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1 Introduction

The purpose of this study is to control attitude of the
rotor which is supported without contact by the active
magnetic bearing (AMB). In general, the model of the
supported rotor by the AMB is represented as the rigid
model [1][2]. However, at the high angular velocity, the
resonance must be considered when the controller is de-
signed. Furthermore, the rotor is treated as the flexible
rotor to design the controller. Therefore, the finite ele-
ment method (FEM) is used to derive the mathemati-
cal model considering the flexible mode of the rotor [3].
For the derived mathematical model, controller design is
difficult because the derived model by using FEM tends
high order. Therefore, the order of the derived math-
ematical model is reduced to design controller easily.
The mode transformation is used to reduce the order of
the model [4]. The physical coordinates are transformed
to the mode coordinates by using the mode transforma-
tion. Furthermore, the each resonance mode can be rep-
resented by the modal motion. The angular velocity is
increased to the operational velocity. In this study, the
operational velocity is higher than the 1st resonance fre-
quency. Therefore, the controller considering the rigid
mode and the 1st resonance mode is designed.

The major causes of vibration are the gyroscopic ef-
fect and the imbalance of the rotor. Here, the gyroscopic
effect is proportional to the angular velocity. Further-
more, the force and torque caused by the imbalance are
proportional to square of the angular velocity. The vi-
bration caused by the imbalance is represented by the
periodic disturbance. When the angular velocity of the
rotor which has the imbalance coincides with the natu-
ral frequency of the rotor, resonance occurs. Applying
balancing to the rotor is one of the method to prevent
resonance [5]. However, this paper proposes the con-
trol method to suppress the vibration. To design con-
troller is difficult if there exist some varying parameters
which depend on the angular velocity of the rotor in the
mathematical model because the robust stability must
be guaranteed for the prescribed range of the angular
velocity. It is well known that the robust stability is
guaranteed by the RLQ and H∞ control. Especially,
H∞ control is effective for the periodic disturbance [6].

General procedure of the controller design for the flexi-
ble rotor are to derive the mathematical model, to trans-
form the coordinates, to reduce the order and to design
the controller. To date, the controllers for the reduced
model constructed by the rigid mode and some flexible
mode are designed [7][8]. However, the state space rep-
resentation which has no relationship between the rigid
mode and the flexible mode can be derived. Therefore,
the controllers designed for the each mode can utilize
the their advantages.

In this study, the method of the controller design is
proposed such that the controller is made by combining
the two controllers after they are designed for the rigid
mode and the 1st resonance mode, independently. In the
previous study [6], the result is obtained such that the

controller gain derived by H∞ controller is higher than
the controller gain derived by H∞ controller using LFT
and descriptor representation. In other wards, the high
gain controller is effective for the suppressing vibration
and the low gain controller is effective for the suppress-
ing the input current. Therefore, H∞ controller using
LFT and descriptor representation is designed for the
rigid mode to suppress the input current and H∞ con-
troller is designed for the 1st resonance mode to suppress
the vibration, respectively. After that, the controller is
designed by coupling these controllers. The effectiveness
of the proposed controller is illustrated by the simula-
tion.

2 Modeling

Figure 1 shows the flexible rotor. The AMB has four

Figure 1 Flexible Rotor

electromagnets and two gap sensors at the both ends of
the rotor. The vibration is suppressed by the controlled
levitation forces of the electromagnets. To derive the
mathematical model of the flexible rotor, FEM is used.
From the shape of the rotor illustrated at the Figure
1, a number of elements is defined as 3. The motion
equation of the flexible rotor is represented as Eq. (1).

Mq̈ + Jppq̇ +Kq = f (1)

q = [q1 . . . q3]
T
, qi = [xi ϕxi yi ϕyi]

T
, (i = 1...3)

Here, M , Jp and K represent mass matrix, gyro matrix
and stiffness matrix, respectively. The displacement of
each element and the levitation force are represented
as q and f , respectively. The levitation force of the
electromagnet is given as Eq. (2). Eq. (3) is obtained by
the first-order approximation at the equilibrium point
because the operating velocity of the AMB dose not vary
significantly.

f = km

{
(B + (Ix,y + i))2

(qj −G)2
− (B − (Ix,y + i))2

(qj +G)2

}
(2)

f = KiIx,y +Kx,yq +Kii (3)

Kx,y = km
4(B2 + I2x,y)

G3
,Ki = km

4B

G2

Here, km, B, Ix,y, i and G represent levitation force
constant, bias current, steady current, controlled input
current and steady gap between the electromagnet and
surface of the rotor, respectively. The controlled input
u is defined as u = [ixl iyl ixr iyr]

