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1 Introduction

Bearing is one of the fundamental mechanical ele-
ments. Generally bearings have physical contact with
mating parts. It is difficult for traditional bearings to
rotate fast because of influence from friction and wear.
On the other hand, the magnetic bearings do not have
physical contact with mating parts, but instead, are sup-
ported by magnets on either end. The magnetic bear-
ing can eliminate difficulties caused by friction and wear.
Thus, high-speed rotation of the rotor becomes possible.
For example, the magnetic bearings could be applied to
turbo-molecular pumps, high speed shafts for machine
tools, auxiliary artificial hearts, artificial satellites, and
so on [1]. On the other hand, there are disadvantages on
the magnetic bearings. The magnetic bearings are un-
stable, therefore, they need to be controlled at all times.
Hence, a more precise model for the magnetic bearing
is needed so that they can be controled. Regarding the
magnetic bearing, there are two types of rotor models: a
rigid rotor model and a flexible rotor model. The former
is a rotor which rotates under critical speed. The latter
is a rotor that rotates over critical speed. It is necessary
to use the flexible rotor in order to increase the angular
velocity of the rotor. In the case of using the flexible
rotor model, the order of the system increases because
the model is generally derived by finite element method.
As a result, a controller design becomes difficult. Thus,
it is necessary to reduce the order of the model.
Matthew et al. [2] gives more details on the model

reduction in rotary systems. In the survey, four gen-
eral model reduction methods are introduced as follows
: Guyan method, Modal analysis method[3], Compo-
nent mode synthesis method, and Balanced truncation
method [4]. There are difficulties of skewness and speed
dependency when the order of the rotary system is re-
duced. These difficulties are caused by gyroscopic effect.
In the survey, it has been reported that the methods
based on singular value decomposition (SVD) provide
the best results when considering gyroscopic effect. Re-
cently, it proposed the model reduction methods resolv-
ing the skewness. Nonami et al. proposed the model
reduction methods via Cholesky decomposition [5] and
singular value decomposition [6]. Seto et al. proposed
the model reduction method via an extended reduced
order physical model[7].
In this study, decomposing dynamics of the magnetic

bearing into horizontal dynamics and vertical dynam-
ics is considered. The horizontal model and the vertical
model without gyro terms is derived. Then, the sys-
tems and gyro terms is connected by using augmented
variables. Hence, The magnetic bearing system can be
represented as a closed loop system of the horizontal
model without gyro terms, the vertical model without
gyro terms and two gyro terms connecting each sys-
tem. The horizontal and vertical dynamics without gyro
terms don’t have skewness and speed dependence. Thus,
the horizontal and vertical dynamics are linear time-

invariant (LTI) systems. The order of the horizontal
and vertical dynamics can be reduced by any general re-
duction methods. Hence, it is not necessary to calculate
the reduction procedure every time the angular veloc-
ity of the rotor is varied because the proposed reduction
procedure doesn’t depend on the angular velocity of the
rotor. Furthermore, the obtained reduction model is a
simple linear parameter-varying system for the angular
velocity. It is convenient to design a gain-scheduled (GS)
controller. The effectiveness of the proposed model re-
duction method is illustrated by Bode diagrams. The
GS controller is designed with the proposed model. Fi-
nally, The effectiveness of the GS controller is illustrated
by simulation.

2 Modeling

The flexible rotor model is derived via finite element
method. When the rotor is separated in n elements, let
hk and θhk

be the displacement and the angle in hori-
zontal direction in kth point mass (k = {1, 2, · · · , n}),
respectively. Similarly, let vk and θvk

be the displace-
ment and the angle in vertical direction, respectively.
Here, the vectors of horizontal and vertical direction
are defined as qh = [h1 θh1 · · · hn θhn ]

T and qv =
[ v1 θv1 · · · vn θvn ]

T , respectively. The state vector

q and input vector u are defined as q = [qh qv]
T

and

u = [u1 · · · unu ]
T
, respectively. Then a motion equa-

tion of magnetic bearing with gyroscopic effect is given
as follows [1];

Mq̈ + (C +G(p))q̇ +Kq = Fu, (1)

M =

[
Mh O
O Mv

]
, C =

[
Ch O
O Cv

]
,K =

[
Kh O
O Kv

]
,

G(p) =

[
O −Jp(p)

Jp(p) O

]
, F =

[
Fh O
O Fv

]
,

where M,C,K, F,G and p are the mas matrix including
inertia force, the damping matrix, the stiffness matrix,
the locations of electromagnets, the gyro matrix and the
angular velocity of the rotor, respectively. It is known
that M,C,K and G(p) are a positive definite matrix, a
semi-positive definite matrix, a symmetric indefinite ma-
trix (not positive definite matrix) and a skew-symmetric
matrix [1]. Note that M,C,K,G(p) and F have a cer-
tain structure as above. A model reduction method by
using the certain structure is proposed in a later section.

