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Abstract

This paper proposes a gain-scheduled (GS) state feed-
back control for active magnetic bearing (AMB) systems
via parameter dependent Lyapunov function. The ob-
jective of this study is to stabilize rotor attitude of the
AMB system that is influenced by gyro effect. Gyro ef-
fect corresponds to rotational speed of the rotor that is a
time-varying parameter. Hence, the speed is treated as
a scheduling parameter in the GS controller. The robust
stability for the system with the time-varying parameter
is guaranteed theoretically by using polytopic represen-
tation. The problem of the GS controller design can be
formulated as liner matrix inequality (LMI) conditions
from Riccati’s differential equation. However, it is diffi-
cult to solve the designing problem at vertexes of poly-
tope because the LMI conditions are not affine for the
time-varying parameter. In oder to avoid this difficulty,
Lyapunov matrix for the AMB system is restricted to
make LMI conditions affine. Finally, the effectiveness of
proposed method is illustrated by simulations.

1 Introduction

Active magnetic bearing systems stabilize rotor atti-
tude without contact using electromagnetic force. The
advantage of using the system is absence of friction.
From this advantage, the rotational speed becomes high,
while the rotational motion generates gyroscopic effect.
Then, the system tends to be unstable by gyroscopic ef-
fect. Thus, Control of the AMB system is required to
consider this phenomenon. The robust control system
which suppresses the influence of gyroscopic effect have
been stated in literature [1]. Recently, GS control sys-
tem based on parameter dependent Lyapunov function
has been published stating that redundant descriptor
representation and LFT are applied to state-space rep-
resentation [2].
This study proposes a gain scheduled state feedback

control based on parameter dependent Lyapunov func-
tion for AMB. The objective of this study is to stabilize
the rotor attitude of the system that is influenced by
gyro effect. A linear parameter-varying (LPV) represen-
tation of the AMB system has terms representing gyro
effect. The terms depend on the time-varying parame-
ter which is the rotational speed. Therefore, the speed
is treated as a scheduling parameter in the proposed GS
controller. The robust stability for the LPV system with
the time-varying parameter is guaranteed theoretically
by using polytopic representation. The problem of the
GS controller design can be formulated as LMI condi-
tions from Riccati’s differential equation. However, it
is difficult to solve the design problem at vertexes of
polytope because LMI conditions are not affine for the
scheduling parameter. In order to avoid this difficulty,
the structure of Lyapunov matrix is restricted to make
LMI conditions affine for the scheduling parameter. As
a result, the GS control based on parameter dependent
Lyapunov function is derived without usage of descrip-
tor representation, LFT and the sum-of-squares tech-

nique. The effectiveness of proposed GS controller is
illustrated by comparing with robust LQ (RLQ) con-
troller in simulations.

2 Motion Equation

In this section, state-space representation of an AMB
system is derived. The system levitates and supports
a rotor without contact by using magnetic force. The
schematic diagram of the system is shown in Fig. 1.
In this study, the AMB system has the four degree of

Figure 1: AMB system

freedom. The system consists of a rotor, four pairs of
electromagnets and two gap sensors attached at each
end. The pair of electromagnets face to each other and
generate the levitation force corresponding to control
input. The levitation force is generated in vertical and
horizontal direction. The gap sensors measure the dis-
tance between the electromagnet and the rotor. Let
equilibrium point of the rotor be a center point between
the pair of electromagnets. At the equivalent point, the
each distance between the rotor and electromagnets is
the same. Each physical parameter of the AMB system
is shown in Table 1. The subscript j of gj and fj is

Table 1: Physical parameters
parameter symbols

Perturbation from the equilibrium
point of the rotor gj [m]
Levitation force of electromagnets fj [N]
Mass of rotor m [kg]
Rotational speed of rotor ω [rad/s]
Distance from the center of gravity
to the end of the rotor lm [m]
Moment of the X axis Jx [Nm]
Moment of the Y axis Jy [Nm]
Distance between the sensor and
the rotor in the equilibrium state G0 [Nm]
Levitation force constant k
Acceleration of gravity g [m/s2]

j ∈ {lv, rv, lh, rh}. Here, subscripts “l”, “r”, “v” and
“h” represent the left-hand of the rotor, right-hand side
of the rotor, the vertical direction and horizontal direc-
tion, respectively. For example, the vertical direction
at the left-hand side of the rotor is represented as “lv”.
Both the perturbation gj and the rotational speed ω are
measurable parameter in operation.



