倒立振子付きドローンの安定飛行実験を目的とした リアルタイムシミュレーション開発と実験検証

M2019SC006 宮野峻

指導教員:坂本登

1 はじめに

近年ドローンの研究が盛んに行われているが,そのほ とんどがの運用方法に関する研究であり,市販されてい るドローンを使用している.これらのドローンには予め 姿勢安定化制御器が組み込まれているため,変更できる 箇所が限られてしまうという問題があり,ブラックボッ クスが存在する.そこで本研究では任意の制御器を書き 込めるマイコンに周辺機器を接続し,自作のドローンを 作成した.これにより様々な制御器を実機に搭載するこ とが可能となり,飛行性能の向上が期待できる.

本研究は同研究室の米川氏との共同研究であり,本稿 では主に実機開発について述べ,制御器設計・シミュレー ション等の詳細は米川氏の論文を参照されたい[1].本稿 の構成は,まず,制御対象であるドローンのモデリング, 制御手法について紹介を行う.そののちにドローンシス テムの構成について述べ,さらにインターフェースプロ グラムについての説明を行う.そして、実機実験の結果 と考察を行い,最後に倒立振子付きドローンへの拡張し たシミュレーションによる検証と今後の展望について述 べる.

2 制御器設計[1]

2.1 ドローンの座標系と変数定義

ドローンの位置と姿勢角を表現するために表1に示す パラメータを定義し、ドローンの座標系 $(\Sigma_w), (\Sigma_b)$ とド ローンにおけるパラメータを図1に図示する.

表 1	ドローンのモデリングに関するパラメータ
-----	---------------------

記号	名称及び単位
x	機体の x 方向位置座標 [m]
y	機体の y 方向位置座標 [m]
z	機体の z 方向位置座標 [m]
ϕ	<i>x</i> 軸周りの姿勢角 (roll 角)[rad]
θ	y軸周りの姿勢角 (pitch 角)[rac
ψ	z 軸周りの姿勢角 (yaw 角)[rad]

図1 ドローンの座標系

2.2 ドローンのモデリング

ドローンの運動をラグランジュの運動方程式 (1) 式のように表現する.

$$M(q)\ddot{q} + N(q,\dot{q}) = B_f u \tag{1}$$

ここで, M(q) は慣性行列であり, $N(q, \dot{q})$ はジャイロモー メント等を含むコリオリ力項である. B_{fu} は並進運動で は力, 回転運動ではモーメントである. また, ドローン の位置を ${}^{w}P_{b} = [x, y, z]^{T}$, ドローンのオイラー角を $\eta =$ $[\phi, \theta, \psi]^{T}$ とすると q は $q = [{}^{w}P_{b}{}^{T}, \eta^{T}]^{T} \in \mathbb{R}^{6}$ で与えら れる. また, $f_{1}, f_{2}, f_{3}, f_{4}$ はドローンの各モータの推力で あり, u は $u = [f_{1}, f_{2}, f_{3}, f_{4}]$ で与えられる.

(1) 式を用いてドローンの状態方程式を導出する.状態 変数 $X \in X = [q^T, \dot{q}^T]^T \in \mathbb{R}^{12}$ とすると非線形状態方程 式は次のようになる [2].

$$X = f(X) + g(X)u \tag{2}$$

2.3 カスケード制御

カスケード制御の概略図を図2に示す.カスケード制 御の利点は,PID 制御の2重ループ構造になっているた めチューニングが簡単という PID 制御の利点と,複雑な 制御対象を複数の要素に分解し制御を行えるという多重 ループ構造の利点がある.ドローンの挙動の中で最も抑 制したい振動を角速度制御により抑え,角速度制御の外 側で角度の制御を行う構造を用いることで,外乱に対し て高いロバスト性を達成している.

図2 カスケード制御の概略図

図2においてアウターコントローラでは角速度制御を行 いインナーコントローラの目標値を生成している.イン ナーコントローラでは生成された目標値をもとにドロー ンの回転トルクを算出している関係となっている.カス ケード制御の設計の際には関連性のある物理量を隣接し たコントローラに配置する必要がある.

