2.4GHz帯ウェアラブル二次元通信シートの ヌル点簡易位置推定を目的とした円形モデルの提案

M2019SC014 宇田伊吹 指導教員:藤井勝之

1 はじめに

着用することを想定したウェアラブルネットワークが研 究されている.「ウェアラブル二次元通信シート (Wearable 2DC sheet) | などと呼ばれ、図 1(a) のように衣服などの 柔軟な素材を二次元伝送路とし、導電糸という特殊な糸 でメッシュ状に編み込むことで、衣服を給電及び通信の 媒体とする.図1(b)のように、ウェアラブル二次元通信 シートは、メッシュ層(上面)、誘電体層、メッシュ層(下 面)の三層構造をとり、先行研究では、受信機を鋲型コネ クタに取り付けて、シートにピンバッジのように付き刺し て使用することが提案されている [1]. このウェアラブル 二次元通信シートは、全身に触覚を提示するためのスー ツへの応用も検討されており、XR と組み合わせて、没入 感の高いエンターテインメントの実現が期待されている. ウェアラブル二次元通信シートは低い周波数帯 (MHz 帯)で使用することが検討されているが、今後高速大容量 の通信ニーズが生じ、マイクロ波が使用された場合は、衣 服に対して十分に小さい間隔で定在波が生じ、ヌル点が 点在することが予想される. そこで本稿では、マイクロ波 が使用され、ウェアラブル二次元通信シートが着用された 際を考慮し、マイクロ波を代表して 2.4 GHz 帯で Finite-

Difference Time-Domain(FDTD) 法を用いたシミュレー ションを行い、「人体近傍」及び人間の動作による「シー ト変形時」を想定したヌル点の分布を二次元平面で視覚 的に明らかする.そのうえで、それらの結果を踏まえて、 受信機の電界強度が安定して得られるように、ウェアラ ブル二次元通信シートの端部及び導電性刺繍を円形化し、 簡易に推定可能なヌル点の領域の形状を検討する.また、 本稿で示すヌル点の形状により、解析的手段・簡易的手 段の双方においてヌル点の位置を簡易に推定できること を論述する.さらに、適切な刺繍量で安定した電界強度 を得られるように、刺繍密度の異なる複数のモデルを比 較する.

2 FDTD 法によるヌル点の視覚化

本章では、ウェアラブル二次元通信シートのヌル点を 視覚化する際の各種シミュレーション設定を示す.本稿 は、FDTD法の市販電磁界解析シミュレータであるXFdtd ver. 7.8.0.2を使用し、ウェアラブル二次元通信シート上の 電界強度分布を算出し、他の領域に比べて電界強度が相対 的に低いヌル点の領域を視覚化する.図2に、Computer-Aided Design(CAD)を用いて作製した解析モデルを示す. 解析モデルは、厚さ 1.6 mm、一辺 157 mm である.ま た、メッシュの間隔は 5 mm、ラインの幅は 1 mm とす る.図1(b)と同様に、メッシュ層(上面)、誘電体の層、 メッシュ層(下面)の三層構造になっている.メッシュ層

図1 二次元通信シートのウェアラブル応用

図 2 解析モデル

は完全導体に設定し,吸収境界条件は全面を PML7 層に する.中央の給電点から入力電力1Wで正弦波を印加し て,誘電体層中央面における電界強度の振幅の分布を算 出し,ヌル点の位置を評価する.周波数は,産業科学医 療用 (ISM) バンドのマイクロ波帯の1つである 2.4 GHz 帯の中心周波数 2.45 GHz とする.

3 着用時を考慮したヌル点の評価

「ウェアラブル二次元通信シート」は着用して利用す ることを考慮し、本章では「人体近傍」及び人間の動作 による「シート変形時」を想定したヌル点の位置を二次 元平面で視覚的に明らかにする.3.1節では、リアル数値 人体モデルを用いて「人体近傍」の電界強度の分布を算 出している. 3.2 節では,人間の動作によりシートが変形 した際を考慮し,曲面モデルの電界強度分布を比較する. 3.3 節では,着用時のヌル点の挙動を踏まえ,推定可能な ヌル点の形状を検討する.

