ビジュアルフィードバックを用いたドローンの位置制御における リアルタイムシミュレーションと実機検証

M2019SC015 米川翔太 指導教員:坂本 登

1 はじめに

近年ドローンの市場規模は急激に拡大しており,今後 活躍の場は広がっていくと考えられている.

本研究ではドローンのファームウェアとハードの開発 を行い,制御則の換装が可能であり,機器汎用性の高い ドローンの製作と利活用を行うことを目的としている.

本稿の構成として,最初にドローンのモデリングを行 い,状態方程式の導出をする.次にドローンに用いた制 御則について述べる.そしてドローンの制御基板を始め とした実験機器の紹介とファームウェア開発について述 べる.その後に実機実験の結果を示し,次にドローンのリ アルタイムシミュレータ開発に関しての説明をする.最 後に本稿の結論を述べる.なお本研究は同研究室の宮野 氏との共同研究であり,本稿では主に制御則開発とシミュ レーションについて述べる.そのため実験機器,ファー ムウェア開発の詳細は宮野氏の論文を参照されたい[1].

2 ドローンのモデリング

2.1 ドローンの座標系とパラメータ

3次元空間にあるドローンの空間表現を行うためには位置と姿勢角が必要である.これらを表現するためには、2つの直交座標系の定義を行う必要がある.1つ目が基準座標系 (Σ_r),2つ目がドローンに固定された機体座標系 (Σ_b)である.これら2つの座標系はともに右手座標系である.また文字の左上添え字は基準となる座標系,右下添え字は表現される座標系を示しており,bは機体座標系,wは基準座標系を示す.以下の表1にドローンの状態パラメータを表し、図1はドローンの座標系 (Σ_r),(Σ_b)の関係性を示したものである.

表 1	ドローン	のモデリングに関するパラメータの気	自義
		夕 步卫 7 半 出 占	

ロレク	石が及び単位
m_b	機体の質量 [kg]
x	機体の x 方向への位置座標 [m]
y	機体の y 方向への位置座標 [m]
z	機体の z 方向への位置座標 [m]
ϕ	機体の姿勢角 (roll 角)[rad]
θ	機体の姿勢角 (pitch 角)[rad]
ψ	機体の姿勢角 (yaw 角)[rad]
f_i	ロータ <i>i</i> 番の推力 [N]

2.2 ドローンの運動方程式

ドローンのような剛体の運動方程式はラグランジュの 運動方程式などから導出することができる.したがって, ドローンの運動はラグランジュの運動方程式により,(1)

図1 ドローンの座標系

式のように表せる.

$$M(q)\ddot{q} + N(q,\dot{q}) = B_f u \tag{1}$$

ここで, M(q) は慣性行列であり, $N(q, \dot{q})$ はコリオリ力 項である. B_{fu} は並進運動では力, 回転運動ではモーメ ントである. また, q はドローンにおける一般化座標であ り, これは基準座標系から見たドローンの位置, ドロー ンの姿勢角を含む 6 次元の縦ベクトルである. ドローン の位置を $^{w}P_{b} = [x, y, z]^{T}$ とし, ドローンのオイラー角 を $\eta = [\phi, \theta, \psi]^{T}$ とするとq は $q = [^{w}P_{b}^{T}, \eta^{T}]^{T} \in \mathbb{R}^{6}$ となる. さらに f_{i} はドローンの各モータの推力であり, $u = [f_{1}, f_{2}, f_{3}, f_{4}]$ と表すことができる.

2.3 ドローンの非線形状態方程式

ドローンの状態方程式を (1) 式から導出することを考える. 状態変数 $x \in x = [q^T, \dot{q}^T]^T \in \mathbb{R}^{12}$ として非線形 状態方程式は [2] から次のようになる.

$$\dot{x} = f(x) + g(x)u \tag{2}$$

3 制御器設計

この節ではドローンの飛行を行う際のドローンの並進・ 回転運動を制御するための手法について述べていく.

