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Abstract

This paper proposes a method to design partial gain
scheduling (GS) controller for a crane. The partial GS
controller has scheduled gains and fixed gains of state
feedback. Selection of the scheduled gains is determined
by pendulum property. From the pendulum property,
angular velocity of the load depends on rope length.
However, trolley position does not depend strongly on
the rope length. Thus the scheduled gains are applied
for the swing angle and the angular velocity of the load.
The fixed gains are for the other states. To obtain a
linear parameter varying (LPV) system for designing
the partial GS controller, redundant descriptor repre-
sentation is adopted for state space representation of
the crane, where the time-varying parameters are the
rope length, its velocity and acceleration. The designed
controller guarantees the robust stability for time vary-
ing parameters. The problem of the controller design
can be formulated as solving a finite sets of linear ma-
trix inequality (LMI). The effectiveness of the proposed
method is illustrated by simulations.

1 Introduction

Cranes are mechanical system that lift and carry loads
to assigned positions. Cranes are not only required to
transport the load fast and accurately, but also required
to reduce oscillations. However, it is difficult for all op-
erators to fulfill of these conditions. In this study, the
load of the crane is moved to the horizontal and vertical
directions simultaneously. It is reported that decentral-
ized control is effective for cranes [1]. Swing of the load
occurs by hoisting rope. It is desirable to design a ro-
bust controller considering variation of the rope length
because it affects the swing angle of the load. In previous
studies [2], robust controllers to suppress an influence of
variation of the rope length have been reported. A gain
scheduled controller is designed by selecting the rope
length as the scheduling parameters [3]. In [4], using
linear fractional transformation (LFT) and redundant
descriptor representation, an linear varying parameter
(LPV) system with not ignoring the rope length’s ve-
locity and acceleration is constructed. In consequence,
gain scheduling (GS) controller via parameter depen-
dent Lyapunov function that depends on scheduling pa-
rameter is designed. However, the control design of the
GS controller is very complicated, it is difficult to imple-
ment the controller for crane depending on computer’s
performance. Moreover, the control performance of the
robust controller deteriorates depending on the range of
varying parameter.
In this study, a state feedback partial gain scheduling

controller for crane systems is proposed. The partial
GS controller has scheduled gains and fixed gains. Se-
lection of the scheduled gains is determined by pendu-
lum property. From the pendulum property, the rope
length gives large influence on swing angle of the load
because angular velocity of the load depends on rope
length. However, the influence of rope length on the
trolley position is small. The scheduled gains are given
for the swing angle and the angular velocity of the load.

The fixed gains are given for the other states. The sched-
uled gains and the fixed gains are obtained by different
method respectively. First, the scheduled gains are de-
rived. The scheduled gains are obtained by designing
GS controller from a LPV system based on state vari-
able of only swing angle and angular velocity. Then,
the LPV system and a LPV system based on all state
variables are equivalent on a property of crane’s dynam-
ics. Next, the fixed gains are derived. The fixed gains
are obtained by designing robust LQ controller from the
system based on all state variables. The partial GS con-
troller is designed by adding a matrix of the scheduled
gains and a matrix of the fixed gains. Then, the ma-
trix of the scheduled gains is transformed to the same
size as that of the fixed gains. To obtain their respec-
tive LPV systems, redundant descriptor representation
is adopted. The designing problem of their respective
controllers can be formulated as a finite set of linear
matrix inequalities (LMIs). The effectiveness of the pro-
posed method is illustrated by simulations.

2 Modeling

The schematic diagram of the jib crane is shown in
Fig. 1.
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Fig. 1 Crane model

The jib crane consists of four parts, a tower, a trolley, a
jib, and a load. The jib crane can lift and carry the load
simultaneously in this study. Sensors of the crane can
measure position of the trolley ξ [m], swing angle of the
load γ [rad] and the rope length l [m]. These are time-
varying parameters. The input is a electric current of a
jib motor Ij [A]. The output is the horizontal position
of the load y [m] (y = ξ−l sin γ). The physical constants
of the crane are shown in Table 1.