3.1 「人体近傍」におけるヌル点の評価

まず、平均日本人男性の全身モデルであるリアル数値 人体モデル [2] を用いて、「人体」に起因する電界強度分 布の変化を示す. 図 3 のようにウェアラブル二次元通信 シート近傍に、リアル数値人体モデルを配置し、人体の 有無に起因するヌル点の位置の変化を明らかにする.本 シミュレーションにおいては、誘電体の層はスウェット シャツの繊維である綿の電気定数 ($\sigma = 0$ S/m, $\varepsilon_r = 3.0$) に設定した.また、ウェアラブル二次元通信シートの下 に他の衣服を着用することを想定して、腹部とシートの 最小距離を 2 mm とする.

図4に人体の有無に起因するヌル点の位置の差異を示 す.図4(a)はリアル数値人体モデル非配置時,(b)はリ アル数値人体モデル配置時の電界強度分布である.入力 電力は1Wとし,電界強度の最大値を0dBに規格化し てある.リアル数値人体モデルの存在により,電界強度 が全体的に低下し,-40dBを下回るヌル点の領域が拡大 したことが分かる.また,ヌル点の位置の形状自体は変 化しないことが確認できる.よって,着用時は,ヌル点 だけではなく,ヌル点近傍においても受信機が動作しな くなるおそれがあるが,ヌル点から十分に離れた位置に 置いた場合は-40dBを下回らず,安定した電界強度が得 られると考えられる.

図 3 リアル数値人体モデル [2]

図4 「人体近傍」のヌル点の位置の差異

3.2 「シート変形時」のヌル点の評価

3.1 節に加えて、ウェアラブル二次元通信シートの着用 時は、人間の動作等によりシートが変形することが想定 される.先行研究においては、下面がグラウンド導体面の ウェアラブル導波路の変形で、ヌル点の位置が移動する ことが報告されている [3].本研究では上面・下面がメッ シュ状のシートに対して、ヌル点の位置の変化を視覚的か つ二次元平面で明らかにする.図1(b)のウェアラブル二 次元通信シートをx軸方向に30°,90°,180°の角度をつ けた曲面モデルをそれぞれ図5(a),(b),(c)に示す.3.1 節と同様に、シミュレーションモデルの誘電体の層はシャ ツの繊維である綿の電気定数($\sigma = 0$ S/m, $\varepsilon_r = 3.0$)に設 定した.

図 6(a), (b), (c), (d) に 30°, 90°, 180°の角度をつけ た曲面モデル及び平面モデルのヌル点の位置の差異を示 す.結果より,シートを変形しても、3.1節と同様に、ヌ ル点の領域の形状自体は変化しないことが確認できる.次 に、ヌル点の位置の移動を確認するために、図 7 のよう に給電点を通る x 方向の電界強度を 1 次元で取り出した グラフを示す.各曲面モデルは、平面モデルのヌル点の 形状を保ったまま左右に移動していることが分かる.よっ て、ヌル点の領域の形状さえ分かれば、ウェアラブル二 次元通信シートを着用し、人間の動作等によりシートが 変形した状態でも、腹付近においては安定した電界強度 が得られると考えられる.

図 5 曲面モデル

図 6 「シート変形時」のヌル点の差異

図7 「シート変形時」の1次元出力

3.3 着用時を踏まえた推定可能なヌル点の検討

3.1節, 3.2節より,「人体近傍」及び「シート変形時」は ヌル点の形状自体が大きく変化しないことが確認できた. よって,着用以前にヌル点の形状を検討しておくことで, 安定したヌル点の位置が得られると考えられる. ヌル点 の形状は,開放端部及びメッシュの形状に依存する定在 波であり,3.1節及び3.2節の簡易的なヌル点の推定は困 難である.そのため,ヌル点の形状を適切に変化・推定 できるようにして,ヌル点の位置を簡易に推定可能なモ デルを検討する.推定困難な要因は,中央の給電点から 開放端部までの光学的距離が方向により異なり,入射波 に対する反射波の到来時間が一定ではないことに起因す ると考えられる.そこで,次章では本稿の提案事項であ る,「給電点から開放端部までの光学的距離を一定にする こと」を検討する.

