
Adaptive Control for Jib Crane System
with Rope Hoisting and Uncertain Parameters

M2018SC003 Satoshi ISHIKURA

Supervisor : Gan CHEN

1 Introduction

This paper proposes a robust control system which
consists of a robust controller and Model Reference
Adaptive Control law for an uncertain jib crane system
with rope hoisting. In this study, decentralized control
comprised of two independent controllers is utilized to
control the jib crane. To suppress the influences of sys-
tem uncertainties e.g., variations of the rope length and
nonlinear friction, we design the control system com-
posed of a linear robust controller and an adaptive law
for the positioning system of the trolley. We apply the
linear robust controller for the variation of system char-
acteristics caused by hoisting the rope. On the other
hand, the adaptive law is designed to estimate nonlin-
ear friction. The characteristic of this study is to cope
with nonlinear friction by using the robust controller
with the adaptive law. The adaptive law is utilized for
the estimation and compensation of nonlinear friction.
Besides, we approximate nonlinear friction by a nonlin-
ear function in the adaptive law. We show the exponen-
tial stability for the system with the proposed method
by using Linear Matrix Inequality. Finally, we verify
the effectiveness of the adaptive law by contrasting the
proposed method with the only robust controller in the
simulation of load transferring.

2 Modeling

The crane of this type is composed of a tower, a trolley,
a jib, and a load. The crane of this type is utilized to
put up the loads and to transfer the loads to target
positions. The important things for control of the jib
crane are to transfer the loads to target positions fast
and to suppress the oscillations of the loads. Fig. 1
shows a simplified schematic of the jib crane. Sensors
mounted on the crane can detect the position of the
trolley to a horizontal direction ξ(t)[m], the angle for the
load swing γ(t)[rad] and the length of the rope l(t) >
0[m]. Inputs are an electric current It(t)[A] to a motor
for moving the trolley and an electric current Ih(t)[A] to
a motor for hoisting the load. An output of the system is
the position of the load to a horizontal direction y(t) =
xp(t) = ξ(t)− l(t) sin(γ(t))[m].

Figure 1 Simplified schematic of the jib crane

Here, the following assumptions are considered, (i) the
rope is a rigid rod which doesn’t have mass, (ii) the load
is a mass point, (iii) the load moves in a horizontal di-
rection and a vertical direction along the jib, (iv) the

angle for the load swing γ and its velocity γ̇ are suf-
ficiently small. Table 1 shows the physical parameters
of the crane. Equations of motion for the jib crane are

Table 1 Physical parameters

Parameter Symbol
Mass of load [kg] mp

Mass of trolley [kg] mt

Acceleration of gravity [m/s2] g
Gear radius for motor of

trolley moving [m]
rj,p

Reel radius of load [m] rr
Gear box efficiency for motor of

trolley moving [-]
ηg,j

Gear box efficiency for motor of
rope hoisting [-]

ηg,z

Gear ratio for motor of
trolley moving [-]

Kg,j

Gear ratio for motor of
rope hoisting [-]

Kg,z

Efficiency for motor of
trolley moving [-]

ηm,j

Efficiency for motor of
rope hoisting [-]

ηm,z

Torque constant for motor of
trolley moving [Nm/A]

Kt,j

Torque constant for motor of
rope hoisting [Nm/A]

Kt,z

Moment of inertia for motor of
trolley moving [kgm2]

Jψ

Moment of inertia for motor of
rope hoisting [kgm2]

Jφ

expressed as follows [1]:

mj ξ̈ −mplγ̈ cos γ −mp l̈ sin γ

−2mp l̇γ̇ cos γ +mplγ̇
2 sin γ = ktjIt − Fn, (1)

−mplξ̈ cos γ +mpl
2γ̈ + 2mpll̇γ̇ +mplg sin γ = 0, (2)

−mpξ̈ sin γ +ml l̈ +mplγ̇
2 −mpg cos γ = ktlIh, (3)

where mj = mp + mt + Jψ
K2

g,j

r2j,p
, ktj =

ηg,jKg,jηm,jKt,j

rj,p
,

ml = mp+
Jφ
r2r

and ktl =
ηg,zKg,zηm,zKt,z

rr
. The nonlinear

friction between the jib and the trolley Fn is shown as
follows:

Fn =

{
sgn(Ftotal)min(|Ftotal|, fs) (ξ̇ = 0)

fcsgn(ξ̇) + fv ξ̇ (ξ̇ 6= 0)
, (4)

where fs, fc, fv, and sgn(·) are maximum static friction,
Coulomb friction, the viscous friction coefficient, and
signum function, respectively. Besides, Ftotal = ktjIt −
mpg sin γ cos γ −mplγ̇

