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Abstract

This paper presents the exact backlash angle function

by adding“viscous coupling”, the robust stability com-

pensation for the variation parameter, and positioning

control system by H∞control theory. First, the control

target is represented by the mathematical model with

dead-zone model. Second, The viscous coupling is iden-

tified with damping ratio method. Third, the variation

of the system is represented by polytope. Fourth,the

robust H∞ controller is designed for belt-drive system

with the backlash and parameter variation. Finally, the

robust H∞controller is verified by conducting simula-

tions.

1 INTRODUCTION

The power train means the mechanical device which

conveys rotary power by using belt. It is applied in many

sectors of industry, for example, the timing belt of car

engine(Continuously Variable Transmission, CVT), the

belt conveyor of factory and so on. The advantages of

this belt-drive system are to decrease noise and to im-

prove transmission efficiency. The disadvantage of this

system is existence of a small gap between a pair of mat-

ing gears and belt. Positioning performance degradation

is caused by this gap. This small gap is called“ back-

lash”. There exist many models of the backlash com-

pensation. In basic control literature, dead-zone model

for control design is often used[2][3]. Those studies are

viewed that transmitted torque by the effect of backlash

is tension of belt. However, according to [1], the rub-

ber have internal damping as feature. this characteristic

of material is known as viscous coupling(internal damp-

ing). Thus we considered similarly viscous coupling as

transmitted torque, and aimed to obtain exact backlash

angle function. Furthermore, viscous coupling and ten-

sion of belt are considered as transmitted torque, back-

lash is expressed by dead-zone model, and the backlash

angle function is derived using this model. Finally the

control design is completed by considering the backlash

angle function as the disturbance. Here, the belt-drive

experimental device used in this study is shown in Fig.1.

This experimental device includes two disks(drive and

load disks), and can be put the weight on them. In

addition, it is possible to change the value of backlash.

Fig 1 belt-drive experimental device

2 MODERING

2.1 Control Target

A schematic diagram of the experimental device is

shown in Fig 2. Furthermore Table 1 shows physical

constants and variables used in this study.

Fig 2 schematic diagram

Table 1 physical constants and variables
character detail unit

θd Drive Disc angle [rad]

θl Load Disc angle [rad]

Jd Inertia of Drive Disc [kgm2]

Jl Inertia of Load Disc [kgm2]

τ Motor torque [Nm]

Kl The Belt Elasticity [Nm/rad]

cd Viscous Motor Friction [Nm/rad/s]

cl Viscous Load Friction [Nm/rad/s]

Ts Two transmitted torque [Nm]

2.2 Drive and Load disks Dynamics

Drive and Load discs Dynamics are derived by using

Newton’s motion equation as Eq.(1),(2).

Jdθ̈d(t) = −cdθ̇d(t) + Ts(t) (1)

Jlθ̈l(t) = −clθ̇l(t)− Ts(t) + τ(t) (2)



According to [2],[3], Transmitted torque T (t) is shown

as follows.

T (t) = Kl(θd(t)− θl(t) + θbacklash(t)) (3)

However, the rubber have internal damping as feature,

which this characteristic of material is known as viscous

coupling(internal damping). Therefore, two transmitted

torque can be expressed as Eq.(4).

Ts(t) = Kl(θd − θl + θbacklash) + σ(θ̇d − θ̇l + θ̇backlash)

= Kl

{
θd − θl + θbacklash +

σ

Kl
(θ̇d − θ̇l + θ̇backlash)

}
(4)

Here, θbacklash(t)[rad], σ[Nm/rad/s] are the backlash

angle function and the viscous coupling coefficient.

2.3 Dead-zone model

First, the backlash model is defined as the situation

illustrated in Fig 3[2].

Fig 3 Backlash model

Here, x, u, ueff , z, w are the state values, the con-

trol input, the effective control, the cost output, and

the disturbance. The backlash nonlinearity is captured

here using dead zone model. Here, define the case with

θbacklash = −α and θ̇backlash = 0 as Left contact and

the case with θbacklash = α and θ̇backlash = 0 as Right

contact. We say that there is contact if there is either

Left contact or Right contact. In case of Left contact,

Ts is expresses as Eq.(5).

