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Abstract

The control moment gyroscope is applied to the atti-
tude control of spacecraft. It has nonlinear character-
istics including the trigonometric functions of angle of
gimbal. In this research, the nonlinear equation of the
system is transformed to a linear one. A linear control
theory is applied. Trigonometric functions of angle are
approximated by second-order polynomials which have
sufficient accuracy. Then, the dynamic equation is rep-
resented by an equation of those polynomials. The de-
scriptor representation and Linear Fractional Transfor-
mation (LFT) are applied. The linear equation of the
angle is obtained. A parameter-dependent Lyapunov
function is introduced. LMI conditions are derived to
guarantee the stability of the system. A gain scheduling
controller is designed using the condition in which the
angle of the gimbal is used as a scheduling parameter.
The gain scheduling controller can set feedback gains
according to the attitude variation, and the control per-
formance is improved. The integral function is added to
the controller to suppress the effect of disturbances like
frictions. The effectiveness of the proposed controller is
illustrated by simulations and experiments.

1 Introduction

A Control Moment Gyroscope (CMG) mounted in
satellites and spacecraft generates the gyro torque by
tilting the axis of rotor. The CMG can deliver in-
stantly large angular momentum stored in the wheel to
the satellite. A reaction wheel (RW) is used as a driv-
ing torque generator, but the CMG can generate lager
torque than it. The CMG is used as an attitude control
device for large scale a spacecraft, for example Skylab,
space station Mir and International Space Station (ISS).
The CMG in this paper is composed of four rigid bod-
ies, a rotor and three gimbals. Two driving motors are
mounted on a rotor (Rotor 1) and a gimbal (Gimbal 2).
The driving motor is not mounted on 2 other gimbals
(Gimbal 3 and Gimbal 4). The gyro torque generated
by Rotor 1 and Gimbal 2 drives Gimbal 3 and Gimbal 4.
This is an underactuated system which drives 4 bodied
by 2 actuators. The dynamic characteristic of CMG is
presented as a nonlinear equation that includes trigono-
metric functions. Linear approximation is performed on
this system, method for designing a linear robust control
system is proposed [1]. In [2],[3], methods are proposed
to design the gain scheduled control system. However,
in [2],[3], the angular velocity of the disk is always de-
signed as a constant angular velocity. In this research,
in edition to the gain scheduling control, the robust-
ness of the angular velocity of the disk is guaranteed.
Trigonometric functions of gimbal’s angle are approxi-
mated by second-order polynomials to improve accuracy
corresponding to the operating range of CMG. The de-
scriptor representation and linear fractional transforma-
tion (LFT) are applied. Also, a linear equation is de-
rived. This equation is affine about the angle of Gimbal
and the angular velocity of Rotor that are varying pa-

rameters. A parameter-dependent Lyapunov function is
defined. The LMI conditions that guarantee stability
of the system is derived. The gain scheduled controller
is designed depending on the parameter-dependent Lya-
punov function. The feedback gain is set according to
the attitude of CMG. Also, the control performance is
improved. The extended system with an integral of con-
trol error added is defined. The controller based on
the expanded system is designed to follow the reference,
even if there exists a disturbance such as friction. The
effectiveness of the proposed method is illustrated by
simulations and experiments.

2 Modeling

In this section, the mathematical model of CMG is
derived. The schematic diagram of CMG is shown in
Figure. 1.

Figure 1 The mathematical model of CMG

The CMG is composed of 4 rotating bodies, Rotor
1, Gimbal 2, Gimbal 3 and Gimbal 4. Two motors are
mounted on Rotor 1 and Gimbal2. They generate rotat-
ing torques, T1 and T2 which drives Rotor and Gimbal
2, directly. The variable q1 represents the relative angle
of Rotor 1 from Gimbal 2. Its velocity is represented
by ω2. The variable q2 represents the relative angle of
Gimbal 2 from Gimbal 3. Its velocity is represented by
ω3. The variable q3 represents the relative angle of Gim-
bal 3 from Gimbal 4. Its velocity is represented by ω4.
Similarly, the angular of Gimbal 4 and the angular ve-
locity of Gimbal 4 are q4 and ω4, respectively. In this
research, it is assumed that the center of gravity of Ro-
tor 1, Gimbal 2, Gimbal 3 and Gimbal 4 are the center
of Rotor 1. The influence of gravity is ignored and only
the rotational motion is taken account. Rotor 1, Gimbal
2, Gimbal 3 and Gimbal 4 are fixed coordinate systems
ai, bi, ci and di(i = 1, 2, 3), respectively. The Gimbal 4
rotates around axis a3. The Gimbal 3 rotates around
the axis b2. Gimbal 2 rotates around the axis c2. Rotor
1 rotates around the axis d2. Iv, Jv and Kv are defined
as the inertia moment of around axis 1, 2, 3 of each rigid
bodies v = A,B,C and D.



