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1 Abstract

In this paper, the Robust controller and Gain-
Scheduling Observer are designed for Twin Rotor He-
licopter including unmeasurable slung load angle. De-
signing the Robust state feedback controller, Descrip-
tor representation and Linear Functional Transforma-
tion (LFT) are applied. Designing Gain-Scheduling Ob-
server, Descriptor, LFT and pole placement condition
are applied on the separation theorem. The effectiveness
of proposed method is verified by simulation comparing
the nominal controller which control only airframe. The
proposed controller’s problems is confirmed by experi-
ment. At last, the problem of proposed controller and
the points of improvement is mentioned.

2 Introduction

The helicopter can land without a runway, and stay in
the air (hovering). For this convenience, the helicopter
is used by the load transport, military activity, rescue
operation and so on. Also, the helicopter can not only
carry humans and a load but also hang a load or roll up
and down by wire. On the other hand, the helicopter
flight slung a load is more dangerous than the general
flight. Actually, the influence of strong wind, a slinging
load swings largely, an accident may occur. Accord-
ingly, several papers have been reported for flight sta-
bilization considering slung load swing. Bisgaard pro-
posed that estimation of slung load swing angle by im-
age processing[1]. Sonobe. M is applied delay feedback
of helicopter’s output not using slung load estimated
value[2]. However, in order to estimate by image pro-
cessing is needed a additional sensor, and delay feed-
back has a disadvantages that convergence time is long.
There, we consider the output feedback using estimated
value of slung load from helicopter’s input and output.
Advantage of this method is not needed a additional
sensor and it can be expected to respond quickly to the
load swing.
The purpose of this study is to design a controller sup-
pressing a slung load swing while being affected by the
wind disturbance. In this study, variation of rope length
by rolling up and down is also verified during helicopter
flight. As a control target, Twin Rotor Helicopter ex-
perimental unit produced by Quanser is used. The state
of the slung load can not be measured directly the same
as actual helicopter, so we consider stabilizing closed
loop system by output feedback control theory using Ro-
bust state feedback and Gain-scheduling Observer[3][4].
First, the state feedback gain that the varying param-
eter is rope length is designed. Designing Robust state
feedback controller, Descriptor representation and Lin-
ear Functional Transformation (LFT) are applied. Op-
timal regulator theoretical problem is reduced to LMIs,
and stability is guaranteed using polytope representa-
tion. Next, the Gain Scheduling Observer gain in which
the scheduling parameter is rope length is designed on
the separation theorem. For designing Gain-Scheduling
Observer, Descriptor and LFT are applied. The pole

placement condition is added to the LMI condition to
design to set the real part of the eigenvalue of the es-
timated error system rather than the real part of the
eigenvalue of the merged system.

3 Modeling

The schematic diagram of Twin Totor Helicopter is
shown in Figure 1.

Figure 1 Schematic diagram of Twin Totor Helicopter

Controlled plant has two rotors in front and behind
and it can maintain an airframe attitude to gain a proper
input.ϵ[rad] is the angle in vertical plane named eleva-
tion angle and λ[rad] is the angle in horizontal plane
named traveling angle and ρ[rad] is the pitch angle. In
addition, θ[rad] is the alung load swing angle and let
Mp[kg] is a load mass slung by a rope from the air-
frame. Then, l[m] is the rope length which is the varia-
tion parameter. A state variable of the plant is defined
as x(t)=[ ϵ(t) ρ(t)λ(t) θ(t) ϵ̇(t) ρ̇(t) λ̇(t) θ̇(t) ]T . An input
is defined as u(t) = [uf (t)ub(t) ]

T . The state space rep-
resentation is given as follows.

{
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2)ẋ(t) = A0(l)x(t) +B0u(t)
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4 Control system design

In this study, the robust controller and Gain-
Scheduling Observer are designed. First, the robust con-
troller design is explained.

4.1 Servo system

In order to follow the output ϵ(t) and λ(t) to the ref-
erence without error, servo system is designed. The er-
ror between the observed output y(t) and the reference
r(t) is e(t). Integrated value of e(t) between 0 to t is∫
e(t)dt. A new state variable of the plant is defined

as xe(t) = [
∫
eϵ(t)dt

∫
eλ(t)dt x(t)]

T , a new system in-
cluding servo system is as follow.{

Ee(l, l
2)ẋe(t) = Ae(l)xe(t) +Beue(t)

e(t) = Cexe(t)
(2)

Ee =

[
I O
O E0(l, l

2)

]
, Ae =

[
O −C
O A0(l)

]
Be =

[
O
B0

]
, Ce = [ O −C ]

4.2 Descriptor representation

Eq.(3) has a time varying parameter at matrix Ee. For
system with such characteristic, we can derive calcula-
ble LMI conditions by introducing redundant descrip-
tor variables. Descriptor variables is defined as xd =
[ xe(t) ϵ̈(t) ρ̈(t) λ̈(t) θ̈(t) ]

T , a new system is as follow.

