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1 Introduction

After the 1990s, various control methods of nonholo-
nomic systems are proposed. Nonholonomic systems
have constraint conditions containing not only angles
but also angular velocities and angular accelerations of
generalized coordinates. Also these systems have out-
puts more than inputs, which are called under-actuated
system. The linear control theory is hard to apply be-
cause linear approximated systems at the equilibrium
point of these systems are not ensured the controlla-
bility. Additionally it is proven that systems cannot
be stabilized using by linear time-invariant state feed-
back even if the controllability of systems are ensured
in the meaning of nonlinear [1]. The canonical system
exists for first-order nonholonomic systems which are
represented by a symmetric affine system. The canoni-
cal system is called chained system [2]. Various feedback
control strategies based on the chained system have been
applied because of its adaptability.

Control moment gyroscope (CMG), which is treated
in this research, is applied for attitude control of a large
scale spacecraft, for example International Space Sta-
tion. CMG provides larger torque than a conventional
device by tilting the gimbal which is attached in the
same axis as spinning rotor. CMGs are generally applied
in cooperation [3]. In this research, the control for sin-
gle CMG is discussed as a fundamental researches before
discussing a cooperation control of CMGs. CMG is the
first-order nonholonomic system and its state equation
is represented by a 2-input 3-state symmetric affine sys-
tem which has non-integrable constraint for angular ve-
locities. In addition, CMG has the hardware restriction
of the motion range and singularity. Recently efficient
methods are proposed for the single CMG, for example
the backstepping control for the chained system [4], the
optimal feedback control based on the output regulation
[5].

In this research, the tracking controller for CMG with
nonholonomic constraint is synthesized. Firstly the
mathematical model of CMG is derived. It is well known
that a coulomb friction exists in CMG with this research
[6]. However the influence of the friction is ignored in
the mathematical model because the chained system be-
comes complicated if the influence of the friction is con-
sidered. Secondly the chained system is derived by the
mathematical model. The chained system is obtained by
a conversion method satisfying the hardware restriction.
Thirdly a tracking controller based on the backstepping
approach is synthesized. The influence of the friction
is ignored in a mathematical model. The difficulty to
thereby occur is dealt with the controller with a integra-
tor. The stability of the system including the integrator
is guaranteed theoretically based on Lyapunov function.
Lastly the effectiveness of this research is illustrated by
simulations. The controller with integrator is compared
with the controller without integrator.

2 Mathematical Model

In this section, the mathematical model of CMG is de-
rived. Firstly the equation of motion of CMG is derived
from Euler-Lagrange [7]. Secondly the hardware re-
striction and singularity are described. Lastly the state
equation which is obtained by the constraint condition
is converted to the chained system [4].

2.1 Equation of Motion

The schematic diagram of CMG (Model-750 unit by
Educational Control Products) is shown in Fig.1. CMG
consists of 3 rigid bodies which are Rotor1, Gimbal2 and
Gimbal3. Rotor1 and Gimbal2 are driven by DCmotors.
A coulomb friction exists in Rotor1 [6]. Gimbal2 has the
range of motion −π

2 < q2 < π
2 [7] and singularity q2 = 0

in the controller synthesis (details later). Synthesizing
the controller has to be considered under the following
restriction of the angle of Gimbal2.

0 < q2 <
π

2
(1)

Note that Gimbal3 does not have any drive sources.
Gimbal3 is driven by the gyro torque which is gener-
ated by the law of conservation of angular momentum.
The control problem of the research is that the angle of
Gimbal3 tracks the reference without error in case that
a coulomb friction exists in Rotor1. The chained system
becomes complicated because the state equation can not
be represented as symmetric affine system if the mathe-
matical model has the friction. Therefore the influence
of the friction is ignored in the mathematical model.
The influence of the friction is dealt with the controller
with integrator.
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Figure 1 Schematic Diagram of CMG

