
Design of Software Architecture for
Image Tampering Detection

M2019SE004 MIZUTANI Akira

Supervisor：NORO Masami

1 Introduction

Recent technological advances in media tampering has
been causes of many harmful forged images. Tamper de-
tection methods[1][2][3] became a major research topic
to cope with it in the neural network community. The
methods almost always aim at detecting a specific forg-
eries. That is, a general detecting method to find any
tampering has not been invented so far. This paper con-
cerns about a software architecture for organizing multi-
ple neural networks to detect multiple kinds of forgeries.
The key issue here is to construct, from the meta-level, a
mechanism for an ensemble of front-end neural networks
to select a neural network which makes a decision. Un-
der this architecture, we implemented a prototype for
detecting forged images resulted from multiple tamper-
ing methods of copy-move and compression. In order
to demonstrate that our architecture works well, we ex-
amined a case study with a total of 120,000 patches
which consist of three classes of copy-move, compression
and untampered data, 40,000 patches for each. The re-
sult shows our proposed method successfully classified
108,954 out of 120,000 patches with 90.82% accuracy.
We also give discussions on our architectural implica-

tion to avoid concept drift. Our architecture is designed
to be a context-oriented and meta-level, which has a
two-layered structure: meta and base. The neural net-
works can be categorized into base-level components,
whereas a component coordinating the networks is ad-
dressed in meta-level. The architecture explains that the
concept drift can be handled in the meta-level. Through
the discussions on the techniques of transfer learning[4],
online learning[4], and ensemble learning[4] in terms of
the architecture we constructed, it is concluded that we
could construct a universal architecture to coordinate
machine learning components.

2 Proposed Method

We designed a universal architecture that could be a
common base for the cooperation of neural networks.
The architecture is context-oriented and meta-level one
which gives a structure of two-layered for the sake of
dynamic behavior change. We will discuss the design
and its details below.

2.1 Design

The architecture we propose is a foundation where
neural networks collaborate with one another. The idea
is based on the concept of the meta-level architecture re-
flecting context-orientation. The two-layered structure
is required to implement dynamic behavior change.
Since context-oriented structure is necessary when we

need to feed the learning result back and use it to make
reconfiguration of base-level components, the meta-level
architecture is employed. We can put a set of neural
networks at the base-level and a component for context
and a policy to cooperate the networks at meta-level.
Under the architecture, neural networks can be designed
to collaborate for handling concept drift.

Techniques handling concept drift such as transfer
learning, online learning, and ensemble learning define
nothing more than ones which specify meta operation.
That is, the techniques show the ways to make neural
networks collaborate one another or to change the facil-
ities of neural networks. Both can be regarded as meta
operation from the viewpoint of software architecture.
In other words, the processes the techniques assume are
sequences of meta-level operation and then they can be
packed into the policy at meta-level in our architecture.
We could also encapsulate the mechanism to change
base-level configuration into the policy at meta-level.
In addition, the mechanism to change the policy itself
as a result of base-level learning, that is, the reflection
mechanism, can be also realized with our architecture.

Summing up above, the architecture we propose pro-
vides a common base for neural network cooperation in-
cluding the growth of neural networks. Under the archi-
tecture, we can implement techniques advocated in the
neural network community to deal with concept drift.

2.2 Details

Here, we use an example which is the case study we
have done in this research to give details of our architec-
ture. This example is simple enough to describe in the
paper and is complex enough to show the advantages of
our architecture. This could be without loss of gener-
ality since it is fairly useful and practical. It includes
enough amount of components and meta-level policy to
coordinate base-level neural networks.

UML is used to present the structure and behavior
of the architecture. We use class and instance diagram
for static structure. An activity diagram is made use of
for dynamic behavior. In an activity diagram, a rectan-
gle shows an instance which is referenced somewhere in
the diagram. A round rectangle represents a step of a
process. We put a message expression in the step.