T . The term of f is



represented as following equation.

f = (fxKx + fyKy)q +KiT1u (4)

The state space representation at the physical coordi-
nate is shown as follows.

xp = [q1 q2 q3 q̇1 q̇2 q̇3]

ẋp = Ap(p)xp +Bp1u+Bp2w (5)

y = Cpxp (6)

The controller design is difficult because the order of the
displacement vector q is 12, therefore it is transformed
by the mode transformation to reduce the order of the
model. The mode transformation for the modeling of
the flexible rotor is common method and can represent
as the modal motion [3]. The transformation matrix Φ
and the natural frequency of the rotor ω can be derived
by the eigenvalue analysis for Eq. (1) which has no an-
gular velocity and no force (p = 0, f = 0). The transfor-
mation matrix is composed by the natural vectors which
are obtained by solving generalized eigenvalue problem
for the mass matrix and the stiffness matrix. Further-
more, it is normalized by the mass matrix and satisfies
ΦTMΦ = I. Note that, in the eigenvalue analysis, gy-
roscopic effect is neglected because it is too small. For
that reason, mode transformation does not diagonalize
strictly the matrix of the gyroscopic effect. The physi-
cal coordinates are transformed to the mode coordinates
such as q = Φζ by the obtained transformation matrix.

The state variable is defined as x =
[
ζ1...ζ12 ζ̇1...ζ̇12

]T
and we obtain the following state space representation
Eq. (7) of the full model.

ẋ = A(p)x+B1u+B2(p
2)w (7)

Here, ωi(i = 1...12) shows the natural frequencies of the
flexible rotor. Especially, ω5 and ω6 are the 1st reso-
nance frequency. The matrix T1 and T2 represent po-
sition of the electromagnets and the imbalance, respec-
tively. The state variables represent each mode. For
example, [ζ1...ζ4], [ζ5,ζ6] and ζi, (i ≥ 7) mean the rigid
mode, the 1st resonance mode and higher order reso-
nance mode, respectively. This study treats the rigid
mode and the 1st resonance mode, therefore following
reduced model (8) is used.

x̂ =
[
ζ1 ... ζ6 ζ̇1 ... ζ̇6

]T
˙̂x = Â(p)x̂+ B̂1u+ B̂2(p

2)w (8)

Figure 2 shows the bode diagrams of the full model (7)
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Figure 2 Bode Diagram

and the reduced model (8). From Figure 2, the reduced
model has only the rigid mode and the 1st resonance
mode. In generally, the controller is designed for the
reduced model (8). However, each controller is designed
for the rigid mode and the 1st resonance mode, inde-
pendently in this study. After that, two controllers are
combined as the new controller for the reduced model
(8). Therefore, the reduced model is divided to the rigid
mode (9) and the 1st resonance mode (10). Note that
the reduced model can be divided because the all blocks
of matrix Â(p) in Eq. (8) are the diagonal matrix. In
other wards, the each mode has no relationship with
another mode.

xr =
[
ζ1 ... ζ4 ζ̇1 ... ζ̇4

]T
ẋr = Ar(p)xr +B1ru+B2r(p

2)w (9)

xf =
[
ζ5 ζ6 ζ̇5 ζ̇6

]T
ẋf = Af (p)xf +B1fu+B2f (p

2)w (10)

The rigid mode (9) has the second order terms of the
angular velocity. To reduce the conservativeness of the
matrix polytope, these terms are converted as the first
order ones by using LFT and descriptor representation
[6]. Therefore, the low conservative controller can be
designed for the rigid mode. Eq. (11) is obtained by
using LFT for the matrix of the disturbance B2r(p

2).

B2r(p
2) = Bδp(I −Dδp)

−1Cδ (11)

The descriptor variable zδ and the new state variable x̂r

are defined as zδ = (I−Dδp)
−1Cδw and x̂r = [xr zδ]

T
,

respectively. We obtain the following descriptor system
Eq. (12).