It is known that the skew-symmetric matrix causes dif-
ficulties when the ordinary reduction method is applied.
It has been reported that a model reduction method
based on Cholesky decomposition is effective when K
is positive definite. In this study, the model reduction
method based on Cholesky decomposition can not used
because K is not positive definite. The state variable x

is defined as x = [qh qv q̇h q̇v]
T
. The state equation



is obtained as follows;

P (s)

{
ẋ = A(p)x+Bu
y = Cx

, (2)

A(p) =

[
O I

−M−1K −M−1(G(p) + C)

]
,

B =

[
O

M−1F

]
, C =

[
FT O

]
,

where A(p) ∈ R8n×8n, B ∈ R8n×nu , C ∈ Rny×8n, x ∈
R8n×1, u ∈ Rnu×1 and y ∈ Rny×1. nu and ny are the
number of input and output, respectively. This state
equation (2) is called Full Model in the following sec-
tions.

3 Model Reduction Method

In this section, the following method is proposed to
resolve the above difficulty. The motion equation (1) is
decomposed into the horizontal motion and the vertical
motion. The motion equation (1) can be represented as
follows;

Mhq̈h + Chq̇h +Khqh = Fhuh − Jp(p)q̇v, (3)

Mv q̈v + Cv q̇v +Kvqv = Fvuv + Jp(p)q̇h. (4)

Let augmented variables zh, zv, wh and wv be as follows;

zh = q̇h, (5)

zv = q̇v, (6)

wh = −Jp(p)zv, (7)

wv = Jp(p)zh. (8)

The motion equations are represented as follows by aug-
mented variables;

Mhq̈h + Chq̇h +Khqh = Fhuh + Iwv, (9)

Mv q̈v + Cv q̇v +Kvqv = Fvuv + Iwh. (10)

The each model without gyro terms is derived. The
motions (3), (4) and gyro terms (7), (8) by augmented
variables are connected. Hence, the magnetic bearing
system can be represented as the closed loop system of
the horizontal model without gyro terms, the vertical
model without gyro terms and two gyro terms connect-
ing each system. The closed loop system of the motions
and gyro terms is shown in Figure 1. The both systems
(9) (10) are linear time-invariant (LTI) which do not
depend on the angular velocity. The orders of both sys-
tems can be reduced by any general reduction methods.

Figure 1 Block diagram of magnetic bearing system

In this study, the reduced model is obtained by using
the modal analysis method[3].
The following equation is obtained by the normalized

mode matrix Φh;

MhΦh = ΛhKhΦh, (11)

Λh = diag{λh1 , λh2 , · · · , λh2n}.

λhi is the eigenvalue of K
−1M . The vector qh is defined

as qh = Φhξh, where let ξh be the mode variable (ξh =
[ξh1

· · · ξh2n ]). The equation is obtained as follows
from (3);

MhΦhξ̈h + ChΦhξ̇h +KhΦhξh = Fhuh + Iwv, (12)

ξ̈h +∆hξ̇h +Ωhξh = ΦT
hFhuh +ΦT

hwv, (13)

I = ΦT
hMhΦh,∆h = ΦT

hChΦ,Ωh = ΦT
hKhΦh,

where ∆h is approximated as ∆h =
diag{2ζh1ωh1 , · · · , 2ζh2nωh2n} because the damp-
ing matrix Ch is small. ζhk

and ωhk
(k = {1, · · · , 2n})

are the damping rate and the natural frequency,
respectively. Here, the state variable xfh is defined as

xfh =
[
ξh ξ̇h

]T
. The following system is obtained;{

ẋfh = Afhxfh +Bfhwh +Bfuhuh

zh = Cfhxfh

yh = Cfyhxfh

, (14)

Afh =

[
O I

−Ωh −∆h

]
, Bfh =

[
O
ΦT

h

]
, Bfuh =

[
O

ΦT
hFh

]
,

Cfh = [O Φh] , Cfyh = Cyh

[
Φh O
O Φh

]
.