Let qi and ωi, (i = 1, 2, 3) be the angle and the angular
velocity of Rotor1, Gimbal2 and Gimbal3 respectively.
T1 and T2 are the torque spinning Rotor1 and tilting
Gimbal2. Equation of motions of each rigid bodies are
obtained as follows.
Rotor1:

IR1yω̇1 + IR1yω̇3 cos q2 − IR1yω2ω3 sin q2 = T1 (2)



Gimbal2:

(IG2x + IR1x)ω̇2 + I1ω
2
3 sin q2 cos q2

+IR1yω1ω3 sin q2 = T2 (3)

Gimbal3:

(I2 − I1 sin
2 q2)ω̇3 + IR1yω̇1 cos q2

−IR1yω1ω2 sin q2 − I1ω2ω3 sin 2q2 = 0, (4)

I1 = IG2y + IR1y − IG2z − IR1x,

I2 = IG3y + IG2y + IR1y

Physical parameters are as follows.

IR1x, IR1y : Moment of inertia of Rotor1[kg ·m2],

IG2x, IG2y, IG2z : MOI of Gimbal2[kg ·m2],

IG3y : MOI of Gimbal3[kg ·m2]

2.2 Conversion into the Chained System

Consider the state equation of Gimbal3 to derive the
chained system. The case that the initial angular mo-
mentum of Gimbal3 is zero is considered to derive the
chained system simply (chaiend system becomes com-
plicated if Gimbal3 has angular momentum at initial
condition). Constraint equation of Gimbal3 is obtained
by integral of equation (4) as follows.

(I2 − I1 sin
2 q2)ω3 + IR1yω1 cos q2 = 0 (5)

Constraint equation (5) means the law of conservation
of angular momentum. Equation (5) contains not only
angles of the system but also angular velocities. This
system is called the first-order nonholonomic system.
Let q = [q1 q2 q3]

T be states of the state equation. From
constraint equation (5), the following state equation is
obtained by regarding ω1 and ω2 as inputs.

q̇ =

[
1
0

α(q2)

]
ω1 +

[
0
1
0

]
ω2, (6)

α(q2) =
−IR1y cos q2

I2 − I1 sin
2 q2

System (6) is converted to the chained system by fol-
lowing coordinate and input conversions [2].{

x1 = q1
x2 = α(q2)
x3 = q3

,

{
u1 = ω1

u2 = β(q2)ω2
, (7)

β(q2) =
d

dq2
α(q2)

It is well known that conversion (7) is the general
method. However the problem caused by the hard-
ware restriction occur in the controller synthesis (details
later) if system (6) is converted into the chained system
by general method (7). Therefore following conversions
are applied in order to satisfy the problem [4].{

x1 = α(q2)
x2 = q1
x3 = q1α(q2)− q3

,

{
u1 = β(q2)ω2

u2 = ω1
(8)

The chained system is obtained as follows.[
ẋ1

ẋ2

ẋ3

]
=

[
1 0
0 1
x2 0

][
u1

u2

]
(9)

The nonlinear tracking controller is synthesized based
on chained system (9) with conversion (8).

3 Controller Synthesis

In this section, the tracking controller for system (9)
with conversion (8) to state equation (6) is synthesized.
Let xr = [x1r x2r x3r]

T be the tracking orbit and
u1r, u2r be tracking inputs. The reference system is de-
fined as follows.[

ẋ1r

ẋ2r

ẋ3r

]
=

[
1 0
0 1
x2r 0

][
u1r

u2r

]
(10)

Let xe = [x1e x2e x3e s3]
T , xie = xi−xir, (i = 1, 2, 3) be

the error between the state and the reference. Let s3 =∫
(x3 − x3r)dt be the integral of the error between the

function of the angle of Gimbal3 and the reference. The
integrator makes the system track the reference without
error when the coulomb friction exists in the system.
The error dynamics is obtained as follows.

ẋ1e = u1 − u1r

ẋ2e = u2 − u2r

ẋ3e = x2(u1 − u1r) + x2eu1r

ṡ3 = x3e

(11)

Control strategy of stabilizing system (11) have follow-
ing steps.