To obtain the motion equations of the AMB system,
coordinate axes X, Y, and Z are introduced to the rotor.
Fig. 2 shows a schematic diagram of the rotor with the
introduced X, Y, and Z axes. Here, the origin of three

Figure 2: Rotor

axes means the center of gravity of the rotor at the equi-
librium state. Let x, y, z, ϕ, θ and ψ be the position of
the center of gravity on X, Y and Z axes, the rotation
angle about X, Y and Z, respectively. Translational mo-
tion and rotational motion of the Y and Z axes of the
rotor are described as Eq.(1) - (4).

mÿ = flh + frh (1)

mz̈ = flv + frv −mg (2)

Jyψ̈ = −Jxωθ̇ − lmflh + lmfrh (3)

Jy θ̈ = Jxωψ̇ + lmflv − lmfrv (4)

Using time-varying parameter ω, the gyroscopic effect is
represented by the first term on the right-hand side of
Eq.(3) and (4). In Eq.(1) - (4), the position of the center
of gravity y, z, the rotation angle θ, ψ and levitation
force fj of the electromagnet are described as Eq.(5) -
(7) by using the perturbation gj and control input ij ,
respectively.

y =
1

2
(grh + glh), z =

1

2
(glv + grv) (5)

θ ≈ glv − grv
2lm

, ψ ≈ grh − glh
2lm

(6)

fj = k
4I0Ij
G2

0

+Kxjgj +Kijij (7)

Kxj = k
4(I20 + I2j )

G3
0

,Kij = k
4I0
G2

0

Here, let I0 and Ij be bias current and steady-state cur-
rent, respectively. The steady-state current Ij is corre-
sponding to the gravitational force mg. I0±(Ij+ij) is a
total of input current for the electromagnets. Let state
variable x(t) and input variable u(t) be Eq.(8) and (9).

x(t) = [glv grv glh grh ˙glv ˙grv ˙glh ˙grh]
T (8)

u(t) = [ilv irv ilh irh]
T (9)

From Eq.(1) - (9), the state-space representation of
AMB system is derived as Eq.(10).{

ẋ(t) = A(ω(t))x(t) +Bu(t)
y(t) = Cx(t)

(10)

A(ω) = A0 + ωA1

A0 =

[
O4×4 I4×4

Â0 O4×4

]
, Â0 =

a1 a2 0 0
a3 a4 0 0
0 0 a5 a6
0 0 a7 a8



A1 =

[
O4×4 O4×4

O4×4 Â1

]
, Â1 =

 0 0 −a9 a9
0 0 a9 −a9
a9 −a9 0 0
−a9 a9 0 0


B =

[
O4×4

B1

]
, B1 =

b1 b2 0 0
b3 b4 0 0
0 0 b5 b6
0 0 b7 b8

 , C = I8×8
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m
+
Kxlvl

2
m

Jy
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Kxrv

m
− Kxrvl

2
m

Jy
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2
m

Jy
, a4 =
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m
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2
m

Jy
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m
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Kxlhl

2
m

Jy
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Kxrh
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Jy
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Jy
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2Jy
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Since the state matrix A in Eq.(10) depends on time-
varying parameter ω, AMB system is described by Liner
parameter-varying (LPV) representation.

3 Control System Design

In this section, GS controller based on parameter de-
pendent Lyapunov function for the LPV system Eq.(10)
is designed. The scheduling parameter of the designed
controller is rotational speed ω. The robust stability
for the system depending on time-varying parameter
can be guaranteed theoretically by solving linear matrix
inequality (LMI) conditions with polytopic representa-
tion.

3.1 Polytopic Representation

Let lower and upper bounds of time-varying param-
eter ω be ω1 and ω2. The parameter is represented as
following equation.

ω ∈ [ ω , ω ] = [ω1, ω2] (11)

From Eq.(11), polytopic representation of the matrix
A(ω) in Eq.(10) can be described as Eq.(12).

A(ω) = λA(ω1) + (1− λ)A(ω2) (0 ≤ λ ≤ 1) (12)

By using the polytopic representation Eq.(12), designing
problem of the GS controller via parameter dependent
Lyapunov function can be formulated as a finite set of
LMI conditions in the next subsection.

3.2 Quadratic Stability

Let a GS controller gain and a state feedback u(t) for
the LPV system Eq.(10) be K(ω) and Eq.(13).

u(t) = K(ω)x(t) (13)



To guarantee the quadratic stability for the system,
the parameter dependent Lyapunov function V (t) =
xT (t)P (ω(t))x(t) ≻ O is considered, where P (ω) =
PT (ω) ≻ O is Lyapunov matrix. Then, the stability
condition for the system can be described as Eq.(14).