The state variable xsh is defined as xsh =[
ξh1 · · · ξhr ξ̇h1 · · · ξ̇hr

]T
. The reduced model

is obtained as follows;{
ẋsh = Ashxsh +Bshwh +Bsuhuh

zh = Chxsh

yh = Csyhxsh

. (15)

The reduced model for the vertical dynamics is obtained
as follows as well as the model reduction procedure for
the horizontal dynamics;{

ẋsv = Asvxsv +Bsvwv +Bsuvuv

zv = Cvxsv

yv = Csyvxsv

. (16)

The closed loop systems are represented as follows by
the augmented variables (7), (8) and the reduced model
(15), (16);

ẋsh = Ashxsh −BshJp(p)Csvxsv +Bsuhuh, (17)

ẋsv = Asvxsv +BsvJp(p)Cshxsh +Bsuvuv. (18)

Here, the state variable xs is defined as xs =

[xsh xsv]
T
. Finally, the state equation is obtained as

follows from the closed loop systems (17) and (18);

Pma(s)

{
ẋs = As(p)xs +Bsu
y = Csxs

, (19)

As(p) =

[
Ash −BshJp(p)Csv

BsvJp(p)Csh Asv

]
,

Bs =

[
Bsuh O
O Bsuv

]
, Cs =

[
Csyh O
O Csyv

]
,



where As(p) ∈ R2r×2r, Bs ∈ R2r×nu , Cs ∈ Rny×2r, xs ∈
R2r×1, u ∈ Rnu×1 and y ∈ Rny×1.
The conventional method based on singular value de-

composition(SVD) [6] requires to recalculate the reduc-
tion procedure every time the angular velocity of the
rotor is varied. On the other hand, As(p) of (19) only
has to be recalculated when the angular velocity of the
rotor is varied because the proposed reduction proce-
dure doesn’t depend on the angular velocity of the ro-
tor. Hence, its calculation cost of the proposed method
is much less than that of the conventional method based
on SVD. Note that Pma(s) is a simple linear parameter-
varying system for the angular velocity of the rotor. It
is convenient to design a gain-scheduled (GS) controller.

4 Controller design

The gain scheduled (GS) controller [8] is designed with
the proposed model. The scheduling parameter of the
designed controller is the angular velocity p. The state
feedback controller which minimizes the following cost
function is derived;

J =

∫ ∞

0

(xT
s Qxs + uTRu)dx, (20)

where Q = QT
hQh ≥ 0, R > 0. If there exist X(p)

and Y (p) satisfying the following LMI conditions, the
system is stabilized by the state feedback controller with
gain Kgs(p) = Y (p)X(p)−1. The LMI conditions are as
follows;−He{N(p)}+ Ẋ(p) (QhX(p))T (RY (p))T

QhX(p) I O
RY (p) O R−1

 ≻ 0,

[
Z I
I X(p)

]
≻ 0,

T race(Z) < γ,

N(p) = As(p)X(p) +BsY (p), X(p) = X0 + pXP ,

XP =

[
XP1 XP1

XP1 XP1

]
, XP1 =

[
XP11 O
O O

]
.

Then, the cost function J is lower than γ.
The magnetic bearing have sensors only at either end,

therefore, the other state variable can not observed. In
this study, the full order observer is used. Estimated
error is defined as e = xs − x̃s, where let x̃s be estimate
value. Therefore, output feedback controller designed
by the full order observer is as follows;{

˙̃xs = Asx̃s +Bsu− L(y − Csx̃s)
u = Kgsx̃s

. (21)

The observer gain L is designed by optimal regulator
from separation theorem.