3 実験機器

3.1 システム構成

本研究では任意の制御器を実装できるマイクロコンピ ューターに周辺機器を接続することで制御器の数値解析 を可能としている.図3に周辺機器の役割とそれぞれの 機器の接続図を示す.

図 3 接続概略図

3.2 マイクロコンピュータ

マイクロコンピュータとして,NI社のmyRIOを使用 している.myRIOにはリアルタイムOS(以下 RTOS) と FPGA が搭載されており高速演算や高度な処理を可能 としている.また LabVIEW を用いてプログラミングを 行うことや,さまざまな形式のI/Oに対応していること から後述する機器との接続など拡張性に優れている.

3.3 慣性計測装置(IMU)

慣性計測装置は IMU ともと呼ばれ,ジャイロセンサ・ 加速度センサを用いて角速度・加速度を計測する装置であ る.本研究で用いる IMU, 3DM-GX4-45 は姿勢角度 ϕ , θ , ψ , 姿勢角速度 $\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$ の計測が可能である.

3.4 送受信機

ドローンに追従させる目標指令値を与える RC 機器と して Futaba T6K 送信機および R3006SB 受信機を用い た. これらを用いてドローンの目標姿勢角を制御器に目 標値として印加する.

3.5 ESC・モータ

本研究ではプロペラを回転させるモータとして三相ブ ラシレスモータを用いる. ESC はモータの回転数を制御 するための機器であり,バッテリーから供給された電圧 をタイミングよく三相ブラシレスモータへ供給すること で回転磁界を制御している.また,モータの逆起電力を 利用することで簡易的な回転数フィードバックを行って いる.

4 プログラム概要

myRIO には制御器・周辺機器とのインターフェースプ ログラム・ロギング機能・安全装置などさまざまな機能 を実装している.図4にそれぞれの機能間の処理の流れ と実装しているコアの関係を示す.

図 4 プログラム処理の流れ

4.1 制御器

制御器の機能はプロポの入出力信号をもとにして IMU の情報などを利用して目標推力を算出することである.角 度制御モードでは 2.3 節で述べたカスケード制御によっ て制御を行っている.図5に実装した角度制御の概略図 と示す.

図 5 角度制御概略図

図 5 においてアウターループとインナーループの式は 以下の通り.

$$\tau_x = \tau_{xref} - P_{\dot{\phi}}\dot{\phi} \tag{3}$$

$$\tau_{xref} = P_{\phi} \left(\phi_{ref} - \phi \right) \tag{4}$$

(3) 式のインナーループはネガティブフィードバックを行う構造となっている.したがって(4) 式のアウタールー プの出力はドローン回転トルク目標値 τ_{xref} となる.ア ウターループの出力 τ_{xref} からインナーループの出力を 引いたものを τ_x することでドローンの振動を抑制する構 造となっている.(3) 式,(4) 式より ϕ_{ref} から τ_x を算出 する式以下のようになる.

$$\tau_x = P_\phi \left(\phi_{ref} - \phi \right) - P_{\dot{\phi}} \dot{\phi} \tag{5}$$

4.2 IMU 受信部

IMU は慣性計測装置と呼ばれ,角速度・加速度から姿 勢角を算出する装置である.USB 通信によりデータの送 受信を行っている.アドレスを指定し,角度・角速度の データを抽出するプログラムを作成した.

4.3 PWM 受信部

スティック操作信号を送信機が送り、その信号を受信機 が受信し PWM 信号を生成する.そのため、PWM 信号 を読み取るプログラムの作成が必要となるが, PWM 信号 はマイクロ秒単位の超高速演算を必要とするため, FPGA と呼ばれる集積回路を用いて PWM 信号の読み取りを実 現した.

4.4 ESC インターフェース

ESC に送る PWM 信号を生成するために,モータ目標 推力をデューティ比に変換している.デューティ比 D_C は PWM 周波数 F_P [Hz] と PWM パルス幅 W_P [s] の積で表 され

$$D_C = F_P W_P \tag{6}$$

となる. PWM パルス幅 $W_P[s]$ は最小パルス幅 $W_{min}[s]$ と入力パルス幅 $W_{input}[s]$ の和で表され

$$W_P = W_{input} + W_{min} \tag{7}$$

となる.