4 モデルの形状及び刺繍の円形化

前述の問題を解決するため、本章では、モデルの形状 と刺繍 (メッシュ層)を円形にすることで、給電点を中心 とした円対称のモデルにし、給電点から開放端部までの 光学的距離を一定にすることを提案する.提案モデルを 図 8 に示す.モデルは、厚さ 1.6 mm、半径 55 mm の円 板である.また、同心円のラインの間隔は 5 mm、ライ ンの幅は 1 mm とし、中心から放射状に 24 本のラインを 作製し、メッシュを形成する.図 1(b)と同様に三層構造 となっており、上面と下面は完全導体に設定する.誘電 体層は、 $\sigma = 8.8 \times 10^{-3}$ S/m、 $\varepsilon_r = 3.6$ に設定した.図 8 の給電点から入力電力 1 W で、周波数 2.45 GHz の正 弦波を印加して、誘電体層中央面における電界の振幅の 分布を出力する.

図8 円対称の提案モデル

5 モデルの円形化によるヌル点の評価

図9において、従来のモデル及び提案モデルの電界強 度分布を比較する.ただし、最大値と比較して-40 dB 以 下をヌル点の領域とする.図9(a)は従来のメッシュ、(b) は提案メッシュにおける電界強度分布である.結果より、 モデルの形状及びメッシュを円形化すると、ヌル点の形状 は、給電点を中心とした同心円になることが分かる.ま た、腹の部分も同心円となるため安定した電界強度を得 るには都合が良いと考えられる.

よって、ヌル点の領域が給電点からの距離に依存する 性質を利用して、ベッセル関数により電界強度 *E*(*r*) で表 せる微分方程式を解析的に解くことのみでヌル点の領域 が求まる.また、実用上においては、使用以前にヌル点 あるいは非ヌル点を一か所特定しておくことにより、給 電点から同一距離 *r* にあるすべての箇所で伝送効率が低 下または安定した電界強度を得られることが容易に推定 可能となる.また、ヌル点の形状は、「人体近傍」や「シー ト変形」などの条件で変化しないという結果から本推定 は、ウェアラブル応用として着用時も有効と考えられる.

図 9 提案モデルにおけるヌル点の位置

6 円形モデルの刺繍密度の検討

本研究が提案する円形モデルは、同心円の刺繍 (ライン) と中心からの放射状の刺繍 (ライン) を衣服に編み込み実 現する. 導電性刺繍は高価であることに加え, 柔軟性の観 点から刺繍量は少ないほうが望ましい. 先行研究では, 同 様の刺繍構造をもつ衣類型アンテナで検証を行い, 刺繍密 度を変化させることにより放射レベルに差異が生じるこ とが報告されている [4]. そこで本研究では、円形モデル の刺繍密度により電界強度分布が変化することを想定し、 刺繍密度の異なる複数のモデルで評価を行う. 図 10 のよ うに中心からの放射状刺繍のライン数を変化させたモデ ルを作製する.放射状ライン数はn = 5m + 9(0 < m < 8)とし、放射状ライン数が n 本のモデルを model n と名づ ける.各放射状ラインは等間隔で配置し、同心円ライン 数を含む各種設定は4章と同様に設定する. このモデル を使用し、円形型ヌルの数、非ヌル点の電界強度を評価 する.

