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1 Introduction

Friction with strong nonlinearity and time-
dependency on some operating conditions deteriorates
the performance of positioning control. The aim of
this thesis is the improvement of the performance by
a controller consisting of an error-feedback controller
and a compensator for nonlinear/non-Gaussian friction.
The friction is modeled by the LuGre model[1], which
approximates a contact surface as bristles meshing with
two brushes. The LuGre model with fewer parame-
ters includes many frictional characteristics, e.g., the
Stribeck effect, time-lag (Hysteresis), the pre-sliding-
regime and the sliding regime. The model and its
parameters depend on these operating conditions. We
consider these parameters are estimated by nonlinear
filter in real-time. The particle filter[2] is a nonlinear
filter based on the Monte Carlo method and uses
many random numbers and particles, which are the
samples of state vector. The particle filter represents
any distribution as a histogram using many particles.
Consequently, the particle filter can accurately estimate
the nonlinear/non-Gaussian friction. We propose a
method with some modifications improving the accu-
racy of the particle filter. We optimize the covariances
of the system noise and the observation noise by using
the Nelder Mead method[3], which is a parameter
optimization by moving a polytope in search space.
We find more appropriate sampling time and improve
the performance. The minimum sampling time does
not provide the best performance for the particle filter
in real-time, in contrast to standard observers. The
experiments by an X-Y table illustrate the effectiveness
of the proposed method with these modifications.

2 Modeling

The models of a ball screw system and a nonlinear
friction are described in this chapter.

2.1 Modeling of Ball Screw System

A ball screw system is composed of a motor, a ball
screw, a table, and a guide rail. The table motion is
disturbed by nonlinear friction between the table and
the guide rail. A position of the table is p, an angle
of the motor is θ, an angular velocity is ω, an angular
acceleration is a, a motor torque is τ , a mass of the
table is M , an inertia moment of the rotating system is
J , a viscous friction coefficient is σ2, a lead of the ball
screw is L, and a nonlinear friction is Fnl. Since the
ball screw is stiff, suppose that its strain is negligible,

i.e., p = Lθ( d
dtp = Lω, d2

dt2 p = La). Then, a dynamical
model of the ball screw system is derived as (1).

(J + L2M)a = −L(σ2Lω + Fnl) + τ (1)

Let x = [θ ω]T be state vector, then a state-space rep-
resentation of the ball screw system is obtained as (2).{

d
dtx = Ax+Bu−BLFnl

y = Cx
, (2)

A =

[
0 1

0 − L2σ2

J+L2M

]
, B =

[
0
1

J+L2M

]
, C = [1 0] ,

where u = τ is an input, y = θ is an output.

2.2 Modeling of Nonlinear Friction

We consider to increase the performance of the po-
sitioning control using a friction-model-based compen-
sator. The nonlinear friction is modeled by the LuGre
model[1], because the model captures some characteris-
tics of the nonlinear friction by fewer parameters. The
model represents a contact surface as an aggregation of
bristles, and represents a transition from the pre-sliding
regime (the time region until a stiction reaches the max-
imum stiction) to the sliding regime (the time region af-
ter reaching the maximum stiction) as a dynamics of the
bristle. A mathematical expression of the LuGre model
is given as follows:

Fnl = σ0z + σ1
d

dt
z, (3)

d

dt
z = Lω − σ0

L|ω|
g(ω)

z, (4)

g(ω) = (Fc + (Fs − Fc) exp(−
L|ω|
vs

)) > 0, (5)

where z is a position of the bristle, σ0 is a spring co-
efficient of the bristle, σ1 is a damper coefficient of the
bristle, FC is a Coulomb friction, FS is a maximum stic-
tion, and vs is a Stribeck velocity. Equation (3) repre-
sents the nonlinear friction Fnl by a damper and a spring
of the bristle. Equations (4) and (5) are the dynamics of
the bristle and the Stribeck curve function, respectively.
Equations (3) - (5) are used to estimate and compensate
the nonlinear friction.

