欠測データに対する種々の多重補完法の性能比較

M2021SS004 田中一州 指導教員:松田眞一

1 はじめに

経時的測定データでは、同じ対象に対して繰り返しデー タを測定することで、研究開始時点で想定していたサンプ ルサイズより小さくなってしまうということがある.この 現象は欠測が発生したことが原因である.欠測が存在する データを解析する場合の問題点は、サンプルサイズが小さ くなることで解析精度が低下してしまうことである.本研 究で経時的測定データを統計解析するときの問題点を解決 したいと考え、欠測データへのアプローチ方法について研 究したいと考えた.

近年,深層学習モデルに基づく欠測データ補完法が開発 され,小規模な研究において有望な結果が得られている.

2 先行研究

Wang et al.[5] において,4つの機械学習ベースの多重補 完法の反復抽出特性を比較するために,米国地域社会調査 (ACS)のサブサンプルに基づくシミュレーション研究を 行なっている.4つの補完法のうち深層学習を用いる2つ の補完法は,敵対的生成補完ネットワーク (GAIN: Generative Adversarial Imputation Network),ノイズ除去自己 符号化器による多重代入法 (MIDA: Multiple Imputation using Denoising Autoencoders)である.先行研究では,実 践している技術者はハイパーパラメータ値に頼る可能性が 高いということから,機械学習ベースの補完法のデフォル トを採択し, 微調整をしているが,機械学習を用いる補完 法の性能はハイパーパラメータの選択に大きく依存してい ると分かった.

3 シミュレーション

本研究では, 先行研究の2つの補完法 (GAIN, MIDA) を 取り上げ, 先行研究での結果と応答曲面法を用いて最適な ハイパーパラメータを選び, シミュレーションを行なって 得られた結果を比較する.また, 最適なハイパーパラメー タに設定した GAIN と MIDA の2つの補完法と従来の 補完法であるフラクショナルホットデック補完法 (FHDI: Fractional Hot Deck Imputation)を比較する.先行研究 では, Python を用いてシミュレーションを行なっている のだが, 本研究では深層学習を用いる補完法を Python で, 従来の補完法を統計ソフト R でシミュレーションを行な い, 補完法の評価を Python で行ない, 比較検討をする.

3.1 ハイパーパラメータ

本研究では、GAIN、MIDA で用いる損失関数の値を目 標変数として、D 最適基準の応答曲面法 (RSM) を用いて、 最適なハイパーパラメータを選定した.(金子 [2] 参照)

GAIN では, バッチサイズ (batch_size), イテレーシ

ョン数 (iteration) は固定して,説明変数をヒント率 (hint_rate),式 (1)の β (alpha) とする.(先行研究の プログラムコードが alpha だったためそのまま使う.) MIDA では,バッチサイズ (batch_size),第1相,微調整 相のエポック数 (num_steps_phase1, num_steps_phase2) は固定して,説明変数を学習率 (learning_rate),隠れ層 θ (theta) とする.その結果を表 1,2 で示す.

表1 GAIN のハイパーパラメータ

	先行研	研究	RSM		
	MCAR MAR		MCAR	MAR	
$batch_size$	512	512	512	512	
iteration	200	200	200	200	
$\mathtt{hint}_{\mathtt{rate}}$	0.3	0.13	0.1	0.1	
alpha	100	100	60	60	

表2 MIDA のハイパーパラメータ

	先行矿	研究	RSM		
	MCAR	MAR	MCAR	MAR	
num_steps_phase1	100	100	100	100	
num_steps_phase2	2	2	2	2	
batch_size	512	512	512	512	
learning_rate	0.001	0.001	0.01	0.01	
theta	7	7	10	10	

ここで, n 個のユニットがあり, それぞれが p 個の変数 を持っている標本 Y を考える. ユニット i の変数 j の値を Y_{ij} ($i = 1, \dots, n, j = 1, \dots, p$)とする. また, M は Y の 観測を示す $M_{ij} \in \{0, 1\}$ のマスク行列である.