Table 1 Physical constants of the crane

Mass of load mp [kg]
Mass of trolley mt [kg]

Acceleration of gravity g [m/s2]
Jib motor gear radius rj,p [m]

Jib motor gear box efficiency ηg,j [-]
Jib motor gear ratio Kg,j [-]

Jib motor torque constant Kt,j [Nm/A]
Jib motor equivalent moment of inertia Jψ [kgm2]

In this study, we make following assumptions, (i) the
rope is rigid rod without the mass, (ii) the load is a



material point, (iii) the load moves horizontally along
the jib, (iv) the friction of the trolley can be ignored,
(v) the swing angle and its velocity are small enough.
In Euler-Lagrange equations, sin γ, cos γ, and γ̇2 can

be approximated to γ, 1, and 0 by the assumption (v).

Let mj be mp + mt + Jψ
K2

g,j

r2j,p
. When an equation of

motion with respect to ξ and γ is obtained, an equation
of motion with only γ (i.e., the equation without ξ) can
be derived as follows:

(mj −mp)lγ̈ = −2(mj −mp)l̇γ̇ − (mjg −mp l̈)γ +Kt,jIj .(1)

The state variable of the crane system for the scheduled
gains is only the swing angle and the angular velocity.
However, the state variable of the crane system for the
fixed gains is not only those but also the trolley position
and its velocity. Thus, two state space representations
are obtained for the scheduled gains and the fixed gains.
First, the state space representation for the scheduled
gain is shown. Let state variable be x̂ = [γ γ̇]T and
input be u1 = Ij . The state space representation of the
crane is obtained as Eq.(2).

˙̂x = Ê(l)−1Â(l̇, l̈)x̂+ Ê(l)−1B̂u1 (2)

Ê =

[
1 0
0 −(mp −mj)l

]
,

Â =

[
0 1

mp l̈ −mjg 2(mp −mj)l̇

]
, B̂ =

[
0

Kt,j

]
.

Next, the state space representation for the fixed gain is
shown. Let generalized coordinate be q = [ξ γ]T , state

variable be x =
[
qT q̇T

]T
, output be y and input be u.

The state space representation of the crane is obtained
as follows:{

ẋ = E(l)−1A(l̇, l̈)x+ E(l)−1Bu (3)

y = C(l)x (4)

E =

[
I2 O2×2

O2×2 E1

]
, E1 =

[
mj −mpl
−1 l

]

A =


0 0 1 0
0 0 0 1

0 mp l̈ 0 2mp l̇

0 −g 0 −2l̇

 , B =

 0
0

Kt,j

0

 , C = [C1 O1×2]

C1 = [1 −l] .

An important purpose of controlling crane system
is transporting the load to the target without error.
To eliminate study error, servo control system is con-
structed. Let the error and integral of the error be e
and xe. To make the output y follow a reference r, a
state variable xh consists of the state variable x and xe.
The servo control system is as follows:

{
ẋh = Eh(l)

−1Ah(l̇, l̈)xh + Eh(l)
−1Bhu (5)

y = Chxh (6)

Eh =

[
E O4×1

O1×4 1

]
, Ah =

[
A(l̇, l̈) O4×1

−C(l) 0

]
, Bh =

[
B
0

]

xh(t) =

[
x(t)− x(∞)
xe(t)− xe(∞)

]
=

[
q(t)− q(∞)

q̇(t)
xe(t)− xe(∞)

]

xe =

∫ t

0

e(τ)dτ, e = r − y

u(t) = u(t)− u(∞).

q(∞), xe(∞) and u(∞) are steady state values.

3 Control Designing

In this paper, the controller based on an optimal reg-
ulator theory is designed.

3.1 Parameter Box

The time-varying parameters are l, l̇, and l̈. The pa-
rameter box Eq.(7) is defined by upper and lower bounds

of time-varying parameters l, l̇, and l̈.