また、一般的にモータの生み出す推力 $f_r[N]$ は、モータの回転数 Ω と揚力係数 b を用いると以下の式で与えられるとされる.ただし、モータは逆回転しないものとする.

$$f_r = b\Omega^2 \Rightarrow \Omega = \sqrt{\frac{f_r}{b}}$$
 (8)

本研究において ESC が制御しているのはモータの回転数 Ω であるため,操縦者のスティック入力は二乗の形でド ローンの運動に影響することとなる.操作感を線形に補 正するためモータ入力推力 f_{sqrt}[N] を以下の式のように 各モータの目標推力 f_{input}[N] の平方根としている.

$$f_{sqrt} = \sqrt{f_{input}} \tag{9}$$

さらに、入力パルス幅 W_{input} [s] は 0.001[s] の範囲の正 規化入力を入力している.したがって制御器が算出した モータ入力推力 f_{sqrt} を正規化する必要がある.(9) 式よ り W_{input} は以下の式の正規化を行っている.

$$W_{input} = \frac{f_{sqrt}}{\sqrt{f_{max} - f_{min}}}$$
$$= \sqrt{\frac{f_{input}}{f_{max} - f_{min}}}$$
(10)

ここで f_{max} , f_{min} はそれぞれ最大,最小のモータ推力である.以上より,モータ目標推力 f_{input} からデューティ比 D_C への変換式は以下で与えられる.

$$D_C = (W_{input} + W_{min}) F_P$$
$$= \left(\sqrt{\frac{f_{input}}{f_{max} - f_{min}}} + W_{min}\right) F_P \qquad (11)$$

5 実機実験

ドローン実機実験として roll 角, pitch 角, yaw 角にお ける角度安定化を目的として, 4.1 節で述べた角度制御を 用いて飛行実験を行った.

実験時に用いたゲインを表2に示す. roll角, pitch角,

	表 2 実験に	用いたゲ	イン
記号	ゲイン	記号	ゲイン
P_{ϕ}	0.01	$P_{\dot{\phi}}$	3.0×10^{-3}
P_{θ}	0.01	$P_{\dot{\theta}}$	$3.0 imes 10^{-3}$
P_{θ}	0.4	$P_{\dot{\psi}}$	0.06

yaw 角それぞれについてプロポから送信された目標値と 実験によって得られたデータを図 6,7 に示す.

ドローンが実験範囲内に収まるように飛行させるための roll 角, pitch 角の操作に対して実験機の応答が目標値 に追従する様子がグラフから確認できる.

6 ドローンと倒立振子

6.1 振子付きドローンのモデリング

2章で導出したドローンシステムに ${}^{b}x$ 周りにのみ回転 する倒立振子を搭載することを考える.ドローンの位置 と姿勢角,振子の角度を表3に示すパラメータに定義し, ドローンの座標系 (Σ_w),(Σ_b),振子の座標系 (Σ_p)を図 8に図示する.

表 3	振子付き	ドローンのモデ	リングに関す	「るパラメータ
	記号	名称及び単位		

x	機体の x 方向位置座標 [m]
y	機体の y 方向位置座標 [m]
z	機体の z 方向位置座標 [m]
ϕ	x 軸周りの姿勢角 (roll 角)[rad]
θ	y 軸周りの姿勢角 (pitch 角)[rad]
ψ	z 軸周りの姿勢角 (yaw 角)[rad]
, O	振子の角度 [rad]

図8 振子付きドローンの座標系

2.2節(1)式同様に振子付きドローンの運動をラグラン

ジュの運動方程式により記述する. 振子付きドローンシス テムにおいて q_p は $q_p = \begin{bmatrix} ^w P_b^T, \eta^T, \alpha \end{bmatrix}^T \in \mathbb{R}^7$ であり,状 態変数 X_p を $X_p = \begin{bmatrix} q_p^T, \dot{q}_p^T \end{bmatrix}^T \in \mathbb{R}^{14}, \ u = [f_1, f_2, f_3, f_4]$ とした非線形状態方程式は次のようになる [2][3].