まず,推定する円形型ヌルの数を減らすことを目的として,放射状ライン数に対する円形型ヌルの数を評価す

る.円形型ヌルの定義は,電界強度-42 dB以下が連続す る円形の領域とする.図 11 に放射状ライン数に対する 円形型ヌルの数を示す.円形型ヌルの数は,Model 9 と Model 14 は 3 つ,その他モデルは 2 つという結果になっ た.よって,推定する円形型ヌルの数及び刺繍量の双方 を減らすには,本検証モデルの中では放射状ライン数 19 が最適であると考えられる.

最後に,非ヌル点に注目して,各モデルの電界強度の 範囲を調べる.非ヌル点は,最大値と比して-42 dB 以上 でライン上に存在する点を考える.図12 に各モデルに対 する非ヌル点の電界強度を示す.結果より,Model 9 及び Model 14 は-35 dB 以上の領域を含むが,その他モデル は放射状ライン数に依存せず,一定の範囲となった.図 11 で示す結果と合せて,放射状ライン数を19 以上は,同 等の円形型ヌル及び非ヌル点の電界強度を持つ.よって, 放射状ライン数を19 まで減らすことにより,刺繍量の削 減が可能である.

図 10 放射状ライン数の異なるモデル

図 12 放射状ライン数ごとの非ヌル点の電界強度

7 おわりに

本稿では、マイクロ波使用時のウェアラブル二次元通信 シート上に生じるヌル点の位置の簡易推定を目的として, 従来から用いられているメッシュ状の刺繍を円形化する ことを提案した.はじめに、FDTD 法により、着用時を 想定した「人体近傍」及び「シート変形時」の電界強度 分布の算出を行った.その結果,ヌル点の領域の拡大や 位置の移動が確認されたものの、形状自体は変化しない ことが分かった.これを踏まえて、シートの開放端部及 び刺繍を円形化することにより、給電点から開放端部ま での光学的距離を一定にし、ヌル点の形状を円形とした. これによりヌル点の位置は給電点からの距離のみに依存 するため、ベッセル関数を用いて電界強度 E(r) で表せる 微分方程式を解析的に解くことのみでヌル点の領域が求 めることができる.また、実用上においては、使用以前 にヌル点あるいは非ヌル点を一か所特定しておけば、給 電点から同一距離にあるすべての箇所で伝送効率が低下 または安定した電界強度を得られることが容易に推定可 能となる.最後に、円形モデルの放射状ライン数を検討 し、放射状ライン数19以上のモデルは同等の円形型ヌル 及び非ヌル点の電界強度を持つことが分かった.よって, 円形モデルにおける放射状ライン数を19まで減らすこと により、刺繍量の削減が可能であることを示した. 今後 は、円形化によるカバー領域の減少や給電点位置の制約 等の改善を検討する.

謝辞

本研究を行うに当たり、ご助言を下さった本学部の野 田聡人准教授に感謝致します.

参考文献

- [1] 野田聡人,田島優輝,篠田裕之,"ウェアラブル触覚 ディスプレイのための柔軟二次元通信シート上の分布 アクチュエータへの無配線多重給電,"第17回計測自 動制御学会システムインテグレーション部門講演会論 文集, pp.1349-1353, 札幌, Dec. 2016.
- [2] 長岡 智明, 櫻井清子, 国枝悦夫, 渡辺聡一, 本間寛 之, 鈴木保, 河合光正, 酒本勝之, 小川幸次, 此川公 紀, 久保田勝巳, 金鳳沫, 多氣昌生, 山中幸雄, 渡辺 敏, "日本人成人男女の平均体型を有する全身数値モ デルの開発,"生体医工学, vol.40, no.4, pp.239-246, 2002.
- [3] A. Noda and H. Shinoda, "On-body sensor node localization using reference RFID tags embedded in wearable waveguide," 2016 IEEE SENSORS Proceedings, pp.1003-1005, Orlando, FL, USA, Oct. 2016.
- [4] 原昂弘,前田忠彦,"導電性繊維で刺繍形成した正方 形シートの反射特性評価,"電子情報通信学会論文誌
 B, vol.J103-B, no.11, pp.582-583, Nov. 2020.