された分布の上側 $100lpha^{\star}\%$ 点	15
1.3.1	手法のまとめ	16
1.3.2	母数に制約がない場合に使われる分布の上側 $100lpha^{\star}\%$ 点	16
1.3.3	母数に順序制約がある場合に使われる分布の上側 $100lpha^*\%$	
	占	91

第2章	すべての平均相違に関する多重比較法	29
2.1	分散が同一である正規分布モデルでの手法	30
2.1	1.1 モデルと考え方	30
2.1	1.2 テューキー・クレーマー (Tukey-Kramer) の方法	31
2.1	1.3 閉検定手順	35
2.1	1.4 データ解析例	46
2.2	分散が同一とは限らない正規分布モデルでの手法	48
2.2	2.1 ウェルチ (Welch) の検定法	49
2.2	2.2 多群モデル	52
2.2	2.3 ゲイムス・ハウエル (Games-Howell) の方法	52
2.2	2.4 閉検定手順	56
2.2	2.5 漸近理論	58
2.2	2.6 データ解析例	63
2.3	ノンパラメトリック法	66
2.3	3.1 スティール・ドゥワス (Steel-Dwass) の順位検定法	66
2.3	3.2 順位に基づく同時信頼区間	67
2.3	3.3 ノンパラメトリック閉検定手順	68
2.3	3.4 データ解析例	73
第3章	対照群の平均との相違に関する多重比較法	7 5
3.1	正規分布モデルでのシングルステップ法	75
3.1	1.1 モデルと考え方	76
3.1	1.2 ダネット (Dunnett) の多重比較検定法	77
3.1	1.3 同時信頼区間	79
3.2	シングルステップのノンパラメトリック法	80
3.2	2.1 スティール (Steel) の順位に基づく多重比較検定法	80
3.2	2.2 同時信頼区間	82

			自 次	vii
	3.3	閉核	定手順	83
	3.3	.1	正規分布モデルでのパラメトリック手順	84
	3.3	.2	ノンパラメトリック手順	85
	3.3	.3	逐次棄却型検定法	86
	3.4	デー	- 夕解析例	90
	3.4	.1	パラメトリック法	90
	3.4	.2	ノンパラメトリック法	92
第	4章	正	規分布モデルでの分散の多重比較法	95
			フェローニ (Bonferroni) の方法とホルム (Holm) の方法	95
			『ルの設定と統計量の基本的性質	98
	4.3	すへ	ミての分散相違	99
	4.3	.1	シングルステップの多重比較検定法	101
	4.3	.2	閉検定手順	101
	4.3		同時信頼区間	103
	4.4	対照	R群の分散との比較	104
	4.4	.1	シングルステップの多重比較検定法	104
		-	同時信頼区間	108
			くての分散の比較	109
	4.5		カイ自乗分布を使った正確なシングルステップ法	109
	4.5		閉検定手順	
	4.6	デー	- 夕解析例	114
第	5章	平	均母数に順序制約がある場合の多重比較法	117
	. پ	<u> </u>		
			「ルと傾向性制約での極値	
			後性の帰無仮説の検定と点推定	
	5.2	.1	正規分布モデルでの最良手法	121

5.2.	2 ノンハフメトリック法
5.3	すべての平均相違の多重比較法
5.3.	1 正規分布モデルでのヘイター (Hayter) の方法 131
5.3.	2 シングルステップのノンパラメトリック法 134
5.3.	3 閉検定手順
5.3.	4 ステップワイズ法
5.3.	5 データ解析例149
5.4	隣接した平均母数の相違に関する多重比較法 152
5.4.	1 正規分布モデルでのリー・スプーリエル (Lee-Spurrier)
	の方法
5.4.	2 シングルステップのノンパラメトリック法 \dots 156
5.4.	3 閉検定手順158
5.4.	4 ステップワイズ法
5.4.	5 データ解析例166
5.5	対照群との多重比較検定法167
5.5.	1 正規分布モデルでのウィリアムズ (Williams) の方法 169
5.5.	2 順位に基づくシャーリー・ウィリアムズ (Shirley-Williams)
	の方法
5.5.	3 データ解析例174
5.6	サイズが不揃いの場合の多重比較検定法 175
5.6.	1 すべての平均相違の多重比較検定法 175
5.6.	2 対照群との多重比較検定法183
5.7	平均母数が減少列の順序制約がある場合 187
第6章	検出力の比較 189
6.1	すべての平均相違に対する手法の比較 189
6.2	分散が同一とは限らない場合の手法の比較 191
6.3	順序制約の下でのすべての平均相違に対する手法の比較 193

第7章 順	原序制約のある場合の統計量の分布の数値計算法	199
7.1 関	数族 G と sinc 近似	199
7.1.1	関数族 G	200
7.1.2	sinc 近似	204
7.1.3	数値計算例	207
7.1.4	有限 sinc 近似の誤差理論	212
7.1.5	有限 sinc 近似の誤差制御	214
7.1.6	原始関数の有限 sinc 補間	219
7.1.7	二重指数関数型積分公式(DE 公式)	221
7.2 最	大値統計量の分布関数の性質	223
7.2.1	ヘイター型統計量の分布関数とその性質	224
7.2.2	リー・スプーリエル型統計量の分布関数とその性質	225
7.2.3	ウィリアムズ型統計量の分布関数とその性質	227
7.3 最	大値統計量の分布関数と上側 100 $lpha$ % 点の計算法	229
7.3.1	漸近分布の分布関数の計算法	230
7.3.2	漸近分布の分布関数の近似式	233
7.3.3	分布関数の計算法	235
7.3.4	密度関数 $g(s m)$ の数値計算法 \dots	240
7.3.5	分布の上側 $100lpha\%$ 点の計算法 \dots	245
7.4 階	層確率 (Level Probability) の計算	248
7.4.1	基本的なアルゴリズム	249
7.4.2	表 Q の計算 \dots	251
7.4.3	表 P の計算	254
7.4.4	積分計算	256
7.4.5	数值実験	258

付	録	舒	充計	量	の	分:	布	の	上	側	10	00	α^{\star}	%	,	点	を	求	Ø	7	5 -	゚゚゚゚゚゚゚	П	ク	; =	,	4	ح	
		米女	技表	₹																								2	261
	A.1	上	:側	10	$0\alpha^{0}$	% ,F	点0	り娄	女値	計	算	プ	口	グ	ラ	ム													262
	A	.1.1	. (C ß	数	:仕村	漾																						263
	A	.1.2	2 1	Ma	the	ma	tic	ca	関	数值	士杉	美																	268
	A.2	2 階	層	確望	喜の)	数	値	計算	算し	プロ	ログ	`ラ	ム																274
	A	.2.1	. (C ß	数	仕村	様																						274
	A	.2.2	2 1	Мa	the	ma	tic	ca	関	数值	士杉	美																	275
	A.3	3 付	卡表			٠																							276
参:	考文	献																										•	299
あ	とが	き																										;	305
索		引																										;	308