3.1 姿勢角及び角速度の PD 制御

ドローンの運動を制御していくにあたって,角度制御を アウターループで制御する図2のような制御系の設計を 行った.ドローンの姿勢角のP制御を行い,目標姿勢角 への追従を行う.そして姿勢角のP制御に対して得られ た操作量に角速度のインナーループを構成し,ネガティ ブフィードバック制御を行うことでドローン機体の飛行 安定性の向上を図っている.この制御はドローンの roll 角及び pitch 角に対して行う.

3.2 カスケード制御の概要

カスケード制御は多重ループ構造で制御を行う手法で ある.カスケード制御では複数の制御器を使用して,1番

図 2 ドローン姿勢角の PD 制御

目の制御器の制御量が2番目の制御器の目標値となるような制御である.カスケード制御は一般的に外乱に強い ロバスト性を持った制御システムの設計が可能である.また,速応性の高い制御器を作成することも可能である[3].

3.3 速度・角度・角速度によるカスケード制御

角度・角速度制御の場合,目標値が角度として印加される.その結果ドローンの目標値を0[deg]とした場合でも,並進方向速度が打ちけせず,横滑りしてしまうことが後述するリアルタイムシミュレーションの結果から分かった.これを解決すべく,速度制御をアウターループとして採用した図3の制御系の設計も行った.

図 3 カスケード制御 (アウターループ:速度)

アウターループでドローンの*x*, *y*方向の並進速度制御 を行い,速度制御の操作量はそれぞれ pitch 角, roll 角目 標値となる.そしてインナーループで角度制御を行い,速 度制御で得られた操作量である角度目標値に対してその 角度目標値と一致するようにドローンの姿勢が傾き,そ の姿勢を維持するように角度制御は作用する.そしてそ の操作量に対して,角速度のネガティブフィードバック を行うことでドローンの姿勢安定化を実現している.[3]

3.4 位置と姿勢角のカスケード PD 制御

この節ではより操作性の高いドローンを開発するため にドローンの位置と角度制御のカスケード制御を行う.こ の制御ではアウターループでドローンの位置を制御し,イ ンナーループではドローンの姿勢角の制御を行う.位置 と姿勢角のカスケード PD 制御のブロック線図を以下の 図4に示す.

図 4 カスケード制御 (アウターループ:位置)

アウターループでドローンの x, y 方向の並進位置制御 を行い, x, y 方向の位置の操作量はそれぞれ pitch 角, roll 角目標値となる.そしてインナーループで角度制御を 行い,アウターループの位置制御で得られた操作量であ る角度目標値に対してその角度目標値に追従するように ドローンの姿勢が適当に傾き,その姿勢を維持するよう に角度制御は作用する.そしてその操作量に対して,角 速度のネガティブフィードバックを行うことでドローン の姿勢安定化を実現している [4].

3.5 高度操作について

高度操作は以下の2つの手法を提案する.なお,実験 とシミュレーションでは方法1を採用している.

方法1 推力の差分構造

方法2 高度の差分構造と P 制御

4 ファームウェア開発と機器紹介[1]

ドローンのファームウェアを開発するうえでデバイス 内の機器関係及び各種ドローン駆動のためのシステム構 成を行った.この章では機器紹介とファームウェア開発 について言及する.

4.1 実験機器紹介

実験に使用する機器は表2の通りである. これらの機

表 2 使用	する機器
機器名	機器名
マイコン	myRIO-1900
慣性計測装置	3DM-GX4-45
受信機	R3006SB
送信機	T6K

器を組みあわせ、ファームウェア開発を行っている.

4.2 システム構成

以下の図5に製作したファームウェアのシステム構成 を示す.ファームウェアを開発上でほとんどの処理はRT

図5 ドローンシステム構成図

target 内で行っており,高速処理が必要な PWM 信号の 処理のみを FPGA 内で行っている.ドローンの飛行制御 やフィルタリング処理, IMU の出力を受け取るといった 機能は myRIO 内の RT target で処理を行う.また,プ ロポ, ESC などの PWM 信号を利用する機器については FPGA を利用して高速処理を行っている.