Θ = {[θ1, θ2, θ3] : θi ∈ {θi, θi}} (7)

θ1 = l, θ2 = l̇, θ3 = l̈ (i = 1, 2, 3)

3.2 Control Designing for Scheduled Gain

3.2.1 Descriptor Representation

The time-varying parameters are included in the ma-
trix Â in the state space representation Eq.(2). The co-

efficient matrix Ê(l)−1Â and Ê(l)−1B̂ include rational
terms of the time-varying parameters. By using redun-
dant descriptor representation [5], the state space repre-
sentation is rewritten as descriptor representation with
only linear terms of the time-varying parameters. Let
descriptor variable be x̂d = [γ γ̇ γ̈]T , Eq.(8) is obtained
from Eq.(2).

Êd ˙̂xd = Âd(θ)x̂d + B̂du1 (8)

Êd =

[
1 0 0
0 1 0
0 0 0

]
,

Âd =

[
0 1 0
0 0 1

mpθ3 −mjg 2(mp −mj)θ2 (mp −mj)θ1

]
, B̂d =

[
0
0

Kt,j

]
.

3.2.2 Stability Conditions

The stability conditions of the descriptor system
Eq.(8) is shown. The system is stabilized by state

feedback controller u1 = K̂d(θ)x̂d and feedback gain

K̂d(θ) = Ŷd(θ)X̂d
−1

. Considering structure of the ma-

trix Êd, candidates of Lyapunov matrix X̂d and variable
matrix Ŷd(θ) are restricted as Eq.(9).

X̂d =

[
X̂ O2×1

X̂d21 X̂d22

]
(9)

Ŷd(θ) = Ŷd0 +

3∑
i=1

θiŶdi =
[
Ŷ (θ) 0

]
[Theorem] [6] The system Eq.(8) is stable by and

state feedback controller, if X̂d and Ŷd(θ) exist satis-
fying Eq.(10) and (11).

ÊdX̂d = (ÊdX̂d)
T ≥ 0 (10)

He{Âd(θ)X̂d + B̂dŶd(θ)} < 0 (11)

For Eq.(8), an evaluated function Ĵz is given by Eq.(12).

Ĵz =

∫ ∞

0

(x̂Td Q̂x̂d + u1
T R̂u1)dt (12)

In order to minimize the evaluated function Ĵz in



Eq.(12), the minimum γ1 that satisfies the following con-
ditions is derived.

X̂ > 0 (13)

He{Âd(θ)X̂d + B̂dŶd(θ)}+ X̂T
d Q̂X̂d + Ŷd(θ)

T R̂Ŷd(θ)< 0(14)

X̂−1 < W (15)

trace(Ŵ ) < γ1 (16)

Matrices Âd(θ), Ŷd(θ), and Ŷ (θ) can be represented by
parameter box Θj(j = 1, ..., 8).

Θ1=(θ1, θ2, θ3),Θ2=(θ1, θ2, θ3), ...

...,Θ7=(θ1, θ2, θ3),Θ8=(θ1, θ2, θ3) (17)

The problem of designing the controller of the scheduled
gain is formulated as follows from Schur complement:

Lemma 1 :If there exist matrices X̂ and Ŷ (θ) satisfying
following LMIs, the descriptor system (8) is stable.

X̂ > 0 (18)He{Âd(Θj)X̂d+B̂dŶd(Θj)} Ŷ T
d (Θj)R̂

1
2 X̂T

d Q̂
1
2

R̂
1
2 Ŷd(Θj) −1 O1×3

Q̂
1
2 X̂d O3×1 −I3

<0

(19)[
Ŵ I2
I2 X̂

]
> 0 (20)

trace(Ŵ ) < γ1. (21)

(j = 1, ..., 8)

From matrix X̂d and Ŷd(θ), the controller of the sched-
uled gain can be obtained as follows.