V̇ (t) = xT (t)(He{P (ω)Acl(ω)} + Ṗ (ω))x(t) ≺ O (14)

Acl(ω) := A(ω) +BK(ω)

If there exist P (ω) and K(ω) such that Eq.(14)holds,
then the closed loop system Eq.(10) is stabilized by the
state feedback u(t) = K(ω)x(t).

3.3 GS Control System Design

In order to derive the stabilizing state feedback u(t) =
K(ω)x(t) for the LPV system Eq.(10), the following
quadratic stability condition Eq.(15) is considered.

V̇ (t) ≺ −xT (Q+K(ω)TRK(ω))x(t) (15)

Here, Q ⪰ 0 and R ≻ 0 are weight matrices for the state
variable and input variable, respectively. Note that the
inequality Eq.(15) is equivalent to Riccati’s differential
inequality. Therefore, this inequality condition can be
regarded as problem of LQ optimal regulator that min-
imizes the following cost function J .

J =

∫ ∞

0

(xTQx+ uTRu)dt (16)

For this problem, following results is well-known.

Theorem 1 : Letting X(ω) := P−1(ω) and Y (ω) :=
K(ω)X(ω), the inequality condition Eq.(15) is rewritten
as following matrix inequality [3].

M − Ẋ(ω) +X(ω)QX(ω) + Y T (ω)RY (ω) ≺ O (17)

M :=He{A(ω)X(ω)+BY (ω)}

Theorem 2 : If there exist matrix P (ω) = X−1(ω)
such that the inequality Eq.(15) holds, a upper bound on
the cost function is represented as following equation [4].

J < trace(P ) = trace(X−1) (18)

In this study, the GS controller via parameter depen-
dent Lyapunov function is designed for the LPV system
Eq.(10) with polytopic representation Eq.(12). Matrices
X(ω) and Y (ω) are defined as follows.

X(ω) = X0 + ωX1 (19)

=

[
XA0 XT

B0
XB0 XC0

]
+ ω

[
XA1 XT

B1
XB1 XC1

]
Y (ω) = Y0 + ωY1 (20)

= [ YA0 YB0 ] + ω [ YA1 YB1 ]

Let a differential of rotational speed ω be α(t) ∈ [α, α] =
[α1, α2]. By using matrix X(ω) in Eq.(19), the matrix

Ẋ(ω) in inequality condition Eq.(17) can be represented
as Eq.(21).

Ẋ(ω) = αX1 = S(α) (21)

Likewise, by using matrix X(ω), A(ω)X(ω) is described
as Eq.(22).

A(ω)X(ω) = (A0 + ωA1)(X0 + ωX1) (22)

= A0X0 + ω(A0X1 +A1X0) + ω2A1X1

Note that He{A(ω)X(ω)} in the condition Eq.(17) has
square term of scheduling parameter ω. In this case, it
is difficult to derive the GS control by solving the condi-
tions at vertexes of polytope because it is not affine for
scheduling parameter ω. To solve the condition Eq.(17),
the following convexity condition Eq.(23) must be held.

∂2

∂ω2
He{A(ω)X(ω)} ⪰ O (23)

⇔ He{A1X1} ⪰ O

By using Schur complement, the designing problem of
proposed GS controller for the LPV system Eq.(10) can
be formulated as a finite set of LMI conditions from
Theorem 1, 2 and the convexity condition Eq.(23).

Lemma 1 : If there exist matrices X(ω) = X(ω)T and
Y (ω) satisfying Eq.(24) - (27), the LPV system Eq.(11)
is stabilized by the state feedback u(t) = K(ω)x(t) =
Y (ω)X(ω)−1x(t).

He{A1X1} ⪰ O (24) N−S(αt) X(ωs)Q
1
2 Y (ωs)R

1
2

Q
1
2X(ωs)

T −I 0

R
1
2Y (ωs)

T 0 −I

≺0 (25)

[
W I
I X(ωs)

]
≻ 0, (s = 1, 2), (t = 1, 2) (26)

trace(W ) < γ (27)

N :=He{A(ωs)X(ωs)+BY (ωs)}

Here, γ is upper bound of J . Though minimizing the γ,
the cost function J is minimized.

