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Abstract

This research describes tracking control of Control
Moment Gyroscope(CMG) based on State Dependent
Riccati Equation(SDRE).Motion equations of CMG
have nonlinearity such as trigonometric functions.SDRE
method is simple ,and it is effective for nonlinear sys-
tems such as CMG. However, since trade-off relation
between control period and calculation time of Ricatti
equation, it is hard to apply it to real systems. In addi-
tion, it is difficult to ensure the global stability of SDRE
method. To solve these problem, a function approxima-
tion and SOS matrix are adapted. Firstly, a function
approximation is applied to controller gains of SDRE
method. SDRE is solved at each point and obtained con-
troller gains in closed boundary sets of varying param-
eters. To derive the approximated function, the least
squared method is applied to obtained controller gains.
Secondly, stability region is discussed. Two-dimensional
stability is ensured by Linear Matrix Inequalities(LMI)
condition. However, as mentioned above, motion equa-
tions of CMG have nonlinearity, so LMI can not be
solved directly. Therefore SOS relaxation is applied
to LMI conditions, and the stability region of approxi-
mated SDRE controller is indicated. Finally, the effec-
tiveness of SDRE controller is illustrated by simulations
and experiments.

1 Introduction

Control Moment Gyroscope(CMG) is used as actu-
ators for large space craft, and it can generate larger
torque than conventional actuators such as reaction
wheels.Nonlinear motion equations of CMG contain
many trigonometric functions and squared terms,and
the controllability of the system is not ensured by an
approximated system at equilibrium point. Therefore it
is hard to apply the linear control theory. In previous re-
searches, backstepping approach is applied to CMG[1],
approximated model is adapted to control of CMG[2]
and nonlinear optimal controller is applied CMG[3]. In
generally, CMGs are used in cooperative control, but
this study treat CMG as a simple system.
Since the 1990s, State Dependent Riccati Equation

(SDRE) method attracted to attentions[5], because it
is effective to control nonlinear systems like inverted
pendulum[6] and AUV[7]. SDRE method is difficult
to apply to real systems,because solving the riccati
equation need high-performance calculator and much
time. Recently, since various methods are announced
to shorten a calculation time of solving riccati equation,
application to systems that need fast-response is a mi-
nority. Therefore, a function approximation is applied
to control gain from SDRE method, but control perfor-
mance are harmfully influenced by largely error between
the function interpolation for control gains and current
state. For the reasons stated above, it is hard to apply
SDRE method to real systems. Moreover stable guaran-
tee for SDRE method is open problem. Global stability
for SDRE method are guaranteed a particular form of

closed loop in recently research[4].
Two input and three state system is controlled in this

paper, so one of the rotational body in CMG is rocked.
Firstly, the motion equations of CMG contain nonlin-
ear terms such as trigonometric function and squared
term are convert to state-dependent linear representa-
tion. Secondly, SDRE method is applied to CMG, and
derived control gains are approximated by function ap-
proximation using the least squared method. Thirdly,
a stability of the system are ensured by SOS matrix
based on Lyapunov function. Lastly, the effectiveness
of SDRE method for CMG is illustrated by simulation
and experience. Friction disturbances are considered in
simulation.

2 Modeling

The schematic model of Model 750 CMG is shown
in Fig1. Rotor1 and Gimbal2 are variable speed
CMG(VSCMG), and they are driven by DC motors. T1

is torque of Motor1 which spins Rotor1,and T2 is torque
of Motor2 which tilts Gimbal2. Input torques T1 and T2

are restricted as follows:

|T1| < 0.6[Nm], (1)

|T2| < 2.4[Nm]. (2)

Gimbal4 has no driven sources, so it is driven by the
gyro torque generated by VSCMG.The control purpose
is to follow Gimbal4 the reference without error. Vari-
ables q1, q2 and q4 are angles of Rotor1, Gimbal2 and
Gimbal4, respectively. The motion range of Gimbal2 is
defined 0 < q2 < π

2 in this study. Variables ω1, ω2 and
ω4 are angular velocities of Rotor1, Gimbal2 and Gim-
bal4 respectively. Gimbal3 is fixed, so the angle and
the angular velocity of Gimbal3 are zero. In this study,
the centroids of all gimbals are center of Rotor1, and
the effectiveness of gravity is ignored. Then, Nonlinear
motion equation is indicated as follows:

Figure 1 figure of CMG
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ID, JD：Moment of inertia of Rotor1[kg・m2]
IC , JC ,KC：Moment of inertia of Gimbal2[kg・m2]
KB,KA：Moment of inertia of Gimbal3 and Gimbal4[kg・
m2]
J1 = JC + JD −KC − ID
J2 = KA +KB +KC + ID.