3.1.1 GAIN の損失関数

生成器 Generator の損失関数は

$$L(\mathbf{Y}, \mathbf{\hat{Y}}, \mathbf{M}, \mathbf{\hat{M}}) = L_G(\mathbf{M}, \mathbf{\hat{M}}) + \beta L_M(\mathbf{Y}, \mathbf{\hat{Y}}, \mathbf{M})$$
(1)

である.ここで、生成器損失 $L_G(\mathbf{M}, \hat{\mathbf{M}})$ は、識別器 Discriminator が補完値を誤って観測値として識別した場合に 最小化され、再構成損失 $L_M(\mathbf{Y}, \hat{\mathbf{Y}}, \mathbf{M})$ は、予測値が観測 値に近い場合に最小となり、ハイパーパラメータ β で重み 付けされる.

3.1.2 MIDA の損失関数

Lu et al.[3] に従い、MIDA を 2 つの相である第一相と微 調整相で学習する.第一相では、最初に補完されたデータ を MIDA に与え、 N_{prime} 個のエポックについて学習する. 微調整相では、MIDA は第一相での出力に対して N_{tune} 個

のエポックについて学習を行い、結果を生成する.以下の に等しく、ここで代入間分散と代入内分散は 損失関数は2つの相で使用されている.

 $L\left(Y_{ij_0}, \hat{Y}_{ij}, M_{ij}\right) = \begin{cases} (1 - M_{ij})(Y_{ij_0} - \hat{Y}_{ij})^2 & \text{if } Y_{ij} \text{ is continuous} \\ -(1 - M_{ij})Y_{ij_0} \log \hat{Y}_{ij} & \text{if } Y_{ij} \text{ is categorical} \end{cases}$ ここで、連続変数については平均値、カテゴリ変数につい ては最頻値のラベルを用いて欠測値に対する最初の補完を 行い,完成した最初の補完データYoのユニットiの変数 jの値をY_{ijo}とする.

3.2 データ

先行研究でも使用されている 2018 年の ACS の 1 年間 の Public Use Microdata Sample を使用する. 2018 年の ACS データには、世帯水準の変数(持ち家か賃貸かなど) と個体水準の変数(各世帯内の個人の年齢,所得,性別など) の両方が含まれている. データを使いやすくするために加 工した結果, 1,257,501 個のユニットで, 18 個のバイナリ変 数,20 個の3から9の水準のカテゴリ変数,および8 個の 連続変数が含まれている.

3.3 ビン化連続変数

先行研究は, ACS では離散変数が一般的であるため, バ イナリ変数とカテゴリ変数の周辺確率に注目している.例 えば、K 個のカテゴリを持つカテゴリ変数は K-1 個の推 定値を持つ.補完法が多変量分布特性をどの程度保持して いるかを評価するために、Akande et al.[1] と同様に、バイ ナリ変数とカテゴリ変数におけるカテゴリのすべての二者 択一の組み合わせの二変量確率も考慮している. カテゴリ 変数と連続変数の結果を有意義に比較するために, 各連続 変数を標本の分位数に基づいて K 個のカテゴリに離散化 すること (これをビン化と呼ぶ)を提案している.そして、 これらのビン化連続変数を,前述の周辺確率と二変量確率 の推定値に基づいて、カテゴリ変数として評価している.

3.4 補完法の評価基準

先行研究と同様に、欠測メカニズム(Little and Rubin [4] 参照)に従って完全なデータセットから欠測値を作成 し、補完法によって欠測値を補完する.次に、Rubin's MI combination rules を用いて各推定値の点推定値と区間推 定値を構築し、3つの基準に基づいてこれらの補完値と元 の「真の」値とを比較する.

3.4.1 Rubin's MI combination rules

母集団における目標推定値をQとし, $q^{(l)}$ と $u^{(l)}$ をそれ ぞれ 1 番目の補完データセットに基づく Q の点推定値と分 散推定値とする. Q の多重補完 (MI) 点推定値は

$$\bar{q}_L = \frac{1}{L} \sum_{l=1}^{L} q^{(l)}$$

であり、それに対応する分散の推定値は

$$T_L = \left(1 + \frac{1}{L}\right)b_L + \bar{u}_L$$

$$b_L = \frac{1}{L-1} \sum_{l=1}^{L} \left(q^{(l)} - \bar{q}_L \right)^2,$$
$$\bar{u}_L = \frac{1}{L} \sum_{l=1}^{L} u^{(l)}$$

である. Qの信頼区間は $(\bar{q}_L - Q)/\sqrt{T_L} \sim t_{\nu}$ を用いて構 築され, t_ν は自由度

$$\nu = (L-1) \left(1 + \frac{\bar{u}_L}{\left(1 + \frac{1}{L}\right) b_L} \right)^2$$

を持つ t 分布である.