2.1 Derivation of Motion Equation

In this subsection, motion equations of CMG are de-
rived. The trigonometric functions exist in the obtained
equations of motion. The trigonometric function is ap-
proximated by the second-order polynomials to improve
the precision. It can correspond to the large range of
gimbal’s operating point. Let scheduling parameters be
q2 and q3 that vary largely by the attitude control of
CMG. The equations of motion for q1, q2, q3, q4 are
derived by Lagrange equation L. There are written as
follows,

f1(q2, q3, ω2, ω3, ω4, ω̇1, ω̇3, ω̇4) = T1, (1)

f2(q2, q3, ω1, ω3, ω̇1, ω̇2) = T2, (2)

f3(q2, q3, ω1, ω2, ω3, ω4, ω̇1, ω̇3, ω̇4) = 0, (3)

f4(q2, q3, ω1, ω2, ω3, ω4, ω̇1, ω̇2, ω̇3ω̇4) = 0. (4)

2.2 Derivation of State Space Representation

In this subsection, a state space representation is de-
rived by Eq.(1)-(4). Here, the range of the Gimbal 2
and the Gimbal 3 are supposed as − π

4.5 ≤ q2 ≤ π
4.5

and − π
4.5 ≤ q3 ≤ π

4.5 , respectively. Usually, Taylor
expansion is given as a primary approximation that
sin(x) ≈ x, cos(x) ≈ 1, then x = π

4.5 in cos(x), the dif-
ference between the approximation and the true value is
0.234. This can not to be ignored. Here, a second-order

approximation is taken as sin(x) ≈ x, cos(x) ≈ 1 − x2

2 .
An approximation accuracy of the equation is shown in
Figure. 2-3.
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The red solid line shows approximated values of sine
and cosine. The blue dotted lines show the true value
of sine and cosine respectively. Then x = π

4.5 in cos(x),
the difference between the second-order approximation
and the true value is 0.0097. The second-order approxi-
mation is adopted because the accuracy of second-order
approximation is better than the first-order approxima-
tion. The approximation is substituted in Eq.(1)-(4).
Let a state variable vector be x(t) = [q3 q4 ω2 ω3 ω4]

T.
The state space representation is written as follows,

ẋ(t) =


0 0 0 1 0
0 0 0 0 1
0 0

−F−1G0 0
0 0

x(t) +


0 0
0 0

F−1H

u(t), (5)

F =

[
a1 0 a2
0 a3 a4

−a1 a4 a5

]
, G =

[
0 b1 b2
b3 0 −b3
−b2 b3 b4

]

H =

[
0 1
c1 0
c2 0

]

a1 = Ja, a2 = −Jaq3, a3 = JB + JC + Jbq
2
2 ,

a4 = Jb(q2 −
2

3
q32)(1−

q23
2
),

a5 = KA+ID+(KB+KC)(1−q23)+ICq
2
3+Jbq

2
2(1−q23),

b1 = JDω1q2, b2 = −JDω1(1−
q22
2
)(1− q23

2
),

b3 = −JDω1q2q3, b4 = ICq
2
3 , c1 = −1+

q22
2
, c2 = −q2(1−

q23
2
),

Ja = IC + ID, Jb = JC −KC −KD.

If a parameter ω1 and q2 are included in the state vari-
able, the state variable becomes uncontrollable. There-
fore, the parameter ω1 and q2 can not included in the
state variable. In this study, to make the output follow
the reference without error, the system is expanded. Let

the reference of q3 and q4 be qref3 and qref4 respectively.
Then, a state equation is written as follows,

ẋe(t) = Aexe(t) +Beu(t), (6)

Ae =



0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0

−F−1G0 0 0 0
0 0 0 0

 , Be =



0 0
0 0
0 0
0 0

F−1H

 .