E ˙̂xr = Âr(p)x̂r + B̂1ru+ B̂2rw (12)

3 Observer design

In this section, the full order observer for the estima-
tion of the displacements is designed because the AMBs
has no censer at the center of the rotor. Here, the ob-
server is restricted to designing on the discrete time. For
the observer design, the dual system is derived from the
state space representation at the physical coordinate.
The discrete system and the dual system are shown in
Eq. (13) and (14), respectively.

x̃(k + 1)=Ãpx̃p(k) + B̃p1u(k) (13)

y(k) = Cpx̃p(k)

Ãp = eApTs , B̃p1 =

∫ Ts

0

eApτBp1dτ

xd(k + 1) = Adxd(k) +Bd1u(k) (14)

Ad = ÃT
p , Bd1 = CT

p

Here, Ts shows the sample time. The observer gain
which stabilizes the obtained dual system is derived by
the optimal regulator theorem and solving the LMI con-
ditions. The cost function (15) is defined as following
equation.

J =
∞∑
k=0

(xd(k)
TQxd(k) + u(k)TRu(k)) (15)

Q > 0, R > 0



The observer gain can be obtained by the following The-
orem 1.
Theorem 1 : If there exist matrices Xd and Yd satis-
fying the following LMI conditions, the system (14) is
stabilized by u = YdX

−1
d xd = Kdxd. Furthermore, the

cost function is minimized. Xd (AdXd +BdYd)
T XdQ Y T

d R
AdXd +BdYd X 0 0

QXd 0 Q 0
RYd 0 0 R

 ≻ 0

Xd = XT
d ≻ 0,

[
z I
I Xd

]
≻ 0

4 Controller design

In this section, the controllers for the rigid mode and
the 1st resonance mode are designed. Both modes are
stabilized by the state feedback u = Krx̂r and u =
Kfxf , respectively.

4.1 Controller Design for the Rigid Mode

The robust H∞ controller for the rigid mode (9) is de-
signed by using the descriptor system (12). The output
zr is defined as Eq.(16).

zr = Wsrx̂r +Wuru (16)

Here, Wsr and Wur are the weighting matrices for the
state variable and the input variable, respectively. The
LMI conditions to derive the H∞ controller which sta-
bilizes the descriptor system are given as follows [6].
Theorem 2 : If there exist matrices Xr and Yr satis-
fying the following LMI conditions, the system (12) is

stabilized by u = K̂rx̂r = YrX
−1
r x̂r and the system (9)

is stabilized by u = Krxr = Yr11X
−1
r11xr. Furthermore,

H∞ norm is less than γr∞. He[Mr(p)] B̂2r (WsrXr +WurYr)
T

B̂T
2r −γ2

r∞I 0
WsrXr +WurYr 0 −I

 ≺ 0

(17)

Mr(p) = Âr(p)Xr + B̂1rYr, Yr = K̂rXr (18)

Xr =

[
Xr11 0
Xr12 Xr22

]
, Xr11 ≻ 0, Yr = [Yr11 0] (19)

To guarantee the robust stability for the varying an-
gular velocity p ∈ [p1, p2] of the rotor of the system
(12), the LMI condition (17) must be satisfied for all
p ∈ [p1, p2]. This means that, the infinite set of LMI
conditions have to be solved. To avoid this problem,
the matrix Âr(p) is represented as Eq.(20) by the ma-
trix polytope.

Âr(p) = λÂr(p1) + (1− λ)Âr(p2) (0 ≤ λ ≤ 1) (20)

If the LMI condition (17) is satisfied at the both vertex

matrices Âr(p1) and Âr(p2), the stability is guaranteed
for all angular velocity. The common solution is ob-
tained by solving the following set of LMI conditions
shown in Corollary 1 [6].
Corollary 1 : If there exist matrices Xr and Yr satis-
fying the following LMI conditions and (19), the system

(12) is stabilized by u = K̂rx̂r = YrX
−1
r x̂r for the pre-

scribed range of angular velocity p. Furthermore, H∞

norm is less than γr∞. He[Mr(pi)] B̂2r (WsrXr +WurYr)
T

B̂T
2r −γ2

r∞I 0
WsrXr +WurYr 0 −I

 ≺ 0

(i = 1, 2) (21)

4.2 Controller Design for the 1st Resonance
Mode

To suppress the vibration around the 1st resonance
frequency, the robust H∞ controller for the 1st reso-
nance mode (10) is designed. The output zf is defined
as Eq.(22).

zf = Wsfxf +Wufu (22)

The robust stability for the varying parameter p must
be guaranteed as same as the rigid mode. Therefore,
the vertex matrices are represented as Af (p1), Af (p2),
B2f (p

2
1) and B2f (p

2
2) by the matrix polytope. The con-

troller can be designed if the following LMI conditions
are solved at the vertex matrices shown in Theorem 3.
Theorem 3 : If there exist Xf and Yf satisfying the
following LMI conditions, the system (10) is stabilized
by u = Kfxf = YfX

−1
f xf . Furthermore, H∞ norm is

less than γf∞. He[Mf (p)] B2f (p
2) (WsfXf +WufYf )

T

B2f (p
2)T −γ2

f∞I 0
WsfXf +WufYf 0 −I

 ≺ 0

(23)

Mf (p) = Af (p)Xf +B1fYf , Yf = KfXf (24)

Xf ≻ 0 (25)

Note that, to guarantee the robust stability, the LMI
conditions are solved at the three vertex matrices.