Ts(t) = Kl(θd(t)− θl(t)− α) + σ(θ̇d(t)− θ̇l(t) + 0) > 0

(5)

In case of Right contact, Ts is expressed as Eq.(6).

Ts(t) = Kl(θd(t)− θl(t) + α) + σ(θ̇d(t)− θ̇l(t) + 0) < 0

(6)

In case of Non contact, Ts is expressed as Eq.(7)

Ts(t) = 0 (7)

Therefore dead-zone function is represented by Eq.(8).

Dα(t) =


E − α, E > α

0, |E| ≤ α

E + α, E < −α

(8)

E = θd(t)− θl(t) +
σ

Kl
(θ̇d(t)− θ̇l(t)) (9)

Where, α[rad] is backlash angle. Eq.(8) can be rewritten

as Eq.(10).

Dα(t) = θd(t)− θl(t) +
σ

Kl
(θ̇d(t)− θ̇l(t)) + θbacklash(t)

(10)

From Eq.(8)-(10), θbacklash(t) is described as Eq.(11).

θbacklash(t) =


−α, E > α

−E, |E| ≤ α

α, E < −α

(11)

2.4 State Space Representation

Let state variable x(t), input u(t), and disturbance

w(t) be Eq.(12),(13),and (14).

x(t) =
[
θd(t) θ̇d(t) θl(t) θ̇l(t)

]T
(12)

u(t) = τ(t) (13)

w(t) = θbacklash(t) (14)

From Eq.(1),(2),(4), and (11)-(14), the state-space rep-

resentation of belt-drive system is derived as Eq.(15).{
ẋ(t) = Ax(t) +B1w(t) +B2u(t)

y(t) = Cx(t)
(15)

A =


0 1 0 0

−Kl

Jd

cd+σ
Jd

Kl

Jd

cd
Jd

0 0 0 1
Kl

Jl

σ
Jl

−Kl

Jl
− cd+σ

Jl



B1 =


−Kl

Jd

0

0
Kl

Jl

 , B2 =


0
1
Jd

0

0

 , C =
[
0 0 1 0

]

2.5 Servo System

In this study, the servo system is used for removed

the steady-error. Let e(t)[rad] be the error between

the measurable out put y(t) and the reference r(t)[rad].

The state variable for the servo system is expressed as

Eq.(16).

xe =
[
x(t)

∫
e(t)

]T
(16)

The servo system can be expressed as follows.{
ẋe(t) = Aexe(t) +B1ewe(t) +B2eu(t)

y(t) = C1exe(t)
(17)

Ae =

[
A O

−C O

]
, B1e

[
B1 O

−C 1

]
, B2e =

[
B2

O

]

C1e =
[
0 0 1 0 0

]
, we(t) =

[
θbacklash(t)

r(t)

]



3 PARAMETER IDENTIFICATION

In this section, let us identify the viscous coupling co-

efficients σ. The damping ratio method for identifying

the parameter σ is used. Since viscous coupling is gen-

erated by expansion and contraction of the belt, this

parameter is identified by the technique as follows.

First, the Drive disk is not to be easily moved by hold-

ing the hand. Second, the Load disk is applied the force

to direction of rotation by the hand. Then, the Load

disk is released one’s hand. Finally we observe the ref-

erence of the Load disc. The result of experiment is

shown in Fig 4.

Fig 4 The reference of Load disk

The natural frequency ωn[Hz], damping coefficient ζ are

derived as follows.

ωn =

√
Kl

Jl
(18)

ζ =
1

2π
log10

X0

X1
(19)

Here, X0, X1 are the initial amplitude and the first

amplitude. From Eq.(18) and Eq.(19), all viscous

c[Nm/rad/s] given the Load disk is expressed as the fol-

lowing equation.

c = 2Jlωn × ζ (20)

Therefore, the viscous couping coefficient is given as fol-

lows.