2 sin γ +mp l̈ sin γ. These friction
parameters are unknown in controller design. For (1)–
(3), let sin γ ' γ, cos γ ' 1, γ̇2 ' 0 because the angle for



the load swing γ and its velocity γ̇ are sufficiently small
on the assumption (iv). Then, (1)–(3) are expressed as
follows:

mj ξ̈ −mplγ̈ −mp l̈γ − 2mp l̇γ̇ = ktjIt − Fn, (5)

−mpξ̈ +mplγ̈ + 2mp l̇γ̇ +mpgγ = 0, (6)

−mpξ̈γ +ml l̈ −mpg = ktlIh. (7)

In this study, we employ the decentralized control com-
posed of two independent controllers because this con-
trol method is effective for control of cranes. We control
the positioning system of the trolley by the controller
proposed in this paper. On the other hand, we control
the system of rope hoisting by a typical servo controller.
Hence, we focus on the equations of motion for the move-
ment of the trolley. In this study, we suppose that the
velocity and the acceleration of the rope variation are
sufficiently small. It is not always efficient for the crane
control to consider the velocity and the acceleration of
the rope change because these parameters don’t affect
the stability of the crane system. Therefore, we omit the
terms that contain the velocity and the acceleration of
the rope variation in (5) and (6) to design the controller
efficiently. For (5) and (6), let q = [ξ γ]T be generalized
coordinate. An approximate model for the system of
the trolley positioning can be derived as follows:

Em(l)q̈ + Fmq = GmIt −HmFn, (8)

Em(l) =

[
mj −mpl
−mp mpl

]
, Fm =

[
0 0
0 mpg

]
,

Gm =

[
ktj
0

]
,Hm =

[
1
0

]
.

Let x = [q q̇]T and u = It be the state vector and input,
respectively. Then, the model for the trolley positioning
is described as follows:{

ẋ = Ap(l)x+Bp(l)u−BfFn
y = Cp(l)x

, (9)

Ap(l) =

[
02×2 I2×2

−E−1
m Fm 02×2

]
, Bp(l) =

[
02×1

E−1
m Gm

]
,

Bf =

[
02×1

Hm

]
, Cp(l) = [ 1 −l 01×2 ] .

In this study, we use the linearized model for the sys-
tem of the trolley positioning in (9) to design a robust
H∞ controller for the change of the rope length l. Then,
we design the control system composed of a robust po-
sitioning controller and an adaptive law in the following
section.

3 Controller Design

The variation of the rope length and the nonlinear fric-
tion between the jib and the trolley make it difficult to
control the positioning system of the trolley safely. To
deal with these difficulties, we design the control system
composed of the robust H∞ controller and Model Ref-
erence Adaptive Control (MRAC) law. We design the
robust H∞ controller to deal with the negative impact
of the variation of rope length. In the design of this
controller, we omit the terms that contain the velocity
and the acceleration of the rope variation because these

parameters don’t affect the stability of the crane sys-
tem. On the other hand, MRAC law handles friction.
Besides, H∞ control is utilized to cope with the friction
in the case when MRAC law doesn’t behave well.

3.1 Robust H∞ Controller

To deal with the negative impact of the variation of
the rope length, we design the robust H∞ controller.
Note that we don’t deal with the effect of the rope veloc-
ity and the acceleration. Here, the servo control system
is constructed to get rid of the stationary error between
the target position and the actual position of the load.
Let r, e = r − y and xe =

∫
e dt be the reference tra-

jectory, the error of the system and its integral value,
respectively. Here, xs = [xT xe]

T and urc denote the
state vector and the controller input of the servo con-
trol system, respectively. The servo control system is
obtained as follows:{

ẋs = As(l)xs +Bs(l)urc −BefFn
ys = Cs(l)xs

, (10)

As(l) =

[
Ap(l) 04×1

−Cp(l) 0

]
, Bs(l) =

[
BT
p (l) 0

]T
,

Bef =
[
BT
f 0

]T
, Cs(l) = [ Cp(l) 0 ] .

Subsequently, the polytope (11) is given by upper and
lower bounds of a time-varying parameter, a rope length
l.

θ1 ∈ [θ1, θ1], θ1 = l (11)

In this study, we utilize the polytope in (11) to avoid
solving the infinite set of LMI conditions. By solving
LMI at only two vertices of θ1 instead of all θ1 ∈ [θ1, θ1],
we can guarantee H∞ norm condition for all θ ∈ [θ1, θ1].
Here, let w = −Fn as the disturbance to the servo con-
trol system. From (10), the generalized plant is derived
as follows:{

ẋs = As(θ1)xs +Bs(θ1)urc +Befw

z = Czxs +Dzurc
, (12)

where Cz and Dz are weighting matrixes for the state
variables of the servo control system xs and those for the
input to the motor for the movement of the trolley urc,
respectively. Here, we consider minimizing H∞ norm
‖Gzw‖∞ from disturbance w to the evaluated output z.
H∞ norm ‖Gzw‖∞ is defined as follows:

