学会


日本数学会   ○ 日本統計学会   ○ 日本計算機統計学会    ○ 応用統計学会

日本金融・証券計量・工学学会     ○ 情報処理学会   ○ 日本ソフトウェア科学会  


論文の概要

[1] Shiraishi, T. and A. Kudo (1981). A nonparametric test of trend based on amalgamation. Mem. Fac. Sci. Kyushu Univ. (A) 35, p235-245.
[2] Shiraishi, T. (1982). Testing homogeneity against trend based on rank in one-way layout. Commun. Statist., SerA. 11, p1255-1268.
[3] Shiraishi, T. (1984). An asymptotic expansion for a one-sided rank test in a two-way layout. Tsukuba J. Math., 8, p119-123.
[4] Shiraishi, T. (1984). Rank analogues of the likelihood ratio test for an ordered alternative in a two-way layout. Ann. Inst. Statist. Math., 36, p223-237.
[5] Shiraishi, T. (1984). Semi-aligned rank tests. Ann. Inst. Statist. Math., 36, p463-473.
[6] Shiraishi, T. (1985). Asymptotic powers of aligned rank tests and competing tests under location-alternatives including contamination. J. Japan Statist. Soc., 15, p83-91.
[7] Shiraishi, T. (1985). An asymptotic acceptance of aligned rank tests under alternatives of contaminated distributions in a randomized-blocks design. J. Amer. Statist. Assoc., 80, p748-752.
[8] Shiraishi, T. (1985). Local powers of two-sample and multi-sample rank tests for Lehmann's contaminated alternative. Ann. Inst. Statist. Math., 37, p519-527.
[9] Shiraishi, T. (1986). Optimum properties of the Wilcoxon signed rank test under a Lehmann alternative. Tsukuba J. Math., 10, p57-61.
[10] Shiraishi, T. (1986). Asymptotic powers of one- and two-sample rank tests against location-alternatives including contamination. Tsukuba J. Math., 10, p101-109.
[11] Shiraishi, T. (1986). The asymptotic power of rank tests under scale-alternatives including contaminated distribution. Ann. Inst.   Statist. Math., 38, p513-522.
[12] Shiraishi, T. (1988). Rank tests for ordered location-scale alternatives. J. Japan Statist. Soc., 18, p37-46.
[13] Shiraishi, T. (1989). Asymptotic equivalence of statistical inference based on aligned ranks and on within-block ranks. J. Statist. Plan. Infer., 21, p347-364.
[14] Shiraishi, T. (1989). Multivariate multi-sample rank tests for location-scale alternatives. Commun. Statist., SerA, 18, 85-105.
[15] Shiraishi, T. (1989). R-estimators and confidence regions for main effects in a two-factor MANOVA. Commun. Statist., SerA, 18, p261-276.
[16] Shiraishi, T. (1989). R-estimators and confidence regions for treatment effects in multi-response experiments. J. Multivariate Analysis, 31, p30-39.
[17] Saleh, A.K.Md.E. and T. Shiraishi (1989). On some R- and M-estimators of regression parameters under uncertain restriction. J. Japan Statist. Soc., 19, p129-137.
[18] Shiraishi, T. (1990). R-estimators and confidence regions in one-way MANOVA. J. Statist. Plan. Infer., 24, p203-214.
[19] Shiraishi, T. (1990). M-tests in multivariate models. Metrika, 37, p189-197.
[20] Shiraishi, T. (1991). Hypothesis testing and parameter estimation based on M-statistics in k samples with unequal variances. Metrika, 38, p163-178.
[21] Shiraishi, T. (1991). On positive-part shrinkage R- and M-estimation in one-way anova. J. Japan Statist. Soc., 21, p61-72.
[22] Shiraishi, T. (1991). Statistical inference based on aligned ranks for two-way manova with interaction. Ann. Inst. Statist. Math., 43, p715-734.