5 Numerical Example

The proposed method is evaluated by Bode diagram.
In this study, an active Magnetic Bearing MBC500 of
Launch Point is taken for example [8]. The magnetic
bearing has pairs of four electromagnets and two hall
effect sensors at the each end of the rotor, i.e., nu = 4
and ny = 4. The rotor model is shown in Figure 2. In
this study, the rotor is separated into three elements by
finite element method. The number is n = 3. Let ij be
input current. The levitation force of the electromagnet

Gap Sensor

(Gap: �. �[mm])

Magnet

Figure 2 Rotor schematic view

Table 1 Natural Frequency
ωh1 0 [rad/s]
ωh2 0 [rad/s]
ωh3 1042 [rad/s]
ωh4 2306 [rad/s]
ωh5 3896 [rad/s]
ωh6

4817 [rad/s]

is approximated by Taylor expansion around the equi-
librium point. The approximated equation is as follows;

fj = ksf
4bIj
G2

0

+Khvjqj +Kcij , (22)

Khvj = ksf
4(b2 + Ij)

G3
0

,Kc =
4b

G2
0

,

where j = {h1, h3, v1, v3}. G0, ksf , Ij and b are the nom-
inal gap, the suction force constant, the steady-state
current and the bias current, respectively. Let control
input u be u = [ih1 ih3 iv1 iv3 ]

T . The following equation
is obtained by the levitation force of the electromagnet
(22);

Mq̈ + (C +G(p))q̇ +Kq = FKcu, (23)

K = K0 −Khv.

K0 and Khv are the stiffness matrix and the matrix
including levitation force of the electromagnet, respec-
tively. K is not positive definite. The details of the ma-
trices is omitted for the sake of space. Here, the model
of horizontal in (23) is used for eigenvalue analysis. The
natural frequency is shown in Table 1. Here, the pro-
posed method and the conventional method based on
SVD [6] is compared. The first resonance frequency is
1042[rad/s] by eigenvalue analysis. the orders of the sys-
tems by considering the rigid mode and the first flexible
mode is reduced because maximum angular velocity of
the rotor is 1571[rad/s], thus , the orders of the sys-
tems based on the conventional model Psvd(s) and the
proposed model Pma(s) are both 12.
The effectiveness of the proposed method is verified by

comparing full model and two reduced model. The input
and the output are defined as input current and sensor of
left horizontal direction. Bode diagrams of the systems
are shown in Figure 3. As the angular velocity of the
rotor increase, it can be seen that each flexible mode is
splitted into backward flexible mode and forward mode
by gyroscopic effect [6]. From this figure, it is noted
that the reduced model based on the proposed method
is almost as approximate accuracy as the reduced model
based on SVD.
Next, the effectiveness of the proposed controller (GS

controller) is evaluated by simulations. The proposed
controller is verified by comparing with the conven-
tional controller. The conventional controller means
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Figure 3 Bode diagram(p = 628[rad/s])

the LQ controller in an angular velocity of the rotor
(p = 1042[rad/s]). The angular velocity and the an-
gular acceleration of the rotor are set up as 0 [rad/s]
and 26.1[rad/s2], respectively. The result of simulation
is shown in Figure 4. Figure 4 illustrates the displace-
ment of horizontal in the left side of the rotor when the
whirling vibrations around the first resonance point is
generated. The proposed controller can reduce vibration
more than the conventional controller.
However, the difference of the proposed controller and

the conventional controller is small. Here, the mass and
the radius in second element is tripled. The effectiveness
of the proposed controller are evaluated by simulations
as with the above simulations. Displacement in left side
of the rotor around the first resonance point are shown
in Figure 5. The result shows the effectiveness of the
proposed controller.
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Figure 4 Displacement in left side of the rotor
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Figure 5 Displacement in left side of the rotor

6 Conclusion

This paper proposed the model reduction method us-
ing subsystem decomposition. The magnetic bearing
system is represented as a closed loop system of the
horizontal model without gyro terms, the vertical model
without gyro terms and two gyro terms connecting each
system. The order of the horizontal dynamics and ver-
tical dynamics are reduced by modal analysis method
and fractional balanced reduction method. The effec-
tiveness of the proposed reduction method is verified
by the Bode diagrams. The reduced model based on
the proposed method has almost as approximate accu-
racy as the reduced model based on SVD. However, the
proposed method is superior in three ways. First, any
general model reduction can be chosen. Second, its cal-
culation cost of the proposed method is mush less than
the conventional method based on SVD. Third, it is easy
to design the GS controller. Therefore, controllers need
not to be switched such as conventional method[6]. The
GS controller is designed with the proposed model. Fi-
nally, The effectiveness of the GS controller is illustrated
by simulation.
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