4.3 RT target のプログラム

RT target 内ではドローンの飛行のために必要なプログ ラムが搭載されている.機能としては IMU から取得した 値を処理する「IMU インターフェース」, FPGA で処理 した RC 機器の信号にフィルタリング処理を行う「PWM フィルタ」,キャリブレーション・制御等を実現する「制 御部」,モータ ESC に送る信号を生成する「ESC イン ターフェース」,ドローンの飛行時のデータを保存する 「ロガー」で構成されている.

4.4 FPGA 部のプログラム

FPGA 内では高速処理が必要な PWM 信号を扱ってい る. 機能としては RC 機器から送られた信号を受けとり, PWM 信号の立ち上がり,立ち下がりまでの時間を計測 する「PWM reading 部」, RT target 上で算出した Duty cycle を ESC に送る処理を行う「PWM transmitter for motor」がある.

5 実機実験

5.1 実験のシチュエーション

実験を行う上でのシチュエーションとして,3.1 節で述 べた姿勢角制御則を採用した.yaw 角は角度制御を使用 し,また ESC に送る PWM 信号の周波数を 200[Hz] とし 飛行実験を行った.

5.2 実験で用いたゲイン

3.1 節で述べた角度制御を用いて飛行実験を行った.実験時に用いたゲインを表 3 に示す.

まっ 皮腔の パイン

衣3 美験のケイン				
記号	ゲイン	記号	ゲイン	
P_{ϕ}	0.01	$P_{\dot{\phi}}$	3.0×10^{-3}	
P_{θ}	0.01	$P_{\dot{\theta}}$	$3.0 imes 10^{-3}$	
P_{ψ}	0.4	P_{ii}	0.06	

5.3 実験結果と考察

実験における roll 角, pitch 角のデータを図 6, 7 に示 す.図 6 と 7 から目標値に対して偏差を残してはいるが

追従していることがわかる. 図 7 における 25[s] に見ら れる振動は一度ドローンが地面と接触したことに由来す るものであるが接触した後もそのまま墜落することなく, 再度浮上することができるほどの安定性があることがわ かる. 今後の課題としては同定した慣性モーメントが *x* 軸周りと *y* 軸周りで異なっているので, roll 角と比べや や振動的な pitch 角のゲインチューニングを行う必要が あると考える.

6 リアルタイムドローンシミュレータ

6.1 リアルタイムシミュレータの概要と利点

リアルタイムシミュレータは MATLAB/Simulink 内 で使用できる「Simulink 3D animation」と「AeroSpace Tool box」を用いることで、プロポを用いたシミュレー ションが可能となるものである.その利点としてはステッ プ関数などの非現実的なものを目標値とせず、実際のド ローンの飛行と近いシチュエーションでシミュレーショ ンを行うことが可能な点にある.

6.2 リアルタイムシミュレータ構成図

リアルタイムシミュレータのシステム構成図を以下の 図8に示す.プロポとして使用する機器はDualshock4(以

図8 リアルシミュレータ構成図

下:PS4 コントローラ) である. これをデスクトップ PC に Bluetooth 通信を用いて接続を行う. そして Pilot Joystick ブロック内の設定をすることで, PS4 コントローラを用 いることで,操縦者が任意の目標値を印加することが可 能となる. そして,制御系の設計を行い,出力値の状態 量での並進位置と姿勢角の値を用いて,リアルタイムシ ミュレータを動作させることができる.

6.3 リアルタイムシミュレータの改良

ドローンのリアルタイムシミュレータをより実機に近 づけるために図9のように白色ノイズとむだ時間をシミュ レータに反映させた.図9の赤で囲われている部分は、白 色ノイズであり、センサ値と ESC に送る信号値に適用し ている.また青で囲われている部分はむだ時間を適用し た部分である.むだ時間は PS4 コントローラを処理する 部分と ESC に送る信号値に適用している.以下の表4に

図 9 リアルタイムシミュレータ改良図

適用した遅延時間と加算性白色ノイズの SN 比を示す.表 4 から分かるようにモータ駆動部の SN 比は 10[dB] と設 定しており,これは伝送時のノイズとモータが駆動する 際に生じるノイズやエネルギー損失を加味している.ま た,センサ値部に関しては後述する慣性計測装置にはカ

表 4 付加した遅延時間とノイズ

付加箇所	遅延時間 [ms]	SN比[dB]
プロポ目標値	1	0
モータ駆動部	1	10
センサ値部	1	100

ルマンフィルタやローパスフィルタの機能を持っており, センサ値の生データにフィルタリングをしているため, 伝 送時のノイズのみが影響するため, モータ駆動部と比較 し小さめに設定をしている.