Edẋd(t) = Ad(l, l
2)xd(t) +Bdu(t) (3)

Ed = diag(1 1 1 1 1 1 1 1 1 1 0 0 0 0)

Ad =

 0 −Ce 0 0
0 0 I 0
0 0 0 I
0 A0(l) 0 −E0(l, l

2)

Bd =

[
0
Be

]

4.3 Linear Functional Transformation (LFT)

Matrix Ad has a l2 which is a second team of the vari-
ation parameter. In this case, matrix Ad is transformed
by introducing Linear Functional Transformation for de-
riving calculable LMI conditions. Where, let scheduling
parameter is ∆ = l, Matrix Ad(l) which is equivalent to
Matrix Ad is as follow.

Ad(l) = An +Bδ∆Cδ (4)

Then, the system which is equivalent to Eq.(3) is as

follow.
Edẋd(t) = Anxd(t) +Bδωδ(t) +Bdu(t)

zδ(t) = Cδxd(t)

ωδ(t) = ∆zδ(t)

(5)

Bδ = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1]T

Cδ = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 −Mpl]

Here, new state variable of the plant is defined as
xl(t) = [xd(t) zδ(t)]

T , we can derive calculable LMI
conditions. After the transformed system is as follow.

Elẋl(t) = Al(l)xl(t) +Blu(t) (6)

Al(l) = Al0 + lAl1

=

[
An Bδ∆
Cδ −I

]
El =

[
Ed 0
0 0

]
, Bl =

[
Bd

0

]
4.4 Polytopic representation

Let Upper and lower bounds of the varying parameter
l be lm and lM . The parameter is defined as follows.

l = [l , l] = [lm , lM ] (7)

From Eq.(7), polytopic representation of matrix Al(l)
can be described as follows.

Al(l) = λAl(lm) + (1− λ)Al(lM )λ ∈ [0 , 1] (8)

By using polytopic representation Eq.(8), designing
problem of the control system can be formulated as a
finite set of LMI conditions.

4.5 Robust controller design

From, Eq.(6), the system including Robust controller
Kl is as follows.{

Elẋl(t) = Al(l)xl(t) +Blu(t)

u(t) = Klxl(t)
(9)

To guarantee the quadratic stability for the system, the
following Lyapunov function V (t) is dened as V (xl(t))=
xT
l (t)ElPxl(t), so stability condition for the system can

be described as follows.

V̇ (xl(t)) = He{PT (Al(l) + BlKl)} ≺ 0 (10)

If there exist P and Kl such that Eq.(10) holds, then
the closed loop system Eq.(10) is stabilized by the state
feedback u(t) = Klx(t). In order to derive the stabi-
lizing state feedback, the following quadratic stability
condition is considered.

V̇ (xl(t)) = −xT
l (t)(Q+KT

l RKl)xl(t) ≺ 0

= He{PT (Al(l) + BlKl)}+ (Q +KT
l RKl) ≺ 0

(11)

Where, Q = QT ⪰ 0 and R = RT ≻ 0 are weight matri-
ces. The inequality Eq. (11) is equivalent to Riccati’s
differential inequality. Therefore, this inequality can be
regarded as problem of optimal regulator that minimizes
the following cost function J .

J =

∫ ∞

0

(xl(t)
TQxl(t) + uT (t)Ru(t))dt (12)



If there matrix Xl = P−1 such that the inequality Eq.
(11) holds, a upper bound on the cost function is repre-
sented as follows.

J ≺ xT
l (t)Pxl(t) = xT

l (t)X
−1
l xl(t) (13)

For stabilizing sysytem Eq.(9), LMI condition’s which
derive LQ controller minimize the cost function J can
be obtained as follows by Eq.(11) - Eq.(13) using schur
complement. If there exist matrix ElXl = (ElXl)

T and
Yl = KlXl is satisfying the LMI conditions Eq.(14) -
Eq.(17), state feedback u(t) = Kx(t) stabilizes the sys-
tem Eq.(9). He{Al(l)Xl + BlYl} (QXl)

T Y T
l

QXl −I O
Yl O −R−1

 < 0(14)

[
W I
I X11

]
> 0 (15)

Trace(W ) < γ2 (16)

Then, Considering structure of the matrix ElXl =
(ElXl)

T , candidates of lyapunov matrix Xl and variable
matrix Yl are restricted as Eq.(17).

Xl =

[
X11 0
X21 X22

]
, Yl = [ Y11 0 ] (17)

Robust LQ controller is as follow.

K = Y11X11
−1 (18)

4.6 Full order obsever

In the previous section, the state feedback controller is
designed under the condition that all the state variables
can be observed. However, the actual experimental unit
can acquire only the value of ϵ(t), ρ(t), λ(t) by using sen-
sors. Therefore, full order observer is used to estimate
the others state variables. A block diagram of output
feedback using the full order observer is shown in Figure
2.