4.3 Stabilization for the Reduced System

The goal is to stabilize the system (8) by u =

[Kr Kf ]
[
x̂T
r xT

f

]T
. However, both systems use same

input. Therefore, each input affect to another state as
a disturbance. As a result, stability may be lost. To
guarantee the stability, other LMI conditions are added
by the Theorem 4.

To derive the LMI condition to guarantee the stability,
following system is considered.[

E 0
0 I

] [
˙̂xr

ẋf

]
=

[
Âr(p) 0
0 Af (p)

] [
x̂r

xf

]
+

[
B̂1r

B1f

]
u+

[
B̂2r

B2f

]
w (26)

Theorem 4 : If there exist matrices Xr, Xf , Yr and Yf

satisfying the following LMI conditions, the system (26)

is stabilized by u = [Kr Kf ] [x̂r xf ]
T
.[

He[Mr(p)] (B1fYr)
T +B1rYf

B1fYr + (B1rYf )
T He[Mf (p)]

]
≺ 0 (27)

P−1
11 = Xr, P

−1
22 = Xf (28)

The combined controller can be designed if the LMI
conditions (21), (23) and (27) are solved.



5 Simulation

The effectiveness of the proposed controller is illus-
trated by simulation comparing with the conventional
robust H∞ controller. The LFT is used for the both
model rigid mode and 1st resonance mode when the
conventional controller is designed. In these simula-
tions, the correctness of the comparison is guaranteed
by using same weights for the state variable and the
input variable when the controllers are designed. The
parameters of the control target is used as the example
value. From the eigenvalue analysis, the 1st resonance
frequency is derived as 1041.7 [rad/s]. The initial angu-
lar velocity and the initial angular acceleration are set
up as 0 [rad/s] and 26.1[rad/s2], respectively. The re-
sults of simulations are shown in following figures. Fig-
ure 3 illustrates the position displacement of the center

Figure 3 Position displacement

of the rotor. Figure 4 illustrates the input current of
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the electromagnetic which set at the vertical direction
of the right side. From Figure 3, up to the 1st resonance
frequency, the proposed controller can suppress the vi-
bration as same as the conventional controller. The con-
vergence performance of the conventional controller is
better than the proposed controller. However, the con-
ventional controller use the current higher than limit of
the AMBs. These results show the effectiveness of the
proposed method.

6 Experiment

In this section, the effectiveness of the proposed
method is checked by the experiment. The angular ve-
locity is set as about 600 [rad/s]. The proposed con-
troller is implemented to the left side of the AMBs. The
right side of the AMBs is controlled by the internal con-
troller. The experiment results are shown as follows.

Figure 5 shows the position displacement of the rotor

right 

center

rotor positionleft  0
0.01

0.02
time[s]

0.03
0.04

-10

-5

0

5

0.05

×10
-4

p
o
si

ti
o
n
 d

is
p
la

ce
m

en
t[

m
]

Proposed
Conventional

Figure 5 Position displacement

on the vertical direction. The AMBs has no sensor at
the center of the rotor. Therefore, the estimated state
is illustrated. From Figure 5, the vibration is more sup-
pressed by proposed controller. The rotor is bending
when the conventional controller is applied, however,
the bending of the rotor dose not generate.

7 Conclusion
In this paper, the method of the controller design for

the modal vibration is proposed. This mean that the
controller is not directly designed for the reduced model
of the flexible rotor. Advantage of the proposed method
is that the controller for each mode can be designed by
dividing the reduced model into the rigid mode and the
flexible mode. In my previous study, there are tendency
like that the H∞ controller and the H∞ controller us-
ing LFT and descriptor representation have advantages
of suppressing vibration and input current, respectively.
The proposed controller include these advantages. How-
ever, to design the H∞ controller using LFT and de-
scriptor representation is not effectiveness for the flex-
ible mode. In the designing controller, the stability
can not be guaranteed by simply combined controller.
Therefore, to guarantee the stability, the LMI condition
is added. The effectiveness of the proposed method is
illustrated by simulation and experiment.
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