Step A. Separate dynamics (11) into two subsystems
because stability of x3e depends on stability of x1e.
Stabilizing x1e by applying u1 firstly.

Step B. Synthesize stabilizing controller for the other
subsystem by applying remaining input u2 based
on the backstepping approach.

Step C. Calculate control torques T1 and T2 based on
the backstepping approach from obtained inputs for
the chained system.

3.1 Stabilize the Subsystem ∆1

System of xe is separated into following subsystems
∆1 and ∆2.

∆1 : ẋ1e = u1 − u1r (12)

∆2 :

{
ẋ2e = u2 − u2r

ẋ3e = x2(u1 − u1r) + x2eu1r

ṡ3 = x3e

(13)

At first, subsystem ∆1 is stabilized by applying feedback
as follows.

ẋ1e = u1 − u1r = −k1x1e, k1 > 0 (14)

Subsystem ∆2 can be rewritten as follows when u1−u1r

converses to zero by equation (14){
ẋ2e = u2 − u2r

ẋ3e = x2eu1r

ṡ3 = x3e

(15)

Subsystem ∆2 is stabilized by applying the remaining
input u2.
In the chained system by general method (7), stabi-

lizing subsystem (12) means stabilizing the angle of Ro-
tor1 firstly because x1 = q1. In contrast, conversion
method (8) stabilizes the function of q2 firstly because
x1 = α(q2).



3.2 Stabilize the Subsystem ∆2

Subsystem (15) is stabilized based on backstepping
approach. The dynamics of x3e and s3 can be stabilized
by x2e which is regarded as the virtual input. Note that
x2e is defined as the error between the state x2 and the
reference x2r. The error x2e may become large because
the dynamics of x3e and s3 is stabilized by regarding x2e

as the virtual input. In the case of general method (7),
x2e is defined by x2 = α(q2), i.e. x2e is a function of
the angle of Gimbal2. Gimbal2 has the restriction (1).
It is difficult to satisfy restriction (1) with the general
formed chained system. In contrast, the chained system
by conversion (8) consists of x2 = q1. Synthesizing the
controller becomes easy by applying conversion (8) be-
cause the angle of Rotor1 does not have any restrictions.
Consider the condition to stabilize the dynamics of

x3e and s3 in the subsystem ∆2 by regarding x2e as the
virtual input. Lyapunov function candidate V1(x3e, s3)
for the dynamics of x3e and s3 is chosen as follows.

V1(x3e, s3) =
1

2
(x3e + u2

1rs3)
2 > 0 (16)

Assume the following equation is satisfied.

x2e = −k2u1r(x3e + u2
1rs3)− 2u̇1rs3 − u1rx3e, (17)

k2 > 0

Then the time derivative of equation (16) is calculated
as follows.

V̇1(x3e, s3) = −k2u
2
1r(x3e + u2

1rs3)
2 < 0 (18)

The dynamics of x3e and s3 becomes asymptotically sta-
ble if assumption (17) is satisfied.
Consider the virtual input u2 to satisfy assumption

(17). The error σ between the state x2e and right hand
side of equation (17) is defined as follows.

σ = x2e + k2u1r(x3e + u2
1rs3) + 2u̇1rs3 + u1rx3e(19)

Lyapunov function candidate V2(x3e, s3, σ) for the dy-
namics of x3e, s3 and σ is chosen as follows.

V2(x3e, s3, σ) =
1

2
(x3e + u2

1rs3)
2 +

1

2
σ2 > 0 (20)

The input u2 is chosen as follows.

u2 = u2r − (3u̇1r + k2u̇1r + k2u
3
1r)x3e

−(u2
1r + k2u

2
1r)x2e − (2ü1r + 3k2u

2
1ru̇1r)s3

−u1r(x3e + u2
1rs3)− k3σ, k3 > 0 (21)

The time derivative of equation (20) is calculated as
follows.