以下では, h 回目のシミュレーションにおける Q の MI 点推定値として $\bar{q}_L^{(h)}$ を用いる.

3.4.2 the Absolute Standardized Bias

1つ目の指標は、バイアスに着目したものである. カテ ゴリ変数の確率に多く見られるゼロに近い推定値に対応す るため、Qの各推定値の絶対標準化バイアス(ASB: the Absolute Standardized Bias)を考慮する.

$$ASB = \frac{1}{H} \sum_{h=1}^{H} \frac{|\bar{q}_L^{(h)} - Q|}{Q}$$
(2)

ASB は比較する補完法と値を比べたときに値が小さい ほど補完がうまくできているとわかる.

3.4.3 the Relative Mean Squared Error

2つ目の指標は、相対平均二乗誤差(Rel.MSE: the Relative Mean Squared Error) であり、これは補完され たデータから Q を推定する際の MSE と欠測データ導入前 のサンプリングデータから Q を推定する際の MSE との比 である.

$$Rel.MSE = \frac{\sum_{h=1}^{H} (\bar{q}_L^{(h)} - Q)^2}{\sum_{h=1}^{H} (\tilde{Q}^{(h)} - Q)^2}$$
(3)

ここで, $\tilde{Q}^{(h)}$ は Q のプロトタイプ推定値, すなわち h 回 目のシミュレーションのサブ標本の完全データからの点推 定値である.

Rel.MSE は1に近いほど誤差が少なく上手く補完がで きたことが分かる.

3.4.4 Coverage Rate

3つ目の指標は、被覆率 (Coverage Rate) で、 $CI_h^{\alpha}(h =$ 1,…, H) で示される 100α% (例えば 95%) 信頼区間が、 H回のシミュレーションの中で、真のQを含む割合であ る. 信頼区間は 3.4.1 項の分布に基づいて構成される.

$$Coverage = \frac{1}{H} \sum_{h=1}^{H} \mathbf{1} \{ Q \in CI_h^{\alpha} \}$$
(4)

4 先行研究 vs. RSM

サンプルサイズ n = 10000, 補完回数 L = 10, シミュ レーション回数 H = 100, 3.1 節で示したハイパーパ ラメータを用いて, シナリオごとに実行した結果は以下 のようになった. このとき, 先行研究と RSM で用いた GAIN, MIDA を使い分けるために, 先行研究の方の結果 を GAINp, MIDAp としている.

4.1 MCAR シナリオ (vs. 先行研究)

GAINpと比較すると、ASBのビン化連続変数のみ良い 結果となった.またASBでは、カテゴリ変数の周辺確率は 5%、二変量確率は10%付近までに8割ほどだが、ビン化連 続変数の周辺確率は30%、二変量確率は50%付近で8割 ほどあり、上手く補完できていないと考える.Rel.MSEか らGAINは他と比べて補完がうまくいっていないことが 確認された.

MIDAp と比較すると, MIDA では被覆率は改善できた が ASB や Rel.MSE から若干 MIDAp の方が良い結果と なった.そのため, 差はほとんどないと考える. MIDA は 3 つの指標の結果から可能な補完値を満遍なく補完してい るように感じる.

表 3 ABS, Rel.MSE の分布 (vs. 先行研究, MCAR)