[23] Saleh, A.K.Md.E. and T. Shiraishi (1992). On improved R- and M-estimators in multiple-design multivariate linear models under general restriction. Invited paper of "International Symposium on Nonparametric Statistics and Related Topics". North-Holland Publishing Co. p269-279.
[24] Shiraishi, T. (1993). Statistical procedures based on signed ranks in k samples with unequal variances. Ann. Inst. Statist. Math., 45, p265-278.
[25] Saleh, A.K.Md.E. and T. Shiraishi (1993). On robust estimation for the parameters of multiple-design multivariate linear models under general restriction. J. Nonparametric Statist., 2, p295-305.
[26] Shiraishi, T. (1993). Statistical inference based on M-statistics in two-way manova. J. Japan Statist. Soc., 23, p33-48.
[27] Shiraishi, T. and Y. Konno (1995). On construction of improved estimators in multiple-design multivariate linear models under general    restriction. Ann. Inst. Statist. Math., 47, p665-674.
[28] Shiraishi, T. (1996). On scale-invariant M-statistics in multivariate k samples. J. Japan Statist. Soc., 26, p241-253.
[29] 白石高章. (1998). 二標本モデルにおける推測法の比較. 日本計算機統計学会 和文誌11巻 p13-24.
[30] Shiraishi, T. (1998). Studentized robust statistics in multivariate randomized block design. J. Nonparametric Statist., 10, p95-110.
[31] Shiraishi, T. (1999). Studentized robust statistics for main effects in a two-factor MANOVA. Commun. Statist., SerA, 28, p809-823.
[32] Shiraishi, T. (2001). Robust estimates of location parameters in two-way layouts with interaction. J. Jpn. Soc. Comp. Statist., 14, p49-57.
[33] Shiraishi, T. (2004). Asymptotic confidence intervals based on M-procedures in one- and two-sample models. J. Japan Statist. Soc., 34, p87-99.
[34] Shiraishi, T. (2005). One-sample exploratory procedures after searching the underlying distribution. J. Jpn. Soc. Comp. Statist., 18, p47-60.
[35] 白石高章 . (2006). Tukey-Kramer法に関連した分布の上界. 日本計算機統計学会和文誌19巻 p77-87.
[36] Shiraishi, T. (2007). Multiple comparisons based on R-estimators in the one-way layout. J. Japan Statist. Soc., 37, p157-174.
[37] Shiraishi, T. (2007). Multiple comparisons based on studentized M-statistics in the one-way layout. J. Statistical Studies. 26, p105-118.
[38] 白石高章. (2008). 多群モデルにおけるウィルコクソンの順位和に基づくノンパラメトリック同時信頼区間. 応用統計学会誌,37巻 p125-150.
[39] 白石高章. (2009). 多群2項モデルにおける対数変換による同時信頼区間. 応用統計学,38巻 p131-150.
[40] Shiraishi, T. (2009). Exploratory procedures after searching the underlying distribution in multi-sample models. International J. Statistical Sciences. 9, p233-253.
[41] Shiraishi, T. (2010). Multiple comparisons based on studentized M-statistics in a randomized block design. Commun. Statist., SerA. 39, p1563-1573.
[42] 白石高章. (2011). 多群2項モデルにおける逆正弦変換による多重比較検定法. 応用統計学,40巻 p1-17.
[43] 白石高章. (2011). 多群モデルにおけるすべての平均相違に関する閉検定手順. 計量生物学, 32巻 p33-47.
[44] Shiraishi, T. (2012). Multiple comparison procedures for Poisson parameters in multi-sample models. Behaviormetrika 39, p167-182.
[45] 白石高章. (2012). 多群の2項モデルとポアソンモデルにおけるすべてのパラメータの多重比較法. 日本統計学会和文誌, 42巻 p55-90.


著書

(1) 白石高章 (2003). 統計科学――パラメトリック、ノンパラメトリック、セミパラメトリックの 基礎から、Esoft、Excel によるデータ解析まで.日本評論社.
(2) 杉山,藤越,杉浦,国友編集 (2007). 統計・データ科学活用事典.朝倉書店. 「ノンパラメトリック検定と頑健手法」及び「適合度検定」を執筆分担.
(3) 白石高章 (2011). 多群連続モデルにおける多重比較法――パラメトリック,ノンパラメトリックの数理統計.南山大学学術叢書.共立出版.
(4) 白石高章 (2012). 統計科学の基礎――データと確率の結びつきがよくわかる数理.日本評論社.

 

戻る