V̇2(x3e, s3, σ) = −k2u
2
1r(x3e + u2

1rs3)
2 − k3σ

2 < 0 (22)

The dynamics of x3e, s3 and σ becomes asymptotically
stable. Assumption (17) is satisfied by choosing u2 as
equation (21) because the dynamics of σ converges to
zero. Therefore the subsystem ∆2 becomes asymptoti-
cally stable.

3.3 Calculate the Control Torque

Control torques T1 and T2 are derived by regarding
u1 and u2 as virtual inputs. The system of CMG is
represented by equation (2)-(4) and equation (14) as
follows. u̇1 = β(q2)ω̇2 + γ(q2)ω

2
2 , γ(q2) =

dβ(q2)
dq2

ω̇2 = f1(q2, ω1, ω3) +
1

IG2x+IR1x
T2

ẋ1e = u1 − u1r

(23)


u̇2 = ω̇1 = f2(q2, ω1, ω2, ω3) + f3(q2)T1

σ̇ = u2 − u2r + (3u̇1r + k2u̇1r + k2u
3
1r)x3e

+(u2
1r + k2u

2
1r)x2e + (2ü1r + 3k2u

2
1ru̇1r)s3

ẋ3e = x2eu1r = σu1r − k2u
2
1r(x3e + u2

1rs3)
−2u1ru̇1rs3 − u2

1rx3e

(24)

f1(q2, ω1, ω3) =
−I1ω

2
3 sin q2 cos q2 − IR1yω1ω3

IG2x + IR1x
,

f2(q2, ω1, ω2, ω3) =
f2a(q2, ω1, ω2, ω3)

−I2 + I1 sin
2 q2 + IR1y cos2 q2

,

f2a(q2, ω1, ω2, ω3) = −(I2 − I1 sin
2 q2)ω2ω3 sin q2

+IR1yω1ω2 cos q2 sin q2
+I1ω2ω3 sin 2q2 cos q2,

f3(q2) =
I2 − I1 sin

2 q2

−IR1y(I2 − I1 sin
2 q2) + I2R1y cos

2 q2

At first, the torque T2 is derived by backstepping ap-
proach. The error ξ between the state u1 and virtual
input (14) is as follows.

ξ1 = u1 − (u1r − k1x1e) (25)

Lyapunov function candidate V3(x1e, ξ1) for the dynam-
ics of x1e and ξ1 is chosen as equation (26).

V3(x1e, ξ1) =
1

2
x2
1e +

1

2
ξ21 > 0 (26)

The function u̇1 is chosen as follows.

u̇1 = −x1e + u̇1r − k1ẋ1e −H1ξ1, H1 > 0 (27)

Time derivative of equation (26) is calculated as follows.

V̇3(x1e, ξ1) = −k1x
2
1e −H1ξ

2
1 < 0 (28)

System (23) becomes asymptotically stable. Therefore
the control torque T2 is obtained from equation (23),
(27) as follows.

T2 = {(IG2x + IR1x)(−β(q2)f1 − γ(q2)ω
2
2 + u̇1r

−k1ẋ1e − x1e −H1ξ1)}/β(q2) (29)

Note that β(q2) = 0 in equation (29) is singularity. Con-
trol torque T2 becomes infinity if q2 goes to zero. In the
same way, the torque T1 is derived by backstepping ap-
proach. The error ξ2 between the state u2 and virtual
input (21) is as follows.

ξ2 = u2 − u2r +G1x2e +G2x3e +G3s3 (30)

G1 = u2
1r + k2u

2
1r + k3,

G2 = 3u̇1r + k2u̇1r + k2u
3
1r + u1r + k3u1r + k2k3u1r,

G3 = 2ü1r + 3k2u
2
1ru̇1r + u3

1r + 2k3u̇1r + k2k3u
3
1r



Lyapunov function candidate V4(x3e, s3, σ, ξ2) for the
dynamics of x3e, s3, σ and ξ2 is chosen as equation (31).