Fig.1 shows an overview of a exampled version of the
architecture we propose, (a) and (b) for static structure,
and (c) and (d) for dynamic behavior. It is context-
oriented as mentioned above, as in (a). Gray-scaled
components are meta-level ones coordinating compo-
nents in the base-level (given as white boxes). The
base-level includes a set of Data, NNs for Classification,
and NN for Detections. Components in the base-
level cooperatively work together and make a decision.
NN Selector in the meta-level supervise the cooperation.
Data is a polymorphic type and its instance is pre-
processed for the convenience of succeeding procedures.
The architecture assumes that NNs for Classifications
are trained for the proper selection of NN for Detection
(see Fig.1 (c)). NN for Detections, on the other hand,
are assumed to be trained well enough to make an in-
tended decision. In the meta-level, NN Selector accept
opinions from NNs for Classifications, and then, discuss
the opinions and finally select a single Detector to make
a decision. Thus, base-level components are coordinated
by a policy in meta-level components. See Fig.1 (d).



NN_Selector Context

Data

<<select>>

Result

(a) Static structure - Class diagram

<<select>>

(b) Static structure - Instance diagram

c_1.Fit(pd)
ld.
Preprocess()

c_2.Fit(pd)

c_3.Fit(pd)

(c) Dynamic behavior - Training

ud.
Preprocess()

dt_1.
Predict(pd)

c_1.
Predict(pd)

c_3.
Predict(pd)

c_2.
Predict(pd)

(d) Dynamic behavior - Detection

Figure 1: Concrete Architecture

This exampled version is an architecture to deal
with concept drift. NN Selector and Data are hard-
computing components and others are neural networks,
that is, soft-computing components. NN Selector stand-
ing for neural network selector in the meta-level ac-
cepts multiple votes from neural networks for classifica-
tion. It judges which neural network for detection is the
best for finding forgery, and select it from the neural
networks for detection (NN to Detect Copy-Move and
NN to Detect Compression). Fig.1 (b) shows a set of in-
stances in case of copy-move forgery suspect. As shown
in Fig.1 (d), the selected neural network make a final de-
cision telling if there is a tampering. Hence, through the
observation of processes defined in techniques against
concept drift, it can be said that we designed the archi-
tecture as a natural abstract model for handling concept
drift. More details on the components are given below.
Data: Data represents a polymorphic type. It has

Preprocessed Data, Unlabeled Data, and Labeled Data
as its subclasses. Labeled Data is for training and Unla-
beled Data for prediction. Both of them are converted
into the form convenient for Classifier s and Detectors
when a message for preprocessing is received. In our
case study, preprocessings are normalization and high-
pass filtering, which are indispensable for the detection
of forged images in general.
Neural Network for Classification: The role of

the components for classification is to classify the given
data into ones tampered by a suspected forgery method.
The output of each network is counted as a vote and is
sent to Selector at meta level.
Multiple classifiers must be prepared since the classi-

fication is a cooperative work of learners. In our exper-
iment, three weak learners are implemented for classifi-
cation. Each network was trained on different pairs of
classes. The first one was trained to tell copy-move or
compression. The second one classifies copied-moved or
untampered data. The last make categorization of com-
pressed or untampered data. Through the experiment,
we found that two-out-of-three strategy would work.
Supervised learning is used for the training of the neu-

ral networks since predefined sets of tampering detection
methods are given.
Neural Network Selector: NN Selector which

stands for a neural network selector is a hard-computing
component as we assume the selection process is simple
enough for a technique such as majority decision. How-
ever, depending on the complexity of the task, weighted
voting or veto voting may be implemented. Moreover,
some cases may require more complicated computation
which may be done by a neural network.
Neural Network for Detection: The detection

neural networks are a group of candidates which are
chosen by NN Selector. Each network is trained to de-
tect a specific forgery. Training of these neural networks
is beyond the scope of this study and we assume that
there have already been trained networks available.
Selected Neural Network: The selected network

will receive the preprocessed input data and return the
final decision if the data was tampered or not.

3 Experiment

We conducted a case study to check if our architecture
works. Through this experiment, we concluded that our
architecture contributes to classify the input data and
select an appropriate detector. That is, the purpose of
the experiment is the demonstration of the usefulness of
our architecture. As we have already shown, Fig.1 out-
lines our prototype implementation. In this experiment,
we implemented the prototype to detect two different
forgeries of copy-move and compression. We chose this
two since both are typical tampering methods, and there
have been already many datasets available for us.
There are the three weak learners for estimating which

tampering method is used, and the learned neural net-
works to check if the given data is forgeries or not in
the base-level. The meta-level policy accepts the results
from the weak learners, then select an appropriate neu-
ral network for detection.