2.3 Equation for Estimation of Friction

The nonlinear friction is estimated through the esti-
mation for the frictional parameter of the LuGre model.
In this section, the nonlinear equation used for the es-
timation of the nonlinear friction is derived. In this
study, particle filter is used for an estimation method
of the nonlinear friction (the particle filter will be de-
scribed later in detail). The improvement of computa-
tional efficiency for particle filter leads to improving the
estimation accuracy. For this purpose, three parameters
FS , FC and vs in the function g(ω) are estimated collec-
tively as one parameter gp rather than identifying each
of them. Then, the parameter gp is regarded as constant

( d
dtgp = 0). Let xL(t) = [x1(t) x2(t) x3(t) x4(t)]

T =

[θ(t) ω(t) z(t) gp(t)]
T as a state vector, then equation



(2), (3) and (4) leads to the nonlinear system (6).{
d
dt x̂L(t) = f(x̂L(t), u(t))

ŷL(t) = h(x̂L(t))
(6)

f(x̂L(t), u(t)) =


x̂2(t)

−L(σ2Lx̂2(t)+F̂nl(x̂L(t))+u(t)
J+L2M

Lx̂2(t)− σ0
L|x̂2(t)|
x̂4(t)

x̂3(t)

0


h(x̂L(t)) = [1 0 0 0] x̂L(t) = x̂1(t)

F̂nl(x̂L(t)) = σ1Lx̂2(t) + (σ0 − σ1
σ0L|x̂2(t)|

x̂4(t)
)x̂3(t)

= fnl(x̂2(t), x̂3(t), x̂4(t))

We estimate the state x̂L(t) and the nonlinear friction

F̂nl(xL(t)) using (6) and the particle filter.

3 Friction Estimation

The parameters of the LuGre model are time-
dependent because friction depends on some operating
conditions. We estimate the parameters in real-time
using the particle filter (PF)[2]. The PF is a filtering
method using Monte Carlo simulation with many sam-
ples of a state vector called particles. It is known that
the PF can estimate the nonlinear/non-Gaussian system
with high accuracy. We propose a method to estimate
the nonlinear friction using the PF with some modifica-
tions to improve the estimation accuracy.

3.1 Particle Filter

An algorithm of the PF is shown as follows[2], where

m is a particle size, x
(i)
p (k) is an i-th predicted particle at

discrete time k, x
(j)
f (k) = [x

(j)
f1

(t) x
(j)
f2

(t) x
(j)
f3

(t) x
(j)
f4

(t)]T

is a j-th filtered particle at k, and α(i)(k) is a weight for

the predicted particle x
(i)
p (k).

0. Initialization
Generate particles x

(j)
f (0), j = 1, · · · ,m. Set k = 1.

1. Prediction Step (i = 1, · · · ,m)
First, discretize (6) by the Runge-Kutta method

and update x
(i)
f (k − 1) to x

(i)
p (k). Next, generate

samples of the system noise w(i)(k) ∼ N(0, Q) us-
ing random numbers. (Load the random numbers
previously stored in memory instead of generating
in online to reduce the computation time.) Add the
samples to the particles.

x(i)
p (k)← x(i)

p (k) + w(i)(k)

2. Filtering step (i = 1, · · · ,m)
Evaluate the particle weights by the following func-
tion (where A−1[x] means xTA−1x) on the assump-
tion of the observation noise v ∼ N(0, R).

α(i)(k) = exp(−0.5R−1[y(k)− h(x(i)
p (k))])

Normalize the weights.

α̃(i)(k) = α(i)(k)/

m∑
i=1

α(i)(k)

3. Resampling step (j = 1, · · · ,m)
Find i such that the following conditions proposed

in [2].
∑i−1

l=1 α̃
(l)(k) < ξ(j) ≤

∑i
l=1 α̃

(l)(k), ξ(j) =
j−0.5
m . Renew x

(j)
f (k) = x

(i)
p (k).

4. Calculate the mean of the particles and derive the
estimated values.
x̂L(k) =

1
m

∑m
j=1 x

(j)
f (k)

F̂nl(k) =
1
m

∑m
j=1 fnl(x

(j)
f2

(k), x
(j)
f3

(k), x
(j)
f4

(k))

5. Set k ← k + 1. Return 1. Prediction step.

The resampling scheme rejects inaccurate particles and
increases accurate particles. The resampling scheme is
based on the inversion method. The mean calculation
of the nonlinear friction is notable. The mean varies
with procedures for calculation, e.g., “Insert the mean
of the particles into the nonlinear friction equation”, and
“Calculate the mean of the nonlinear frictions for each
particle”. In this study, we use the latter because of
focusing on the distribution of nonlinear friction.
In the following subsections, we propose modifications

to improve the estimation accuracy of the PF and to
reduce the computational resources.