V4(x3e, s3, σ, ξ2) =
1

2
(x3e + u2

1rs3)
2 +

1

2
σ2 +

1

2
ξ22 > 0

(31)
The function u̇2 is chosen as follows.

u̇2 = (u̇2r − Ġ1x2e −G1ẋ2e − Ġ2x3e −G2ẋ3e

Ġ3s3 −G3ṡ3 − σ −H2ξ2)/f3,H2 > 0 (32)

Time derivative of equation (31) is calculated as follows.

V̇4(x3e, s3, σ, ξ2) = −k2u
2
1r(x3e+u2

1rs3)
2−k3σ

2−H2ξ
2
2<0

(33)
System (24) becomes asymptotically stable. Therefore
the control torque T1 is obtained from equation (24),
(32) as follows.

T1 = (−f2+u̇2r−Ġ1x2e−G1ẋ2e−Ġ2x3e−G2ẋ3e

−Ġ3s3−G3ṡ3−σ−H2ξ2)/f3,H2>0 (34)

Then the system of CMG becomes asymptotically stable
by T1 and T2.

4 Simulation

In this section, the effectiveness of this research is il-
lustrated by simulations. Simulations including a fric-
tion in Rotor1 are executed. The friction is estimated
by some experiments as follows.

Fc =

{
0.5, ω1 > 0
0, ω1 = 0

−0.5, ω1 < 0
(35)

The equation of motion of Rotor1 with friction is as
follows.

IR1yω̇1+IR1yω̇3 cos q2−IR1yω2ω3 sin q2 = T1−Fc (36)

Initial conditions are given as follows.

[ q1 q2 q3 ]
T
= [ 0 π

4 0 ]
T
,

[ ω1 ω2 ω3 ]
T
= [ 0 0 0 ]

T
(37)

References are given as follows.

ω1r =

{
0 (t < 5, t > 7)
−1.008 (5 ≤ t ≤ 7)

[rad/sec],

q2r = 0.5 sin(1.5t) +
π

4
[rad],

ω3r = ω1rα(q2) [rad/sec] (38)

Where q3r is obtained by integral of ω3r. The control
problem is that Gimbal3, which does not have any drive
sources, tracks the reference without error. The angle
of Gimbal2 tracks the sinusoidal reference satisfying re-
striction (1). The reference of the angular velocity of
Rotor1 ω1r is calculated to let the reference for the angle
of Gimbal3 go to 0.5[rad]. Gain parameters are chosen
by trial and error as follows.

k1 = 3, k2 = 7, k3 = 11,H1 = 18,H2 = 6 (39)

Simulation results are shown in Fig.2 - 4. The solid
line shows the proposed method (controller1) and the
dashed line shows the controller without integrator (con-
troller2). The dotted line shows the reference.
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Figure 2 Simulation of ω1
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Figure 3 Simulation of q2
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Figure 4 Simulation of q3

The angular velocity of Rotor1 is shown in Fig.2. It
can be seen that the response ω1 is stabilized. The angle
of Gimbal2 with the restriction is shown in Fig.3. As can
be seen that the response q2 tracks the reference under
the restriction (1). The angle of Gimbal3 is shown in
Fig.4. The steady-state error occurs in the response q3
applying for the controller2. In contrast, the response q3
tracks the reference without error by applying proposed
method in case that the friction exists in the system.
From these results, the control problem is satisfied by
applying the proposed method.

5 Conclusion

In this research, a nonlinear tracking control for first-
order nonholonomic system with restriction and friction
is proposed. The state equation is converted to the
chained system which avoids the restriction. The track-
ing controller with integrator based on the backstep-
ping method is synthesized. The integrator makes states
track the reference without error when the coulomb fric-
tion exists in the system. The stability of the system
with integrator is guaranteed theoretically by consisting
Lyapunov function. From simulation results, it can be
seen that the response can track the reference without
error by the proposed method in case that the system
has restriction and friction.
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