To avoid the difficultly of convexity condition Eq.(23),
the matrices XB1 and XC1 in XB and XC are re-
stricted by considering the structure of state matrix
A1 in Eq.(10). The restrictions considering the matrix
structure are described as Eq.(28).

XB1 =

[
Xb1 Xb2

Xb3 Xb4

]
, XC1 =

[
Xc1 XT

c2
Xc2 Xc3

]
(28)

Xbj =

[
xbj x̃bj
xbj x̃bj

]
, Xck =

[
xck xck
xck xck

]
(j = 1, 2, 3, 4), (k = 1, 2, 3)

Using the restrictions Eq.(28), A1X1 in LMI condition
Eq.(25) is rewritten as following equation.

A1X1 =

[
04×4 04×4

04×4 Â1

] [
XA1 XT

B1
XB1 XC1

]
(29)

=

[
O4×4 O4×4

Â1XB1 Â1XC1

]
= O8×8

As a results, He{A(ω)X(ω)} in LMI condition Eq.(25)
is represented as affine for scheduling parameter ω by
the restrictions Eq.(28). Here, Â1XB1 in A1X1 Eq.(29)
is described as following equation.

Â1XB1 =

 0 0 −a9 a9
0 0 a9 −a9
a9 −a9 0 0
−a9 a9 0 0


xb1 x̃b1 xb2 x̃b2
xb1 x̃b1 xb2 x̃b2
xb3 x̃b3 xb4 x̃b4
xb3 x̃b3 xb4 x̃b4


= O4×4 ⪰ O



Likewise, He{Â1XC1} ⪰ O in Eq.(29) is held. Since
the convexity condition Eq.(24) is held by the restric-
tions Eq.(28), the convexity condition is removed from
LMI conditions. The GS controller for the LPV system
Eq.(10) based on parameter dependent Lyapunov func-
tion can be derived as following equations by solving
LMI conditions Eq.(25) - (27).

u(t) = K(ω)x(t) = Y (ω)X(ω)−1x(t) (30)

= [ YA(ω) YB(ω) ]

[
XA(ω) XT

B(ω)
XB(ω) XC(ω)

]−1

x(t)

4 Simulation

In this study, the effectiveness of the GS controller
is compared with robust LQ (RLQ) controller in the
simulations. The RLQ controller guarantees the robust-
ness for the variation of the rotational speed by fixed
controller gain. The physical constants of AMB system
are given as Table 2. In this study, rotational speed is

Table 2: Physical contents of AMB system

symbol value
g 9.8[m/s2]
m 0.277064[kg]
lm 0.1344295[m]
Jx 1.5× 10−5[kgm2]
Jy 1.343× 10−3[kgm2]
G0 8.0× 10−4[m]
k 2.8000× 10−7

r 2.375× 10−4[m]
Ilv, Irv 0.1553[A]
Ilh, Irh 0[A]

changed from 0 to 2618.0 [rad/s] with an acceleration
of 261.8[rad/s2]. At 0 [rad/s], the initial state of the
rotor x0 is given as x0 = 08×1. In addition, pulse dis-
turbance is given to the right end of the rotor on the
direction of Z axis. The disturbance of 1.0 [N] and 0.5
seconds is given every 2.0 seconds. Figure.3 - Figure.5
show the simulation results. The red line shows the re-
sponse of proposed GS controller. The blue line shows
the response of RLQ controller. From the simulation
results, both the controllers can stabilize the rotor po-
sition. However, both the state variables glv and glh by
the GS controller are smaller than those by the RLQ
controller. Cost function value J of the GS controller is
smaller than that of the RLQ controller.

5 Conclusion

In this paper, the GS controller via parameter de-
pendent Lyapunov function for the AMB system is de-
signed. The system tends to be unstable by gyroscopic
effect corresponding to the rotational speed. Thus, the
rotational speed is selected as the scheduling parameter
of the GS controller. The robust stability for rotational
speed by using polytopic representation. The problem
of the GS controller design can be formulated as solving
a finite set of LMI conditions. However, it is difficult to
solve the designing problem at vertexes of polytope be-
cause the LMI conditions are not affine for the schedul-
ing parameter. In oder to avoid this difficulty, Lyapunov
matrix for the AMB system is restricted to make LMI
conditions affine. The simulation results of the GS con-
troller are compared with these of RLQ controller. In

the simulations, the cost function value J of the GS con-
troller is smaller than that of the RLQ controller.
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Figure 3: Position of glv
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Figure 5: Cost function