3.1 Training Data

We used MICC-F2000 dataset by Amerini et al[5] for
its ease of use and adequate sample size. The dataset is



composed of 700 copy-moved images and 1,300 untam-
pered images.
To simplify our experiment, we decided to classify

patch level input instead of the whole image. Thus, we
divide our images into patch size of 128*128 pixels. We
chose this size as it was the most common among prior
researches. For untampered data, we divided untam-
pered images into 128*128 pixel patches. For compres-
sion tampered data, we compressed untampered patches
to 15% of the original quality. For copy-move data, we
sampled patches along the border of the copy-move tam-
pered region. Through these steps, we prepared our
120,000 patches labeled dataset with 40,000 patches be-
longing to each class.

3.2 Results and Evaluation

In the process of learning in our experiment, three
weak learners mentioned above are trained. Fig.2, 3,
and 4 show learning processes. Although several spikes
can be observed, we can assume that learnings are sat-
urated as shapes of graphs present.

(a) Loss (b) Accuracy

Figure 2: Loss and accuracy of classifier trained with
copy-move data and compression data

(a) Loss (b) Accuracy

Figure 3: Loss and accuracy of classifier trained with
copy-move data and untampered data

(a) Loss (b) Accuracy

Figure 4: Loss and accuracy of classifier trained with
compression data and untampered data

To evaluate our experiment, we calculated the preci-
sion, recall, specificity and overall accuracy of our ma-
jority voting result. Table 2 shows the precision, recall

and specificity of individual classifiers. In this experi-
ment, the overall accuracy turned out to be 90.82%.
With the results in Table 1 and the indices in Ta-

ble 2, we concluded that our experiment was successful
for classifying copy-move, compression and untampered
data. The overall accuracy was 90.82% and all of speci-
ficity, precision and recall scored above 84%. Although
a model more finely tuned and weighted majority deci-
sion could improved the result, we did not get further.
The reason is that we could assume the result supports
usefulness of our architecture. That is, the prototype
designed and implemented showed the possibility that
the proposed architecture gives a proper structure to
choose an appropriate detector out of a set of detectors
with weak learner collaboration.

Table 1: Confusion matrix of experiment.

Prediction

Compression Copy-move Untampered

la
b
e
l

Compression 39,913 32 29

Copy-move 26 33,809 6,162

Untampered 718 4,014 35,232

Table 2: Evaluation for each class

Compression

classification

Copy-move

classification

Untampered

classification

Specificity 99.07% 94.94% 92.33%

Precision 98.17% 89.31% 85.54%

Recall 99.84% 84.52% 88.15%

4 Discussion

Our architecture is designed to have a context-oriented
meta-level structure. In our experiment, we imple-
mented five neural networks at the base-level. Three for
classifying the input data by suspected tamper, and the
other two for detecting copy-move or compression. The
meta-level component coordinates the network to work
together and make a selected detector to find a forged
image. Collecting votes from the classifiers results in
selection of an appropriate tamper detecting method.
We discuss how the architecture handles typical con-

cept drift resolving techniques below. In general, trans-
fer learning, online learning and ensemble learning are
said to adapt concept drift. Transfer and online learn-
ing are devised to adapt concept drift with the leaning
process change. It is a problem on neural network co-
ordination plan in the meta-level of our architecture.
Ensemble learning defines the problem as selection and
training of cooperative neural networks. Typical tech-
niques of random forest [6] and Adaptable Diversity-
based Online Boosting (ADOB) [7] are discussed below.
We chose the random forest which is a representative
of bootstrap aggregating or bagging, and the ADOB of
boosting.

4.1 Transfer Learning

When concept drift occurs, there are usually limited
size of data available to train a neural network again. In-



stead of training it from scratch, transfer learning takes
the old model and retrains it with the limited new data
and change the model into a new version.
In our architecture, the networks before and after

transfer learning can be viewed as a base-level compo-
nent in order to make decision. That is, Detector is the
base-level component which represents transfer learning.
We can omit Classifiers from the architecture in this
case. The process of the network transfer done by re-
training with new data is written in a meta-level com-
ponent, Coordinator. As described above, a beautiful
context-oriented implementation of transfer leaning is
obtained with the architecture we constructed. The con-
cept is in a context, it has its status indicating if drifted
or not, the learning is triggered by context change. We
can divide logic for drift check from its action with the
architecture.