		周辺確率				二変量確率			
		GAINp	MIDAp	GAIN	MIDA	GAINp	MIDAp	GAIN	MIDA
	分位数	$ASB(\times 100)$							
	10%	0.29	1.01	0.32	0.80	0.66	1.84	0.88	1.73
	25%	0.87	3.17	0.73	2.27	1.70	4.88	2.25	4.69
カテゴリ	50%	1.80	5.16	1.82	5.20	3.97	11.59	5.48	11.09
変数	75%	3.36	11.54	5.03	11.18	9.45	20.65	11.88	21.38
	90%	10.05	18.90	10.07	22.14	18.57	27.71	20.98	27.79
	10%	10.88	5.40	8.61	6.36	12.07	5.18	6.71	5.02
	25%	27.57	8.59	14.48	9.59	28.28	12.56	18.23	12.62
ビン化連続	50%	29.90	21.83	28.23	23.75	45.20	25.21	31.81	26.64
変数	75%	30.89	29.85	29.97	29.93	51.22	42.84	50.18	44.46
	90%	81.64	42.79	54.89	43.58	108.58	68.18	88.92	73.96
	分位数	Rel.MSE							
	10%	1.67	1.81	7.92	2.30	2.68	1.79	6.42	1.94
	25%	4.15	4.82	12.76	4.49	5.15	3.30	11.62	3.49
カテゴリ	50%	16.86	16.30	31.21	15.85	11.20	7.74	27.54	7.88
変数	75%	47.79	40.12	96.35	40.19	24.32	17.16	73.22	19.08
	90%	85.19	72.07	335.54	95.65	47.53	38.65	183.21	42.41
	10%	93.04	5.88	93.03	9.46	17.04	1.53	20.81	1.68
	25%	125.14	12.71	131.82	14.56	33.11	4.15	41.00	4.42
ビン化連続	50%	215.26	87.41	344.57	96.10	58.77	13.86	82.64	15.54
変数	75%	644.98	190.43	883.94	188.05	144.14	50.43	223.16	54.09
	90%	1376.70	466.32	1251.38	459.14	541.76	141.65	591.04	148.22

図1 被覆率 (vs. 先行研究, MCAR)

4.2 MAR シナリオ (vs. 先行研究)

GAINp と比較すると, GAIN では少しだが良い結果と なった. MCAR シナリオに比べてビン化連続変数の ASB が全体的に小さくなった.

MIDAp と比較すると, MIDA は3つの指標ともに良い 結果となった. MCAR シナリオに比べて二変量確率に対 する指標が全体的に小さくなり, 精度が良くなる結果と なった.

表 4 ABS, Rel.MSE の分布 (vs. 先行研究, MAR)

		周辺確率				二変量確率			
		GAINp	MIDAp	GAIN	MIDA	GAINp	MIDAp	GAIN	MIDA
	分位数	$ASB(\times 100)$							
	10%	0.07	0.84	0.06	0.14	0.39	1.30	0.33	0.64
	25%	0.38	1.84	0.30	0.51	1.13	3.38	0.94	1.93
カテゴリ	50%	1.29	3.33	1.11	2.06	2.62	7.76	2.23	5.20
変数	75%	2.85	8.45	2.33	6.14	6.37	15.00	5.45	11.47
	90%	6.32	13.02	5.04	11.50	15.07	23.03	13.69	22.35
	10%	0.36	2.83	0.36	0.29	4.96	3.05	5.63	1.61
	25%	7.77	4.14	7.11	1.96	10.41	7.96	10.48	5.36
ビン化連続	50%	11.23	12.91	11.23	9.00	15.45	16.78	15.81	10.70
変数	75%	13.59	19.09	13.59	11.51	21.91	27.83	21.92	17.00
	90%	31.50	27.50	29.61	16.40	36.22	43.04	36.10	27.18
	分位数	Rel.	MSE						
	10%	1.00	1.70	1.00	1.00	1.20	1.63	1.17	1.10
	25%	1.45	3.87	1.39	1.41	1.90	2.66	1.92	1.50
カテゴリ	50%	4.48	10.67	4.03	3.84	5.05	5.47	5.20	2.75
変数	75%	23.93	22.39	24.79	12.08	20.71	11.67	23.26	6.86
	90%	179.24	51.79	208.88	29.75	80.57	26.16	97.33	17.79
	10%	1.00	3.54	1.00	1.00	2.62	1.36	2.37	1.09
	25%	14.84	6.43	15.85	2.50	4.30	2.84	3.92	1.57
ビン化連続	50%	24.90	40.37	24.35	12.81	8.58	7.94	7.88	3.60
変数	75%	69.15	98.64	64.12	35.05	18.98	26.31	18.05	9.17
	90%	241.66	229.77	233.51	63.19	50.84	73.11	47.81	24.19

図 2 被覆率 (vs. 先行研究, MAR)

5 FHDI vs. RSM

このシミュレーションを行なうにあたって, FHDI は欠 測が1つもないユニットをドナーにするために, ここで扱 う欠測データセットは欠測値のない完全ユニットが入って いることが前提となるため, 欠測データセットに完全デー タセットを結合して新たな欠測データセットとした. ま た,4章と同じサンプルサイズで行なうと, FHDI では1つ の補完データセットを作成するのに12時間以上かかって しまうため, サンプルサイズが小さいサブ標本を作成する. サンプルサイズ n = 1000 (完全ユニット 700, 欠測ユニッ ト 300), 補完回数 L = 10, シミュレーション回数 H = 50, 3.1 節で示したハイパーパラメータを用いて, シナリオご とに実行した結果は以下のようになった.