‖Gzw‖∞ = sup
w 6=0∈L2

‖z‖2
‖w‖2

< γ∞, (13)

where ‖w‖2, ‖z‖2 and γ∞ are L2 norm of the distur-
bance w, that of the evaluated output z and upper value
of H∞ norm ‖Gzw‖∞, respectively. The LMI condition
to employ the robust H∞ controller which stabilizes the
servo control system (10) are derived as follows:

Theorem 1 If there exist Xs and Ys meeting the fol-
lowing LMI conditions, the system is stable by the state
feedback urc = YsX

−1
s xs := Kxs, where K = YsX

−1
s is

the state-feedback gain. Additionally, ‖Gzw‖∞ < γ∞ is



guaranteed.

minimize : γ2
∞

subject to : Xs > 0, (14) He{As(θ1)Xs +Bs(θ1)Ys} Bef MT
s

BT
ef −I 0

Ms 0 −γ2
∞I

 < 0,

(15)

Ms := CzXs +DzYs, (16)

where the notation He{M} means MT +M .
The robust H∞ controller to deal with the influence

of the variation of the rope length is derived by solving
(14)–(16).

3.2 Adaptive Law with σ-modification

We design a compensator to cancel the influence of the
nonlinear friction because the friction causes the perfor-
mance deterioration of the robust positioning controller
and the residual oscillations of the load. In this study,
the adaptive controller with σ-modification is utilized as
the real-time compensator for the friction.
Controller design of the adaptive controller is pro-

posed by [2]. Let xs, u and ys be the state vector of the
system which is considered as the actual plant in MRAC
design, input, and the output, respectively. Then, an
approximate model of the actual plant is expressed by
(17).{

ẋs = As(l)xs +Bs(l){u+WTφ(xs)}
ys = Cs(l)xs

, (17)

where W and φ(xs) are an uncertain parameter vector
and a known basis function, respectively. Besides, we
try to represent the nonlinear friction −Fn by nonlinear
uncertainty ktj{WTφ(xs)}. Here, the controller input
of the system is given as follows.

u = Kxs − uad, (18)

where uad denotes an adaptive signal to suppress the ef-
fect of WTφ(xs). Here, the adaptive signal is as follows.

uad = ŴTφ(xs), (19)

where Ŵ is the estimated value of the uncertain pa-
rameter vector W . In this study, Coulomb friction,
static friction and viscous friction coefficient are uncer-
tain parameters in controller design. In the case when
ξ̇ = 0, the nonlinear friction involves the product of
absolute value and signum function of a resultant force
Ftotal, the product of absolute value of xe and signum
function of ktjxe from (4). We consider approximat-
ing sgn(Ftotal) by tanh{fcv(ktjxe)} to avoid chattering
by the signum function in controller input, where fcv
is a related coefficient of the basis function. Therefore,
we employ −|xe| tanh{fcv(ktjxe)} to the basis function
as the replacement for −sgn(Ftotal)min(|Ftotal|, fs). On

the other hand, in the case when ξ̇ 6= 0, the nonlinear
friction involves the trolley velocity ξ̇ and its signum
function sgn(ξ̇). We employ − tanh(fcv ξ̇) to the basis

function as the replacement for−sgn(ξ̇) because the con-
troller input including the signum function causes chat-
tering. For the above reasons, the basis function is deter-
mined by considering −|xe| tanh{fcv(ktjxe)}, the trolley

velocity −ξ̇ and its arctangent function − tanh(fcv ξ̇).
The basis function φ(xs) is as follows:

φ(xs) = [φ1(xe), φ2(ξ̇), φ3(ξ̇)]
T, (20)

where φ1(xe) = −|xe| tanh{fcv(ktjxe)}, φ2(ξ̇) =

− tanh(fcv ξ̇) and φ3(ξ̇) = −ξ̇. Let us consider the ref-
erence model for an ideal behavior of the system. The
reference model is described as follows:{

ẋr = Arm(l)xr +Brmr

yr = Crm(l)xr
, (21)

Arm(l) = As(l) +Bs(l)K, Brm = [ 01×4 1 ]
T
,

Crm(l) = Cs(l).

Let the tracking error et between the state of the refer-
ence model xr and that of the approximate model for
the actual plant xs be et = xr − xs. The estimated
uncertain parameter vector W is renewed by (22).

˙̂
W = −γsφ(xs)e

T
t PBs(l)− σŴ , (22)

where γs = diag{γs1, γs2, γs3} ∈ R3×3 (γs1, γs2, γs3 > 0)
and σ > 0 are the adaptive gain and σ-modification
gain, respectively. From (12), the uncertain parameter
θ1 = l, θ1 ∈ {θ1, θ1}. We get the matrix P = PT >
0 by solving the following equation at the both vertex
matrixes Arm(θ1) and Arm(θ1).