2.1 Optimal Servo System Based on SDLR

State Dependent Linear Representation(SDLR)[4] is
adapted to apply SDRE method. The motion equations
(3) are converted to SDLR[4]. The friction disturbances
are in rotational axes of CMG[1]. Therefore to follow the
reference without a state error, an optimal servo system
is adopted. An optimal servo system is indicated as
follows: {

ẋe(t) = Ae(x)xe(t) +Be(x)u(t)

ye(t) = Cexe(t)
(5)

xe = [

∫
(qref2 − q2)

∫
(qref4 − q4)

qref2 − q2 qref4 − q4 q2 q4 ω1 ω2 ω4 ]T,

u = [T1 T2], (6)

Ae =

[
O2×2 I2×2 O2×3

O2×2 O2×3 −I2×2

O3×2 O3×2 −M−1N

]
,

Be =

[
O4×2

M−1G

]
,

Ce = [ O2×2 I2×2 O2×3 ] .

Since Ae(x) and Be(x) contain state variables q2, ω2

and ω4, state dependent matrices Ae(x) and Be(x) de-
pend on state variables. State dependent matrices are
nonunique, and the control performance depends on the
choice of them. State dependent matrices can be cho-
sen freely, but the system that contains them must be
controllable.

3 Control Synthesis

3.1 Tracking Controller Design Based on SDRE
Method

Control gains of SDRE method are obtained by cal-
culating Riccati equation freezing state variables every
control period. Shortcoming of SDRE method is to need
enough calculating time for solving Riccati equation. On
the other hand, a system is controlled by the optimal
input at all times, because CPU of system can get the
latest information of plant states in real time. Therefore
nonlinearities of a system can be simply treated. SDRE

method is designed by SDLR and weight matrices. A
cost function is defined as follows:

J =

∫ ∞

0

(xe(t)
TQexe(t) + u(t)TReu(t))dt (7)

Positive definite matrix P (x) is obtained by solving Ric-
cati equation(8).

A(x)TP (x) + P (x)A(x) +Qe (8)

−P (x)B(x)R−1
e B(x)TP (x) = O

An optimal input u(x) that minimize the cost func-
tion(7) is obtained from Riccati solution P (x). The op-
timal input u(x) is indicated as follows:

u(x) = −R(x)−1B(x)TP (x)x(t). (9)

where weight matrices Qe, Re are defined as constant.
They are decided by try and error.

Qe = diag[3 30 1 25 0.01 0.1 0.1] Re = diag[10.2 0.3]
(10)

State feedback controller are defined as follows:

u(t) = Kpx(t) +Ki

∫
(yrefe − ye). (11)

where Kpand Ki are controller gains given by SDRE
method. The positive definite matrix P (x) are obtained
by applying the method of Arimoto・Potter to Hamilton
matrix as follows:

H(t) =

[
Ae(x) −Be(x)R

−1
e Be(x)

T

−Qe −AT
e (x)

]
. (12)

Algorithm of SDRE method to obtain the controller
gains is indicated as follows.
1. Current states are measured in a control period.

2. State dependent matrices Ae(x), Be(x) are derived
from current states.

3. Riccati solution P (x) is given by calculation of
SDRE.

4. The optimal input u(t) is obtained.

5. The input torque u(t) is continued to outputting to
a system during a control period.

6. Back to 1.

3.2 Function Approximation

As mentioned in section1, since a calculation cost of
SDRE method is large, it is hard to apply to real sys-
tems. In this study,a function approximation is adopted
for overcoming the problem. Varying parameters of
SDLR model are q2, ω2 and ω4, but ω2 is small enough
to ignore, so it is ignored in the function approximation.
The controller gains are approximated two-dimensional
function on basis q2, ω4. Firstly, the controller gains are
obtained by solving SDRE at each point that enough
small interval in closed boundary sets. Next, the least
squares method is applied to the controller gains ob-
tained by SDRE method,and controller gains approxi-
mated two-dimensional function.