5.1 MCAR シナリオ (vs. FHDI)

MCAR シナリオでは、カテゴリ変数とビン化連続変数 で ASB が最小になるものが違った.カテゴリ変数では GAIN, ビン化連続変数では FHDI が一番良いモデルと なった. 被覆率では FHDI と MIDA の中央値がどこでも 9 割付近にある.

表5 ABS, Rel.MSE の分布 (vs. FHDI, MCAR)

		周辺確率			二変量確率		
		FHDI	GAIN	MIDA	FHDI	GAIN	MIDA
	分位数	ASB(×100)					
	10%	0.26	0.13	0.34	0.55	0.29	0.53
	25%	0.79	0.30	0.79	1.39	0.76	1.29
カテゴリ	50%	1.58	0.73	1.47	3.43	1.74	2.95
変数	75%	3.93	1.59	3.62	6.85	3.63	5.80
	90%	6.64	2.44	5.81	12.08	6.61	9.14
	10%	0.60	0.90	0.89	0.69	1.27	1.47
	25%	1.39	1.56	2.30	1.86	3.36	3.53
ビン化連続	50%	2.20	3.89	5.67	3.55	6.87	7.40
変数	75%	2.97	7.37	8.39	5.73	12.00	13.24
	90%	4.41	9.70	11.83	8.74	25.61	19.95
	分位数	Rel.	MSE				
	10%	1.01	1.05	1.01	0.95	1.01	0.97
	25%	1.09	1.11	1.08	1.04	1.09	1.04
カテゴリ	50%	1.22	1.20	1.23	1.17	1.20	1.14
変数	75%	1.41	1.32	1.41	1.33	1.33	1.28
	90%	1.74	1.44	1.73	1.56	1.47	1.48
	10%	0.91	0.97	1.00	0.89	0.94	0.88
	25%	1.08	1.22	1.16	0.97	1.07	0.97
ビン化連続	50%	1.16	1.63	1.84	1.08	1.28	1.17
変数	75%	1.33	3.42	3.41	1.20	1.94	1.76
	90%	1.72	10.53	6.82	1.34	3.48	2.97

図3 被覆率 (vs. FHDI, MCAR)

5.2 MAR シナリオ (vs. FHDI)

MAR シナリオでは, ASB に対してカテゴリ変数では GAIN, ビン化連続変数では FHDI が良いモデルとなった. MCAR シナリオとは異なり, 欠測のない変数がある場合 は Rel.MSE に対してカテゴリ変数では MIDA, ビン化連 続変数では FHDI が良いモデルとなった.

6 おわりに

本研究を通して,深層学習を用いる補完法は欠測率や完 全ユニットの数に影響されやすいことが分かった.また,1 つ目のシミュレーションの結果から,応答曲面法を用いた 最適なパラメータ選定でも不十分に感じた.

表 6 ABS, Rel.MSE の分布 (vs. FHDI, MAR)

図4 被覆率 (vs. FHDI, MAR)

参考文献

- Akande, O., Li, F., and Reiter, J., An empirical comparison of multiple imputation methods for categorical data, *The American Statistician*, **71** (2), 162-170, 2017.
- [2] 金子 弘昌, 『Python で気軽に化学・化学工学』, 丸善 出版, 2021.
- [3] Lu, H.-m., Perrone, G., and Unpingco, J., Multiple imputation with denoising autoencoder using metamorphic truth and imputation feedback, arXiv preprint arXiv:2002.08338, 2020.
- [4] Little, R. J., and Rubin, D. B., Statistical analysis with missing data, Hoboken, NJ, John Wiley & Sons., 2014.
- [5] Wang, Z., Akande, O., Poulos, J., and Li, F., 2021, Are deep learning models superior for missing data imputation in large surveys? Evidence from an empirical comparison, https://arxiv.org/abs/2103.09316 (2022/09 閲覧)