3 Control Design

3.1 Descriptor Representation

In this section, the state equation is linearized by de-
scriptor representation. The matrices Ae and Be con-
tain time variable parameters q2 and q3. The time
variable parameters must be aggregated into one co-
efficient matrix. Let the descriptor vector be xd =
[xe(t)

T ω2 ω3 ω4 T1]
T, the descripter representation is

written as follows,

Edẋd(t) = Adxd(t) +Bdud(t), (7)

Ad =

 O2×2 −I2 O2×3 O2×3 O2×1

O5×2 O5×2 M N O5×1

O3×2 O3×2 −G −F L
O1×2 O1×2 O1×3 O1×3 −1

 ,

M =

[
O2×1 I2
O3×1 O3×2

]
, N =

[
O2×3

I3

]
, L =

[
0
c1
c2

]

Ed =

[
I7 O7×4

O4×7 O4×4

]
, Bd =


O6×2

0 1
0 0
0 0
1 0

 .



3.2 linearized by Linear Fractional Transforma-
tion(LFT)

In this section, the state equation is linearized by Lin-
ear Fractional Transformation (LFT). However, the ma-
trix Ad in (7) contained cubic terms. Also, a computable
LMI condition can not be derived when parameter-
dependent Lyapunov Function is used. In this research,
the matrix Ad is equivalently transformed to an affine
form not including the square term of scheduling param-
eter. A method that the scheduling parameter is taken
out by linear fraction transformation (LFT) is applied
to perform the conversion. This equation is written as
follows,

Ãd(t) = An +Bδ(I −∆Dδ)
−1∆Cδ. (8)

Then, Equation (8) is rewritten as follows,{
Edẋd = Anxd +Bδwδ +Bdu
zδ = Cδxd +Dδwδ

wδ = ∆zδ
, (9)

where
∆ = diag([q2, . . . , q2, q3, . . . , q3]).

A new descriptor variable is given as x̃ =
[
xT
d zTd

]T
. The

system can be transformed to a computable LMI condi-
tion. The equation using the descripter representation
with LFT is written as follows,

Ẽd
˙̃xd(t) = Ãdx̃d(t) + B̃du(t), (10)

Ãd = A0 + q2A1 + q3A2 + ω1A3

=

[
An Bδ∆
Cδ −I +Dδ∆

]
,

Ẽd =

[
Ed 0
0 0

]
, B̃d =

[
Bd

0

]
. (11)

A parameter box whose vertices are the upper and lower
bounds of the variation parameter is given by

Θ = {θ = [θ1, θ2, θ3, θ4, θ5]
T : θi ∈ {θi, θi}} (i = 1, . . . , 5)

(12)
θ1 = q2, θ2 = q3, θ3 = ω1, θ4 = ω2, θ5 = ω3.

4 Gain Scheduling Controller [4]

In this section, the gain scheduling controller based
on the Lyapunov function for the closed loop system is
designed that the state feedback control law u = K(θ)x
is given to the descriptor system (10). In this research, a
gain scheduling controller is designed based on the opti-
mum regulator which minimizes the following evaluation
function

J =

∫ ∞

0

(x̃d(t)
TQx̃d(t) + u(t)TRu(t))dt, (13)

where Q ≥ 0, R > 0.
The Lyapunov matrix Xd(θ) and the transformation

matrix Yd(θ) are given as follows,

Xd(θ) = Xd0 + θ1Xd1 + θ2Xd2, (14)

Yd(θ) = Yd0 + θ1Yd1 + θ2Yd2. (15)

The matrix Xdi and Ydi have the following structures,

Xdi =

[
Xi 0 0

X21,i X22,i X23,i

X31,i X32,i X33,i

]
, (16)

Ydi = [ Yi 0 0 ] (i = 0, 1, 2). (17)

The following parameter box’s vertices Θj(j =
1, · · · , 32) are defined as the vertex matrices. These
box’s vertex are written as follows,

Θ1 = (θ1, θ2, θ3, θ4, θ5),Θ2 = (θ1, θ2, θ3, θ4, θ5),

. . .Θ15 = (θ1, θ2, θ3, θ4, θ5),Θ32 = (θ1, θ2, θ3, θ4θ5).

Since
˙̃
Xd(θ) is

˙̃
Xd(θ) = θ̇1Xd1 + θ̇2Xd2, (18)

X̃d(θ̇) = Xd0 + θ̇1Ẋd1 + θ̇2Xd2. (19)

Eq(18)-(19) are written as follows,

˙̃
Xd(θ) = X̃d(θ̇)− Ẋd0 (20)

Ed
˙̃
Xd =

 X(θ̇)−X0 0 0
0 0 0
0 0 0

 , (21)

where
X(θ̇) = X0 + θ̇1X1 + θ̇2X2. (22)

Let set Cd = [Wx 0 0],Wx = [Q
1
2 0]T and Dd = [0 R

1
2 ].