4 Stability Analysis

A stability guarantee is an open problem of SDRE
method. The stability of CMG controlled by SDRE



method is discussed. The stability is ensured by the ap-
proximated controller gains and LMI condition relaxed
by SOS. Firstly,a function approximation is adopted to
control gains obtained by SDRE method. Secondly,
LMI condition is defined, and relaxed to SOS condition.
Lastly,two-dimensional stability is confirmed in closed
boundary set.

4.1 SOS Formulation

A robust stability is guaranteed by Linear Matrix In-
equality (LMI). LMI condition is indicated as follows:

P (x) > 0, (13)

P (x)Acl(x)
T +Acl(x)P (x) < 0, (14)

Acl(x) = A(x) +B(x)K(x). (15)

If positive definite matrix P (x) exist ,and it is satisfied
above LMI condition, the closed loop system Acl(x) is
a robust stable. However, to obtain the solution of the
LMI condition, infinite number of LMI conditions must
be solved. In this study, to avoid the problem, above
conditions are relaxed based on the result [8]. The LMI
conditions are formulated to SOS conditions as follows:

P (x)− g1(x)Sa1(x)− g2(x)Sa2(x) (16)

−g3(x)Sa3 − ϵI > 0

−P (x)Acl(x)
T −Acl(x)P (x) (17)

−g1(x)Sb1(x)− g2(x)Sb2(x)− g3(x)Sb3(x)− ϵI > 0

where Sai(x), Sbi(x)(i = 1, 2, 3) are SOS matrices.
gi(x)(i = 1, 2, 3) are closed boundary sets of varying
parameters q2, ω2 and ω4 respectively. SOS condition is
ensured in the closed boundary sets. The closed bound-
ary sets are defined as follows:

g1(x) = (q2 + q2)(q2 − q2) (18)

g2(x) = (ω2 + ω2)(ω2 − ω2) (19)

g3(x) = (ω4 + ω4)(ω4 − ω4). (20)

SOS relaxation can be applied to LMI condition when
the mathematical model is represented only polynomi-
als. Since motion equations of CMG contain trigono-
metric functions, trigonometric functions must be rep-
resented to polynomial.

4.2 Transforming to Polynomial

To apply SOS relaxation for LMI condi-
tion,trigonometric functions are express polynomial.
Firstly, sine is defined as follows:

sin(q2) = α(t) (21)

where α(t) is a varying parameter in −1 < α(t) < 1.
Then,cosine is expressed as follows:

cos(q2) =
√

1− α(t)2. (22)

Since square root is not polynomial, the above equation
is applied Taylor series expansion to apply SOS relax-
ation. Then, cosine can be expressed as follows:

cos(q2) ∼= 1− α(t)2

2
. (23)

Sine and cosine applied polynomial approximation are
used in SOS condition.

4.3 Stability Region

In this section, derived stability regions is indicated.
sine and cosine are represented sin q2 = α, cos q2 =√
1− α2 ∼= 1 − α(t)2/2 in motion equations of CMG,

and semi definite problems (16)(17) are solved by SOS
matrix. The result is indicated as follows. The point in-
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Figure 2 stability region of CMG (sin q2 = α(t), cos q2 =
1− α(t)2/2)

dicates that SOS condition (16)(17) is satisfied. As can
be seen Fig. 2, when CMG is controlled in the stability
region, the robust stability is ensured.

5 Simulation and Experiment

5.1 Simulation Setting

In this section,the effectiveness of SDRE method for
CMG is illustrated by simulations. SDRE controller are
compared with linear quadratic servo controller by sim-
ulations. Tracking orbits are defined as follows:

qref2 rad =


π
18 (t < 4)
− 1

2 (sin(
π
4 t−

π
2 )− 1) (4 ≤ t ≤ 8) + π

18
1 + π

18 (8 < t)
(24)

qref4 rad =

 0 (t < 4)
− 1

2 (sin(
π
4 t−

π
2 )− 1) (4 ≤ t ≤ 8)

1 (8 < t)
(25)

Initial values are defined as q0 = [q1 q2 q4] = [0 π
18 0].