He{PArm(θ1)} < 0 (23)

Here, the tracking error dynamics and renewal rule of
the weight estimation error are shown as follows [2]:

ėt = Arm(θ1)et +Bs(θ1)W̃
Tφ(xs), (24)

˙̃W = −γsφ(xs)e
T
t PBs(θ1)− σW̃ − σW. (25)

Let ζ = [eTt W̃T]T. We express the dynamics that con-
sist of the tracking error and the weight estimation error
by (26).

ζ̇ = Ā(θ1, φ(xs))ζ + B̄σW, (26)

Ā =

[
Arm(θ1) Bs(θ1)φ

T

−γsφBs(θ1)
TP −σI

]
, B̄ =

[
0
−I

]
Basis function φ(xs) = [φ1(xe), φ2(ξ̇), φ3(ξ̇)]

T is given as
φ ∈ Φ, where the parameter box Φ = {φ = [φ1, φ2, φ3]

T :
φj ∈ {φ

j
, φj}}. Therefore, we can calculate the lower

bounds and the upper bounds of φj ∈ [φ
j
, φj ]. If we can

see the system in (26) as an exponentially stable system
with the constant disturbance σW , the stability of the
entire control system is guaranteed. Besides, uncertain
parameter vector W is a bounded input. Hence, we
consider the exponential stability analysis for the system
in (27) which doesn’t have the constant disturbance σW .

ζ̇ = Ā(θ1,Φ)ζ (27)

The exponential stability of the system in (27) is in-
spected by solving the following LMI [2].



Theorem 2 If there exists X = XT > 0 meeting the
following inequality, the system in (27) is exponentially
stable for variations of θ1 and φj .

He{XĀ(θ1,Φ)} < 0 (28)

By solving the matrix inequality (28), the exponential
stability of the system in (27) is guaranteed theoreti-
cally.

4 Simulation

In this section, we express the effectivity of the ro-
bust H∞ controller with the MRAC law (the proposed
method) by simulation. We validate the performance of
the proposed method by contrasting it with the only ro-
bust H∞ controller (the conventional method). In other
words, we show the effectiveness of the MRAC law. Be-
sides, we use the robust H∞ controller which is adjusted
moderately to show the validity of the MRAC law. Note
that this robust controller is not adjusted strictly. In the
simulation, the initial position for the trolley ξ(0) and
the final position for the load r are set as ξ(0) = 0[m]
and r = 0.6[m], respectively. To ensure the soft start of
the trolley, we use the following equation for reference
yref .

yref = 0.6{1− exp(−8.33t3)}[m] (29)

The upper and the lower bounds of θ1 are set as θ1 ∈
[0.1, 0.7]. The maximum value of static friction fs, the
Coulomb friction fc and the viscous friction coefficient
fv are set as fs = 2.3, fc = 2.2 and fv = 6.2, respec-
tively. Note that these friction-related parameters are
unknown in controller design. A related coefficient of the
basis function fcv = 1.0 × 104 is used in this study. To
see the robustness to θ1 of the robust controller, we con-
trol the rope lengths by another controller as illustrated
in Fig. 2. Note that we consider the time responses
of rope length as the uncertainty of the system for the
trolley positioning.
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Figure 2 Rope length l (dashed line: rope length in
the conventional method, solid line: rope length in the
proposed method)

The simulation results are shown in Figs. 3 and 4. Fig.
3 shows the time responses of the horizontal positions
of the load. As you can see in Fig. 3, the load reaches
the target position r swiftly by utilizing the proposed
method. On the other hand, the conventional method
causes the error between the target position and the
load position, and overshoot under the influence of fric-
tion. Fig. 4 shows the time responses of the swing angle.
From Fig. 4, the proposed method suppresses the vibra-
tions of the load. On the other hand, the conventional

method causes the residual oscillation of the load. From
these results, we can find that the MRAC law suppresses
the influence of nonlinear friction.
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Figure 3 Load position xp (dotted line: reference,
dashed line: the conventional method, solid line: the
proposed method)
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Figure 4 The angle for load swing γ (dashed line: the
conventional method, solid line: the proposed method)

5 Conclusions

For the jib crane with rope hoisting, we have pre-
sented the robust H∞ control system with the MRAC
law. The main object of this paper is to cope with the
effects which uncertain parameters such as rope length
and nonlinear friction cause. In this study, we have han-
dled an uncertainty of the rope length l by the robust
H∞ controller. Additionally, the nonlinear uncertain-
ties for friction are dealt with the MRAC law with σ-
modification. We have shown the performance of the
proposed method by contrasting the proposed method
with the only robust H∞ controller in the simulation.
As you can see in the simulation, the proposed method
can decrease the influence of nonlinear friction by the
MRAC law.
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