6.4 リアルタイムシミュレータとドローン実機の応答と 実用性

以下の図 10, 図 11 はリアルタイムシミュレータと実機 実験,目標値を重ねたグラフである.グラフを見てわか るように 3 つの応答がおおよそ一致しており,リアルタ イムシミュレータは現実のドローンの飛行を模擬できて いる.これによって,モデルベースでのゲインチューニ ングや模擬実験を行うことが可能である.

図 10 応答比較 roll 角 図 11 応答比較 pitch 角

7 リアルタイムシミュレーション結果

7.1 シミュレーション条件

リアルタイムシミュレーションを行うにあたって高度 操作は推力の差分構造を用いた.また制御に用いたゲイ ンは以下の表 5,表 6 である.初期値はすべての状態変 数において 0 であり,目標値は PS4 コントローラで印加 した.

表 5 速度制御		表 6	表 6 位置制御	
記号	ゲイン	記号	ゲイン	
P_{V_x}	0.2	P_x	0.1	
P_{V_y}	0.2	P_y	0.1	
P_{ϕ}	0.01	D_{V_x}	0.175	
P_{θ}	0.01	D_{V_y}	0.175	
$P_{\dot{\phi}}$	$3.0 imes 10^{-3}$	P_{ϕ}	0.01	
$P_{\dot{\theta}}^{'}$	$3.0 imes 10^{-3}$	P_{θ}	0.01	
		$P_{\dot{\phi}}$	3.0×10^{-3}	
		$P_{\dot{ heta}}$	$3.0 imes 10^{-3}$	

7.2 リアルタイムシミュレータを用いた速度・角度・角 速度のカスケード制御の結果

姿勢角制御ではドローンの速度を消せず,横滑りが生 じてしまう.この問題点を解決すべく,並進方向の速度 制御でのリアルタイムシミュレーションを行った.角度・ 角速度制御と比較し,実際に操作した際の操作性が向上 した. また,図 12,図 13 から速度目標値に対して適切 に追従していることが分かる.

7.3 リアルタイムシミュレータを用いた位置・角度・角 速度のカスケード制御の結果

位置制御でのシミュレーションの目的はドローンの操 作性を高めることにある.これによって限られた飛行範 囲内でも横滑りすることなく飛行をさせることが可能で ある.

8 終わりに

ドローンのモデリング,複数の制御則設計と myRIO を pitch 角 用いたファームウェア開発を行い,さらにハード面での 開発としてモジュール作製を行い,ハード・ソフト両面の 開発をゼロからし,飛行可能なドローンの製作を達成し た.またドローンの運動を再現したリアルタイムシミュ レータの製作も行うことができた.

> 今後は実機実験での速度,位置制御を用いた飛行実験 に取り組んでいく必要がある.そのためにはモーション キャプチャによる3次元空間の位置および速度の計測と 算出を行う必要がある.また古典制御での制御手法のみ 提案できているため,現代制御を用いたドローンの自律 飛行などを行うことが必要である.

参考文献

- [1] 宮野峻. 倒立振子付きドローンの安定飛行実験を目的 としたリアルタイムシミュレーション開発と実機検証, 2020.
- [2] 林美咲, 宮野峻, 西田裕貴, 米川翔太. クアッドコプ ターの飛行安定化制御システムの開発. 2018 年卒業学 士論文, 南山大学理工学部機械電子制御工学科坂本・ 中島研究室, 2018.
- [3] William Bolton. Chapter 13 control systems. In William Bolton, editor, *Instrumentation and Control* Systems (Second Edition), pp. 281 - 302. Newnes, second edition edition, 2015.
- [4] 健蔵野波.ドローン工学入門:モデリングから制御 まで. Introduction to drone engineering: modeling and control. コロナ社, 東京, Japan, 2020.9 2020.