The effectiveness of friction can not be ignored for
CMG[1]. Therefore friction is considered in simulations.
Fs, Fc and Fv are coefficients of Static friction, Coulomb
friction and Viscous friction respectively. Friction dis-
turbance varies by the angular velocity as follows:

Fi =

{
Fis (ωi = 0)
Ficsgnωi + Fivωi(ωi ̸= 0)(i = 1, 2, 4).

(26)

Table 1 Parameter of friction coefficient
Fis[Nm] Fic[Nm] Fiv[Nm・sec/rad]

Rotor1 0.045600 0.045465 0.0002983
Gimbal2 0.050800 0.050556 0.0543675
Gimbal4 0.030819 0.031900 0.0009627



5.2 Simulation Result

Simulations of SDRE controller are shown in this sec-
tion. SDRE controller is compared with a nonlinear con-
troller designed by backstepping approach by the simu-
lations. In this section, the simulation results of approx-
imated SDRE method are shown in Fig. 3-6. The solid
line, the dashed line and the dotted line show the simu-
lation of SDRE controller, the nonlinear controller and
the reference, respectively. As can be seen Fig. 3 and
4, the response of SDRE controller tracks the reference
without error. As can be seen Fig. 4, SDRE controller
and nonlinear controller are tracking to the reference al-
most at the same time at angle of Gimbal4 that is the
main control target. Since SDRE method is similar to
Linear Quadratic Regulator control, the input torques
of SDRE controller are smaller than nonlinear controller
in Fig. 5 and 6.
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Figure 3 Simulation of an-
gle of Gimbal2
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Figure 4 Simulation of an-
gle of Gimbal4
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Figure 5 Simulation of
torque of Motor1
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5.3 Experiment Result

The experiment results are shown in Fig. 7-10. The
solid line and the dashed line show the experiment re-
sult and the simulation result respectively. As can be
seen Fig.7 and 8, the response of approximated SDRE
controller tracks the reference without error. As can be
seen Fig. 9 and 10, input torques are in the restricted
ranges.

6 Conclusion

In this study, tracking controller of CMG is designed
by SDRE method. The nonlinear model of CMG is
adopted , and SDRE method is approximated the two-
dimensional function. The robust stability region is
confirmed by LMI condition. The LMI condition are
relaxed by SOS matrices, and trigonometric functions
in the mathematical model of CMG are approximated
polynomial to apply SOS relaxation. Lastly, the effec-
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Figure 7 Experiment of an-
gle of Gimbal2
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Figure 8 Experiment of an-
gle of Gimbal4
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Figure 9 Experiment of
torque of Motor1
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tiveness of SDRE controller is illustrated by simulations
and experiments.

References

[1] C. Murai, S. Washizu, I.Takami and G. Chen: “Non-
liner Control for First-Order Nonholonomic System
with Hardware Restriction and Disturbance”, 10th
Asian Control Conference (ASCC), ,2015

[2] H.S.Abbas,S.M.Hashemi,A.Ali and H.Werner:”LPV
Gain-Scheduled Control of a Control Moment Gyro-
scope.”, American Control Conference,2013

[3] K.Ishikawa and N.Sakamoto:”Optimal control for
control moment gyros-center-stable manifold ap-
proach”,The 53rd IEEE Conference on Decision and
Control,2014

[4] T.Cimen:”State-Dependent Riccati Equation
(SDRE) Control: A Survey”,The 17th IFAC World
Congress, 2008

[5] J. R. Cloutier, C. N. D ’Souza, and C. P.
Mracek:“Nonlinear Regulation and Nonlinear H∞
Control via the State Dependent Riccati Equa-
tion Technique: Part1,Theory”,International Con-
ference on Nonlinear Problems in Aviation and
Aerospace,1996

[6] M.Izutu and K.Furuta: “Design of a Model Fol-
lowing Stabilizer for Furuta Pendulum”, The 50th
Japan Joint Automatic Control Conference , 2007

[7] Mugdha S. Naik and Sahjendra N. Singh: “State-
dependent Riccati equation-based robust dive plane
control of AUV with control constraints”, Ocean En-
gineering, Vol. 34, No.1112, pp.1711-1723, 2007

[8] H.Ichihara:“Control System Analysis and Synthesis
Based on Sum of Squares”,Systems, control and in-
formation, 2011