3.2 Optimization of Covariance by NMM

We discuss a modification in this section. The esti-
mation accuracy of the PF varies by the covariances of
the system noise and the observation noise. Trial and
error tunes for these covariances make the PF perfor-
mance better in many cases, while in this study we adopt
the Nelder Mead method (NMM)[3] for a parameter op-
timization method. The NMM optimizes parameters,
by moving a polyhedron (called simplex) in a search
space. the discontinuity of the PF and no friction sen-
sor make the optimization of these covariance difficult.
Even in such cases, the NMM can optimize because the
optimization with the NMM requires only experimental
data, not the model or derivative.
Fig. 1 illustrates some experimental results that NMM

optimizes the covariances by moving it in the direction
of the small objective value as the control error. The
vertical axis is the RMS of control error, and the hor-
izontal axis is iterations. In Fig. 1, the RMS of the
control error decreases through some iterations.

3.3 Optimization of Sampling Time

Sampling time has a trade-off relationship for parti-
cle filter in real-time. The decrease in sampling time
causes decreasing the estimation error of PF with the
discretization error of the model because PF is a model-
based observer. On the other hand, the long sampling
time enables us to increase the particle size m and
decrease the estimation error with Monte Carlo error
in real-time because PF is based on the Monte Carlo
method. Hence, the estimation accuracy does not al-
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Fig. 1 RMSE decreasing through some iterations
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Fig. 2 RMSE values vs. each sampling time ∆t
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Fig. 3 Diagram of control system

ways improve with decreasing the sampling time. In
this study, we find the optimal sampling time by simu-
lating at different sampling times and particle sizes. In
simulations, the PF estimates the nonlinear friction in
the ball screw controlled by only the feedback controller
without a friction compensator in offline. Fig. 2 de-
scribes the estimation errors at each sampling time ∆t
and 1000 ×∆t particles. As a result, we found the op-
timal sampling time ∆topt = 1.5ms with the minimum
estimation error.

4 Control System

A servo system is designed for the ball screw system.
A derivative of control error between a reference θref
and the output y = θ is d

dtϵ = θref − θ, a disturbance
is d = LFnl, an evaluation output is ze, and weighted
matrixes for the evaluation output are Cz, Dz. Let xe =
[θ ω ϵ]T be a state vector, then an augmented system is
obtained as (7).{

d
dtxe = Aexe +Beu−Bed
ze = Czxe +Dzu

,

Ae =

[
A 0
−C 0

]
, Be =

[
B
0

]
.

(7)

We design a state feedback gain K∞ that minimizes an
H∞ norm from disturbance d to the evaluation ze in (7).
A diagram of the control system is as shown in Fig.

3. The control system consists of a feedback structure
with H∞ controller and a friction compensator by the
PF. The PF estimates (and compensates) the nonlin-
ear friction occurring in the ball screw system. Since
designed to minimize the H∞ norm from the friction
to the control error, the H∞ controller deals with the
estimation error of the PF.

5 Experiments

In this subsection, some experiments show the effec-
tiveness of the proposed method. The nonlinear fric-
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Fig. 4 Experiments results using each controller

tion changes greatly at the time when the table motion
is reversing. We focus on the transition from the pre-
sliding regime to the sliding regime because the friction
is strongly nonlinear and non-Gaussian in this region.
An apparatus for experiments is an X-Y table. The cir-
cular orbit drawn by the X-Y table makes the influence
of friction clearly. It draws a circle with a radius of
1.0 × 10−4m over 8 seconds, in other words, the refer-
ences of the axis-X and Y are sine wave and cosine wave
with frequency 1/8Hz and amplitude 1.0 × 10−4m, re-
spectively. The resolutions of encoder are approximately
7.6 nm, and sufficiently smaller than the reference. The
effectiveness of the proposed method is shown by the
comparison among three experiments with three meth-
ods: “H∞ and PF”, “H∞ and UKF”, and “H∞ only”.
The first method “H∞ and PF”, which is composed of
the H∞ controller and the friction compensator with the
PF, is a proposed method as shown in Fig. 3. The sec-
ond method “H∞ and UKF” uses the unscented Kalman
filter (UKF) instead of the PF. The UKF, which is one of
the nonlinear Kalman filters, differs from the PF in the
approximation of the PDF. The UKF estimates a state
by approximating its distribution as few points called
sigma-points. The third method “H∞ only” uses only
the H∞ controller without friction compensator. The
sampling times are set to 1.5ms in the case of “H∞ and
PF”, and set to 1.0ms in the others for the best perfor-
mance. The particle size is 1500.