K̂d(θ) =
[
Ŷ (θ)X̂−1 0

]
=

[
K̂1(θ) K̂2(θ) 0

]
. (22)

3.3 Control Designing for Fixed Gain

Partial state feed back controller is defined as u =
Kh2(θ)xh. Then, partial state feed back gain Kh2(θ) is
as follows:

Kh2(θ) = [Kh21 Kh22(θ) Kh23 Kh24(θ) Kh25] . (23)

In this study, partial state feed back gain Kh2(θ) is
derived by adding the fixed gain and the scheduled
gain.Let the fixed gain be Kh and the scheduled gain be
K̃h(θ). Kh2(θ) is represented as Kh2(θ) = Kh + K̃h(θ).

K̃h(θ) is represented as an extension form of dimension

of the scheduled gain K̂h(θ). Kh and K̃h(θ) are defined
as follows:

Kh = [K1 K2 K3 K4 K5] (24)

K̃h(θ) =
[
0 K̂1(θ) 0 K̂2(θ) 0

]
. (25)

When input u1 is defined as obtained state feedback
controller u1 = K̃h(θ)xh by the scheduled gain K̃h(θ)
and input u2 is defined as obtained state feedback con-
troller u2 = Khxh by the fixed gain Kh, the partial
state feedback controller u = Kh2(θ)xh is represented

as u = (Kh+K̃h(θ))xh = u1+u2. The variable of input
u1 is determined by Eq.(25). So, the fixed gain Kh of
state feedback controller u2 = Khxh is derived. Eq.(5)
is rewritten as Eq.(26).

ẋh = Eh(l)
−1Ah2(l, l̇, l̈)xh + Eh(l)

−1Bhu2 (26)

Ah2 =

[
O2×2 I2 O2×1

Ah21 Ah22 O2×1

C1 O1×2 0

]
, Ah21 =

[
0 mp l̈ +Kt,jK̂1(θ)
0 −g

]

Ah22 =

[
0 2mp l̇ +Kt,jK̂2(θ)

0 −2l̈

]
.

3.3.1 Descriptor Representation

Eq.(26) is rewritten as descriptor representation. Let
descriptor variable be xd = [xh

T q̈T ]T . Descriptor equa-
tion of the crane is obtained as Eq.(27).

Edẋd = Ad(θ)xd +Bdu2 (27)

Ed =

[
I5 O5×2

O2×5 O2×2

]
, Ad =

O2×2 I2 O2×1 O2×2

O2×2 O2×2 O2×1 I2
C1 O1×2 0 O1×2

Ah21 Ah22 O2×1 E1


Bd =

[
O5×1

Kt,j

0

]
.

3.3.2 Stability Conditions

The stability conditions of the descriptor system
Eq.(27) is shown. The system is stabilized by the state
feedback controller u2 = Kdxd. Considering structure
of the matrix Ed, candidates of Lyapunov matrix Xd
and variable matrix Yd are restricted as Eq.(28).

Xd =

[
X O5×2

Xd21 Xd22

]
, Yd = [Y O1×2] . (28)

By Lyapunov’s stability theorem, if there exists Xd sat-
isfying the following matrix inequality, the system is sta-
bilized [6].

EdXd = (EdXd)
T ≥ 0 (29)

He{Ad(θ)Xd +BdYd} < 0 (30)

For a system of Eq.(27), a general plant as Eq.(31)
considering LQ control specification is assigned.{

Edẋd = Ad(θ)xd +Bdww +Bdu2 (31)

z = Cdxd +Ddu2

Bdw =

[
Bw
O2×5

]
, Bw = I5, Cd = [Wx O8×2] , Dd =

[
O7×1

R
1
2

]

Wx =

 Q
1
2

O2×5

RK̃h(θ)


An evaluated function ||Jz||2 is given by Eq.(32).

||Jz||2 =

∫ ∞

0

zT zdt (32)

In order to minimize the evaluated function Jz of
Eq.(32), the minimum γ2 that satisfy the following con-
ditions [4].