σ = c− cl ≃ 0.0171 (21)

4 CONTROL DESIGN

In this section, the controller which the robust stabil-

ity for the system against variation of the inertias Jd and

Jl is designed. the robust stability can be guaranteed

theoretically by solving linear matrix inequality (LMI)

conditions with polytopic representation.

4.1 Polytopic Representation

The ranges of the variation parameters Jd and Jl is

represented as following equation.

Jd ∈ [Jd,min, Jd,max] = [4.2 ∗ 10−4, 5.5 ∗ 10−3] (22)

Jl ∈ [Jl,min, Jl,max] = [8.3 ∗ 10−3, 2.8 ∗ 10−2] (23)

Then, the combinations of fluctuation are shown as fol-

lows.

{Jd,min, Jl,min}, {Jd,max, Jl,max},
{Jd,max, Jl,min}, {Jd,min, Jl,max}

By using polytopic representation, the end points of the

variation range of matrices Aei, B1ei, B2ei are shown as

follows.

Aei(i = 1, 2, 3, 4), B1ei(i = 1, 2, 3, 4), B2ei(i = 1, 2, 3, 4)

4.2 H∞ Control

From Eq.(15), the general plant is derived as follows.{
ẋe(t) = Aexe(t) +B1ewe(t) +B2eu(t)

y(t) = C2xe(t) +D2u(t)
(24)

C2 =

 Wx 0

0 We

0 0

 , D2 =

 0

0

Wu


Here, Wx ≻0, We ≻0, Wu ≻0 are weight matrices for

the state variable, integration of error and input. Let us

consider to minimize H∞ norm from disturbance we(t)

to the cost output z(t). H∞norm is defined as follows.

∥Gzw(s)∥ = sup
∥z(t)∥2
∥we(t)∥2

(25)

If these exist ∥Gzw(s)∥ ≺ γ∞, the system is stabilized.

4.3 LMI Condition

The LMI condition to derive the H∞ controller stabi-

lizing the system are given as follows.

Theorem: If these exist matrices X and Y satisfying

the following LMI conditions, the system is stabilized

by u(t) = KXe(t) = Y X−1xe(t).

minimize : γ

subject to X ≻ 0

 XAT
ei +AeiX + Y TB2ei +B2eiY XCT

2 + Y TDT
2 B1ei

C2 +D2Y −γ∞I 0

BT
1ei 0 −γ∞I

 ≺ 0

(i = 1, 2, 3, 4)

(26)



5 SIMULATION

In this section, the effectiveness of the proposed

method is illustrated by simulations. In this study, the

backlash angle parameter α[rad] is set as 0.1[rad]. Addi-

tionally, the reference of the Load disk angle θl is
π
2 [rad],

and given by the step input. The simulation results are

shown in Fig 5-8.

Fig 5 Jd,min,Jl,min

Fig 6 Disturbance θbacklash

Fig 7 Input(Jd,min,Jl,min)

Here, the solid line, the red line, the blue line shows

the reference, the result when Load disc angle is con-

trolled by the H∞ controller, and the result when Load

disc angle is controlled by the robust LQ controller

Fig 8 Jd,max,Jl,max

that the backlash are not guaranteed. As can be seen

in Fig.5-8, the Load Disc angle follows the reference

with the proposed method, and Robust H∞ controller

suppresses the vibration(the limit cycle) caused by the

backlash than Robust LQ controller. Additionally, even

though the system has parameter variation, the disc sta-

bly follows the reference.

6 CONCLUSION

In this paper, the viscous coupling is considered as

the transmitted torque, obtained the exact backlash an-

gle function by using the dead-zone model, and the ro-

bust H∞ controller is designed for belt-drive with the

backlash and parameter variation. The robust stabil-

ity in the prescribed variation range of the inertia of

load and drive disk is guaranteed theoretically by us-

ing polytopic representation. The backlash considered

as the disturbance is guaranteed by using H∞control ,

and the problem is formulated as solving a finite set of

linear matrix inequality (LMI). The effectiveness of the

proposed method is illustrated by simulation by com-

paring with the robust LQ controller that the backlash

are not guaranteed. The proposed method suppresses

the vibration of the Load disk by the backlash than the

robust LQ controller.
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