The LMI condition for the gain scheduling control is
written as follows,

minimize : γ (23)

subject to : X(Θj) ≻ 0 (24)[
He[Ãd(Θj)Xd(Θj) +BdYd(Θj)]− Sd(Θi)

CdXd(Θj) +DdYd(Θj)

Xd(Θj)
TCT

d + Yd(Θj)
TDT

d
−I

]
≺ 0

(j = 1, . . . , 32) (25)[
W I
I X(Θk)

]
≻ 0 (k = 1, . . . , 8) (26)

trace(W ) < γ, (27)

where Sd(Θ̇j) = diag[(X(Θ̇j)−X0, 0, 0)]. However, Eq.
(25) contains Ad(Θj)Xd(Θj). Eq. (25) does not be-
come multi-affine because there is a squared term. The
Ad(Θj)Xd(Θj) is given a constraints to be multi-affine.
The X(θ) and the Y (θ) are obtained by LMI condition
from there equations. The GS state feedback u(t) based
on the parameter dependent Lyapunov function in the
framework of the descriptor representation is given as
follows,

u = Kdx̃d = Yd(θ)Xd(θ)
−1x̃d(t)

= [Y (θ) 0 0]

[
X(θ) 0 0
X21(θ) X22(θ) X23(θ)
X31(θ) X32(θ) X33(θ)

]−1

x̃d(t)

= Y (θ)X(θ)−1xe(t), (28)

where

X(θ) = X0 + θ1X1 + θ2X2, (29)

Y (θ) = Y0 + θ1Y1 + θ2Y2. (30)



5 Experiment

In this section, the effectiveness and validity of the
designed controller are illustrated by the simulation and
experiment results. Simulation results and experiment
results are compared by the Gain Scheduling controller
and robust LQ controller of fixed gain. Let x and ω1

be x0 = [0, 0, 0, 0, 0], ω1 = 43.9823[rad]. The upper
bound and lower bound of the fluctuation parameter
ω1, q2, ω2, q3, ω3 are determined as follows,

ω1 ∈ [20.94, 62.83][rad], (31)

q2 ∈ [− π

4.5
,

π

4.5
][rad], ω2 ∈ [−1, 1][rad/sec], (32)

q3 ∈ [− π

4.5
,

π

4.5
][rad], ω3 ∈ [−1, 1][rad/sec], (33)

The weight matrix Q and R was set as follows,

Q = diag[(1 0.5 0.5 0.5 0.5 0.1 0.1)]. R = diag[(1 1)].
(34)

The upper bound values of gain scheduling control and
the fixed gain robust LQ control are shown in the Table
1.

Table 1 Upperbound

Nominal GS Robust LQ
Upper bound γ = 1.1284 γ = 2.0083 γ = 2.6853

Eq. (28) of Kd is written as follows,

Y (θ)X(θ)−1 = Kd(θ)

=

[
K11 K12 K13 K14 K15 K16 K17

K21 K22 K23 K24 K25 K26 K27

]
.(35)

The feedback gain K14 and K24 are shown in Figure 4
and 5 as a function of scheduling parameter q2 and q3.
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From the Figure 4-5 that the gain is adjusted by the
gain scheduling control. The angle of Gimbal 3 and
angle Gimbal 4 of experiment results are shown in Fig-
ure 6-7. The solid line shows the experimental result
of GS. The dashed line shows the experimental result
of robust LQ. The dotted line shows the command, re-
spectively. As can seen in Figure6, the GS has bet-
ter performance than robust LQ. Torque of Motor 1 T1

and torque of Motor 2 T2 are shown Figure 8-9, respec-
tively. The input constraint range of T1 and T2 are
−0.6 ≤ T1 ≤ 0.6,−2.4 ≤ T2 ≤ 2.4, respectively.
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6 Conclusion

In this research, the dynamic characteristics of Con-
trol Moment Gyroscope (CMG) is represented by math-
ematical model. It is linearized by performing sec-
ond order approximation of Taylor expansion, descrip-
tor representation and Linear Fractional Transforma-
tion (LFT). From the linearized system, we designed
the gain scheduling controller of the linear matrix in-
equality (LMI). Moreover, by introducing an integrator,
it can follow the reference without error. The useful-
ness of the GS control is shown by the experimented
results computing with the robust LQ controller. The
robustness of the angular velocity of the Rotor 1 was
guaranteed.
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