EdXd = (EdXd)
T ≥ 0 (33)

He{Ad(θ)Xd+BdYd}+{CdXd+DdYd}T{CdXd+DdYd}<0(34)

BT
wX

−1Bw < W (35)

trace(W ) < γ2
2 (36)

The problem of designing the controller of the fixed
gain is formulated as follows from Eq.(34) and Schur
complement:

Lemma 2 :If there exist matrices X and Y satisfying fol-
lowing LMIs, the descriptor system is stable.

X > 0 (37)[
He{Ad(Θj)Xd+BdYd} {CdXd +DdYd}T

CdXd +DdYd −I8

]
<0 (38)[

W BT
w

Bw X

]
> 0 (39)

trace(W ) < γ2
2 . (40)

(j = 1, ..., 8)



From matrix Xd and Yd, the controller of the fixed
gain can be obtained as follows:

Kd = YdX
−1
d = [Kh 0 0] (41)

Kh = Y X−1 = [K1 K2 K3 K4 K5] . (42)

By Eq.(25) and (42), the partial state feedback gain
Kh2(θ) is as follows:

Kh2(θ) = Kh + K̃h(θ)

=
[
K1 K2 + K̂1(θ) K3 K4 + K̂2(θ) K5

]
.(43)

4 Design Result

In this section, numerical simulations are shown. By
simulation, we compare three controllers, Robust LQ
controller, partial GS controller, and GS controller. Up-
per and lower bounds of the varying parameters are
assigned as θ1 ∈ [0.1, 0.7], θ2 ∈ [0, 0.2609], θ3 ∈
[−2.022, 2.022]. The reference is assigned 0.1 [m] for
the horizontal position y of the load with hoisting move-
ment.

4.1 Comparing Control Performance with Cost
Function

By using cost function, each controller performance is
compared. These cost function values are compared by
simulink because an accurate upper bound of cost func-
tion of the partial GS controller cannot be calculated in
its designing method.

Table 2 Comparing each control performance with cost
function

Robust LQ Partial GS GS
cost function value 1.4264 1.1569 1.0386

From Table 2, the cost function value of the partial GS
controller is smaller than that of Robust LQ controller.
Thus, the control performance of the partial GS con-
troller is better than that of Robust LQ controller.

4.2 Simulation

Simulation results of controllers are shown. This study
focus on horizontal position of the load, because of effec-
tiveness of decentralized control. To verify the controller
guarantees robust stability for the rope length, the rope
length is changed with time. Hoisting movement of rope
length is shown in Fig. 2.
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Fig. 2 rope length: hoisting

Result of the partial state feedback gain for state vari-
able is shown in Fig. 3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.4

-0.2

0

0.2

Rope length[m]

G
a
i
n
 
f
o
r
 
s
t
a
t
e
 
v
a
r
i
a
b
l
e

 

 

Gain for trolley position

Gain for ｓwing angle

Gain for trolley velocity

Gain for ｓwing angular velocity

Gain for integral of error

Fig. 3 Gain for state variable xh

From Fig. 3, only the gains for swing angle and the an-
gular velocity of the partial GS controller are certainly
varied by varying of rope length. Next, result of hori-
zontal position of the load is shown in Fig. 4.
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load

As can be seen in Fig. 4, it is shown that the convergence
of the horizontal position of the partial GS controller is
fast than that of Robust LQ controller.

5 Conclusion

In this paper, the partial gain scheduling (GS) con-
troller which is easy to do implement to the crane’s sys-
tem from GS controller is synthesized for crane. The in-
fluence of variation of rope length is large for the swing
angle of the load by pendulum property. However, the
influence of variation of rope length is small for trolley
position of the crane. The partial GS controller has the
scheduled gains and fixed gains. The scheduled gains
are synthesized from the system with the partial state
variable of swing angle and angular velocity. The fixed
gains are synthesized from the system with all the state
variable. The partial GS controller is designed by adding
the scheduled gain to the fixed gain. The effectiveness
of the partial GS controller is shown by simulation.
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