Figure 2 output feedback using the full order observer

From Figure 2, the system of the output feedback is
as follows.{
E0(l, l

2) ˙̂x(t) = A0(l)x̂(t) +B0u(t)− L(l)(η(t)− C̄x̂(t))

u(t) = Kx̂(t) +Gω(t)
(19)

Using the separation theorem, the state feedback gain
K and the servo gain G and the observer gain L(l) can

be designed independently. In order to stabilize the esti-
mated error system is defined as follows. Here, the state
variable ξs is [ x(t) ϵ̈(t) ρ̈(t) λ̈(t) θ̈(t) zδ(t)]

T .

Esξ̇s(t) = (As(l) + L(l)C̄s)ξs(t) (20)

To guarantee the quadratic stability for the above sys-
tem, the following Lyapunov function Vs(t) is considered
as Vs(ξs(t)) = ξTs (t)EsPsξs(t). If EsPs = (EsPs)

T ⪰ 0

exists, V̇s(xs(t)) ≺ 0 becomes asymptotically stable at
the equilibrium point. In addition, Letting Xs = PT

s

and L(l) = Xs
−1H(l). EsPs = (EsPs)

T and V̇s(ξs(t))
are rewritten as follows.

EsXs = (EsXs)
T ⪰ 0 (21)

He{Xs(As(l) +H (l)C̄s)} ≺ 0 (22)

In this time, in order to design the real part of the eigen-
value of the estimated error system to be more negative
than -5, pole placement condition is added at LMI con-
dition Eq.(22).

He{XT
s (As(l) +H (l)C̄s)}+ 2 ∗ 5 ∗ EsXs ≺ 0 (23)

Then, Considering structure of the matrix EsXs =
(EsXs)

T , candidates of lyapunov matrix Xs is re-
stricted.

Xs =

[
Xs11 0
Xs21 Xs22

]
(24)

Variable matrix H(l) is defined as follows.

H(l) =

[
H11

0

]
+ l

[
H21

0

]
(25)

The Gain-Scheduling Observer is as follow.

L(l) = Xs
−1
11 (H11 + lH21) (26)

From above theories, the poles of state feed back system
and the estimated error system are derived as Figure 3.
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Figure 3 Eigenvalue of merging system

5 Simulations

In this section, the verification of the proposed method
is illustrated by comparing nominal controller.



5.1 Rolled up a rope

In simulation, the rope is rolled up between 2.0[s] to
12.0[s]. Upper and lower bounds of the varying param-
eters are assigned as l ∈ [0.45, 1.0]. This is a simula-
tion that wind disturbance is added for a Twin Rotor
heliconter during rolled up a rope. Here, Nominal writ-
ten in the simulation grahp is only body control con-
troller. Proposed is controller that we design without
using Gain-Scheduling Observer. Figure 4 and Figure
5, are slung load swing and pitch angle graph. From
Figure 4, slung load swing is suppressed than Nominal
controller by moving pitch angle according to slung load
swing. But, Using Gain-Scheduling Observer, airframe
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Figure 4 Slung load swing
angle
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Figure 5 Pitch angle

is moved largely. This result is assumed that slung load
angle of the estimation accuracy is low or the feedback
gain response is excessive for slung load angle.

6 Experiment

From the simulation results, proposed controller has
some points of uncertainty. First, we confirmed esti-
mation accuracy of Gain-Scheduling Observer by using
nominal controller for experimental unit equipped with
a slung load. The experimental results are shown Fig-
ure 6 and Figure 7. Here, Actual value is measured by
a angle sensor.
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Figure 6 Estimated slung
load swing angle (l=0.45)
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Figure 7 Estimated slung
load swing angle (l=1.0)

From Figure 6 and Figure 7, it can be seen that the
swing can be estimated although the slung load angle is
small. This result is assumed that model error or low
estimation accuracy is occurring. Next, we verified the
proposed controller, however helicopter is not stabilized.
Then, in order to verify that the feedback gain response
is excessive for slung load angle, estimated values of θ
and θ̇ is reduced by division.The result is from Figure 8
to Figure 11. In this experiment, the situation rolling up
a rope could not prepare, so we experimented in upper

bound an upper bound of parameter l. Figure 8 and
Figure 9 are slung load swing angle graph, pitch angle
graph in the lower bounds l = 0.45. Figure 10 and Figure
11 are slung load swing angle graph, pitch angle graph
in the lower bounds l = 1.0.
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Figure 8 Slung load swing
angle(l=0.45)
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Figure 9 Pitch angle
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Figure 10 Slung load swing
angle(l=1.0)
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7 Conclusion

In this paper, the Robust controller and Gain-
Scheduling Observer are designed for Twin Rotor Heli-
copter including unmeasurable a slung load angle. The
effectiveness of proposed method is confirmed in exper-
iment by gain turning. However proposed controller is
not stabilized without gain turning. The reason is that
the feedback gain response is excessive for slung load an-
gle. For the points of improvement, eliminating model
error and designing a controller that response is not too
excessive for slung load angle.
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