$$\dot{X}_p = f(X_p) + g(X_p)u \tag{12}$$

6.2 振子付きドローンのシミュレーション

6.1節で導出した振子付きドローンシステムに対し $X_p = [0,0,0.5,0,0,0,0,0,0,0,0,0,0]$ 周りで線形化を行いLQ 制御による振子の安定化シミュレーションを行った [2][4]. シミュレーションで用いた重み行列 Q, R の値は以下の 通りである.

Q = diag(1, 10, 1, 1, 1, 1, 100, 1, 1, 1, 1, 1, 1, 100)R = diag(10, 10, 10, 10)

初期値として振子の角度 $\alpha = 0.1$ [rad],高度 z = 0.5[m] 与え,その他の状態変数は 0 としシミュレーションを行っ た結果を図 9,図 10,図 11,図 12 に示す.だだし,振子 角度については基準座標 (Σ_b)から見た振子の角度を示す.

図 11 振子システム y 図 12 振子システム z

振子の角度 α ,振子の角速度 $\dot{\alpha}$, roll 角 ϕ ,位置 y とも に平衡点周りでの安定化を達成した.また,各ロータの 推力 f_i (i = 1, 2, 3, 4) が 9[N] を超えないようシミュレー ションを行ったため振動が残る応答となった.

また,ドローンは3次元空間を自由に動くことができ るため,振子の安定化に縦方向の動きを取り入れること が可能である.以下の重み行列Q,Rをもちいて縦方向 の運動を大きく反映させるシミュレーションを行った.

Q = diag(1, 100, 0.1, 1, 1, 1, 100, 1, 1, 1, 1, 1, 1, 100)R = diag(10, 10, 10, 10)

初期値として振子の角度 $\alpha = 0.1$ [rad],高度 z = 0.5[m] 与え,その他の状態変数は 0 としシミュレーションを行っ た結果を図 13,図 14,図 15,図 16 に示す.だだし,振子 角度については基準座標 (Σ_b)から見た振子の角度を示す.

7 終わりに

ドローンのリアルタイムシミュレータを作成し,カス ケード制御でのドローンの角度制御の有用性についてシ ミュレーションで確認した.また,myRIOを用いて制御 器の実装や周辺機器とのインターフェース開発を行い実 機実験にて角度制御による飛行安定化実験を達成した.さ らに倒立振子付きドローンのモデリングを行い,LQ制御 にて振子の安定化を達成した.

今後は実機実験での実装が見込めるカスケード制御に よる倒立振子の安定化制御の設計を行う.また,倒立振 子付きドローンの安定化を実機により達成した例もあり, 倒立振子付きドローンのシミュレータを用いたさらなる 解析を行うことも可能である [5].

参考文献

- [1] 米川翔太. ビジュアルフィードバックを用いたドローンの位置制御におけるリアルタイムシミュレーションと実機検証. 2020 年修士論文 要旨,南山大学理工学部機械電子制御工学科坂本・中島研究室, 2020.
- [2] 林美咲, 宮野峻, 西田裕貴, 米川翔太. クアッドコプ ターの飛行安定化制御システムの開発. 2018 年卒業学 士論文, 南山大学理工学部機械電子制御工学科坂本・ 中島研究室, 2018.
- [3] 平手貴大.ドローンによる倒立振子の安定化制御.2017 年卒業学士論文,南山大学理工学部機械電子制御工学 科坂本・中島研究室,2017.
- [4] 川田昌克. Matlab/Simulink による現代制御入門. 森 北出版株式会社, 2011.
- [5] 田所祐一,藤田優稀,伊吹竜也,三平満司.クアッド ロータモデルを用いた3次元倒立振子の安定化制御. 計測自動制御学会第2回制御部門マルチシンポジウム,東京工業大学工学院システム制御系三平研究室, 2015.