4.2 Online Learning

Online learning[4] which is a complicated version of In-
cremental learning[4] overcomes concept drift by means
of continuous learning. It shifts the problem of network
structure to learning process. That is, it adapts to con-
cept drift by virtue of consistent update of the network
with the newest data available. This process can be ex-
plained as a meta-level component deciding to train the
base-level network with new data.
In our architecture, the meta-level coordinator mixed

with the context having training results plays a part of
monitoring the learning. A training process proceeds
whenever it is required before prediction. The process
can be also said that is complicated enough to demon-
strate the power of our context-oriented architecture.
Again the context has concept as its part, online learn-
ing continues according to the context change. Here,
logic for drift check is separated from its action with
the architecture.

4.3 Ensemble Learning

In general, there are two methods of ensemble leaning:
what is called bootstrap aggregated or bugging, and is
called boosting. Both achieves its goal of predication
with the coordination of neural networks. The bootstrap
aggregating controls learning in parallel. The boosting,
on the other hand, defines its learning process as a series
of learning activities. We chose typical examples for en-
semble leaning as mentioned earlier, the random forest
and ADOB which represent bootstrap aggregating and
boosting respectively.

4.3.1 Random Forest: Bootstrap Aggregating
of Ensemble Learning

Random forest includes a software majority circuit to
make a decision. In our architecture, a meta-level com-
ponent, Coordinator implements the majority rule. A
decision tree corresponds to Classifier and no detec-
tor is deployed to realize random forest.
Random forest is usually used to provide a simple algo-

rithm such as a majority decision. Our context-oriented
architecture helps to write the algorithm as meta-level
policy which make cooperation of decision trees, which
are weak learners, for example, in our case study above.

4.3.2 ADOB: Boosting of Ensemble Learning

ADOB such as the one used in [7] gives an algorithm
for weak learner coordination. The coordinator at meta-
level in our network make cooperation of the learners.

On the other hand, the weak learners at base-level are
repeatedly trained until the best candidate for predic-
tion is designated. As well as bootstrap aggregating,
our architecture is also gives a sound context-oriented
implementation of boosting, as in this example.

5 Conclusions

We have constructed a context-oriented meta-level ar-
chitecture for the common base for coordinating neural
networks. It gives the structure where a coordinating
component in the meta-level monitors the cooperation
of components in the base-level. In order to demon-
strate the usefulness of the architecture, we applied it
to implement an orchestrated set of neural networks to
detect tampering of copy-move and compression. We
coould achieve a classification at accuracy of 90.82%
for 120,000 patches (40,000 each for copy-move, com-
pression, and untampered). We also discussed if our
architecture could explain the techniques against con-
cept drift. Through the design, the demonstration, and
the discussions, we can conclude that we constructed a
universal architecture for neural network coordination.

References

[1] Y. Rao, J. Ni, “A deep learning approach to detec-
tion of splicing and copy-move forgeries in images,”
2016 IEEE Int. WS Info. Forensics and Security
(WIFS), 2016, pp. 1-6.

[2] D. Cozzolino, G. Poggi, L. Verdoliva, “Recast-
ing residual-based local descriptors as convolutional
neural networks: an application to image forgery
detection,” Proc. 5th ACM WS Info. Hiding and
Multimedia Security, 2017, pp. 159-164.

[3] J. H. Bappy, A. K. Roy-Chowdhury, J. Bunk, at al.:
“Exploiting spatial structure for localizing manip-
ulated image regions,” Proc. IEEE int. conf. com-
puter vision, 2017, pp. 4970-4979.

[4] J. Gama, I. žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adap-
tation,” ACM computing surveys (CSUR), 46(4),
2014, pp. 1-37.

[5] I. Amerini, L. Ballan, R. Caldelli, et al.: “A sift-
based forensic method for copy-move attack de-
tection and transformation recovery,” IEEE trans.
info. forensics and security, 6(3), 2011, pp. 1099-
1110.

[6] L. Breiman, “Random forests,” Machine learning,
2001, 45(1), pp. 5-32.

[7] S. G. T. de Carvalho Santos, R. M. G, Júnior, G.
D. dos Santos Silva, et al.: “Speeding up recovery
from concept drifts,” Joint Euro. Conf. Machine
Learning and Knowledge Discovery in Databases,
2014, pp.179-194.