5.1 Performance of Control

In this subsection, the control performance is dis-
cussed. Fig. 4 shows the trajectories of the table and
Fig. 5 describes the errors between the reference and
each trajectory. The dotted line is reference, the dash-
dot line is the trajectory of the “H∞ only”, the dashed
line is of the “H∞ and UKF”, and the solid line is of
the “H∞ and PF”. In Fig. 4, the horizontal and ver-
tical axes mean the table deflection of axis-X and Y,
respectively. In Fig. 5, the vertical axis indicates the
control error, and the horizontal axis means angle. The
positive errors indicate that the table is outside the cir-
cle, while the negative means inside. The trajectory of
the “H∞ only” in Figs. 4 and 5 shows the quadrant
glitches, which are some outward errors at the friction
reversing with the table motion. The comparison with
“H∞ only” and “H∞ and PF” proves that the proposed
method compensates the nonlinear friction. The “H∞
and UKF” in Figs. 4 and 5 show some inward errors
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of the circle without quadrant glitches. The cause of
these inward errors is that the UKF over-estimates and
over-compensates for the nonlinear friction. This result
provides the evidence that the PF more accurately esti-
mates the nonlinear friction than the UKF. (We discuss
why the PF accurately estimates the friction in subsec-
tion 5.2). The errors quantitatively evaluated as RMS
are 4.0×10−7 with “H∞ and PF”, 1.3×10−6 with “H∞
and UKF”, and 2.4× 10−6 with “H∞ only”. Thus, the
proposed method is the best of them.

5.2 Estimation for Friction

Next, let us consider the estimation accuracy of the
PF for the nonlinear/non-Gaussian friction. Fig. 6 de-
picts the nonlinear frictions estimated by the PF and
the UKF in each experiment. In Fig. 6, the vertical axis
is the estimated friction [N], and the horizontal axis is
time [s]. The solid line and the dashed line show the esti-
mated nonlinear friction by the PF and by the UKF, re-
spectively. (Note that these estimated frictions are from
different experiments). The differences in the estimated
frictions are observed at the inversion of the friction.
The nonlinear friction estimated by the UKF overshot
at the point. The inaccurate estimation causes the over-
compensation so that the table trajectory is not on the
circle but inside as shown in Figs. 4 and 5. The reason is
that the PF accurately approximates the non-Gaussian
distribution of the nonlinear/non-Gaussian friction as
described below. We show the non-Gaussianity of the
PF. Fig. 7 illustrates the static-frictional term gp es-
timated by the PF. The term gp rapidly changes from
18N to 7N around 6.36 s while the friction transits from
the pre-sliding regime to sliding regime. Fig. 8 (a),
(b) and (c) illustrate three particle distributions of the
PF right before, during and right after the characteris-
tic gp varies, respectively. In Fig. 8, the vertical axis
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means the static-frictional term, and the horizontal axis
indicates frequency. Fig. 8 (a) and (c) show the Gaus-
sian distributions with mean 18N and 7N, respectively,
while in Fig. 8 (b), the non-Gaussian distribution with
two peaks centered at 18N and 7N is observed. Conse-
quently, the PF is to estimate the nonlinear and non-
Gaussian friction.

6 Conclusion

The purpose of this thesis is a precise positioning con-
trol by a friction compensator. The friction in the X-
Y table is estimated by the PF and compensated. In
this study, we propose a method with three modeifica-
tions to improve the estimation accuracy of the PF. The
NMM optimizes the covariances of the system noise and
the observation noise. The most appropriate sampling
time considering the trade-off relationship is provided by
simulations. The experimental results and the compar-
isons show: the validity of the PF for the nonlinear/non-
Gaussian friction and the effectiveness of the proposed
method with three modifications.
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