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1 Introduction

ABS was born to prevent the flat phenomenon of rail-
ways or the burst of the tire at landing. Recently, almost
vehicles are equipped with ABS as a safety device.
The control of ABS is required to prevent wheel lock

and to short the braking distance keeping braking power
maximum at braking in all road conditions. The dy-
namic behavior of ABS depends on the vehicle velocity
and the friction coefficient of the road surface. Because
of this, some research papers of the robust control de-
sign for the vehicle velocity or the friction coefficient of
the road surface are reported [5]. As well, the dynamic
behavior of ABS has strong non-linearity. Because of
this, some research papers of the PID control design
or SMC (Sliding Mode Control) design for the strong
non-linearity of ABS are reported [9]-[14]. The vehicle
velocity can be measured from the wheel velocity, but
the friction coefficient of the road surface can’t be mea-
sured in ABS.
Therefore, in this research, the method of the control

design for the changes of the vehicle velocity and the fric-
tion coefficient of the road surface is proposed to satisfy
the two conditions required for ABS ”all road condi-
tions” and ”to prevent wheel lock at braking”. The first
characteristic of this research is to design the observer
to estimate the friction coefficient of the road surface.
The equation of the friction coefficient of the road sur-
face is derived from the motion equation which obtained
in the formulation of the ABS model. The second char-
acteristics of this research are to implement the opti-
mum descriptor variables and to extract the fluctuating
parameters usefully with LFT (Linear Fractional Trans-
formation). Because of this, polytopic LPV (Linear Pa-
rameter Varying) system is composed without ignoring
the non-linearity of the fluctuating parameter. In the
case of doing the GS control design in a framework of
the state space expression, the design result tends to be
conservative because it is difficult to polytypically ex-
press strictly the fluctuating parameter which appears
non-linearly in the state equation. Some research pa-
pers that the conservatism of the design result is reduced
or the treatment of Lyapunov function which depends
on parameters is made easy by implementing descriptor
variables are reported [2],[7],[8]. The third character-
istic of this research is to propose the method of the
GS control design based on Lyapunov function which
depends on parameters considering the time varying of
the vehicle velocity and the friction coefficient of the
road surface while estimating the friction coefficient of
the road surface with designed observer. Because of
this, to be able to construct the stable control system
for all changes of the vehicle velocity and the friction
coefficient of the road surface is proved in theory. As
well, the effectiveness of the proposed method is verified
through simulation and experiment.

2 Controlled Object

In this research, the brake control is done with the
ABS experimental unit like Figure 1. This unit has two
wheels. The upper wheel simulates the vehicle wheel,
and the lower wheel simulates the road surface. As well,
the upper wheel has a hydraulic disk brake. This unit
can measure the wheel velocity and the vehicle velocity.

Figure 1 ABS Experimental Unit

2.1 Formulation of the model

The physical model of this unit is shown in Figure 2.

Figure 2 Physical Model of ABS

The definition of the parameters are shown as follows.
x1(t):angular velocity of the upper wheel[rad/s]
x2(t):angular velocity of the lower wheel[rad/s]
r1:radius of the upper wheel[m]
r2:radius of the lower wheel[m]
J1:moment of inertia of the upper wheel[kg ·m2]
J2:moment of inertia of the lower wheel[kg ·m2]
Fn:total force generated by the upper wheel and pressing
on the lower wheel[N]
M1:braking torque[Nm]
Mg:gravitational and shock absorber torques acting on
the balance lever[Nm]
µ:friction coefficient of the road surface



L:distance between the contact point of the wheels and
the rotational axis of the balance lever[m]
φ:angle between the normal in the contact point and the
line L[rad]

The physical expressions of the upper wheel and the
lower wheel are given as eq.(1),(2) by Newton’s motion
equation.

J1ẋ1(t) = Fnr1µ−M1 (1)

J2ẋ2(t) = −Fnr2µ (2)

As well, by the sum of torques around the point A,

Fn =
Mg +M1

L(sinφ− µ cosφ)
(3)

Here, eq.(3) is substituted into eq.(1),(2),

J1ẋ1(t) = (Mg +M1)r1S −M1 (4)

J2ẋ2(t) = −(Mg +M1)r2S (5)

where,

S =
µ

L(sinφ− µ cosφ)
(6)

Here, the slip ratio λ is defined as a control indicator.

λ =
r2x2(t)− r1x1(t)

r2x2(t)
(7)

Next, the differential equation of the slip ratio λ is de-
rived.

λ̇ = f(λ, x2(t), S) + g(λ, x2(t), S)M1 (8)

where,

f(λ, x2(t), S) =
1

x2(t)
{−r1

r2
c11S + (1− λ)c14S}

g(λ, x2(t), S) =
1

x2(t)
{−r1

r2
(c12S + c13) + (1− λ)c15S}

(c11, c12, c13, c14, c15 are constants.)

Here, linearization is done around the equilibrium point
(λ∗,M∗

1 ).

λ̇− λ̇∗ ∼=
∂λ̇

∂λ
(λ− λ∗) +

∂λ̇

∂M1
(M1 −M∗

1 ) (9)

(c22S − β1)x2(t)λ̇ ∼= (α11S
2 + β2S)(λ− λ∗)

+ (α21S
2 + α22S + β2

1)(M1 −M∗
1 ) (10)

(α11, α21, α22, β1, β2 are constants.)

2.2 Derivation of the friction coefficient of the
road surface µ

µ is derived to estimate the friction coefficient of the
road surface. By eq.(2),

µ = − J2
Fnr2

ẋ2(t) (11)

2.3 State Equation

In this research, the error of the slip ratio and the
integration of the error are added to a state variable
to let the slip ratio follow the target value. The state
variable x(t) is given as x(t) = [

∫
(λ − λ∗)dt λ − λ∗],

and the input of the system is given as u(t) = M1−M∗
1 .

Eẋ = Ax+Bu (12)

A =

[
0 1
0 α11S

2 + β2S

]
, B =

[
0

α21S
2 + α22S + β2

1

]

E =

[
1 0
0 x2(c22S − β1)

]
3 Control Design

The GS control design is done regarding the vehicle
velocity and the friction coefficient of the road surface
as the scheduling parameters. The friction coefficient
of the road surface is expressed with S which has µ.
The roles of ABS are to prevent wheel lock and reduce
the vehicle velocity while letting the braking force keep
maximum at braking. To perform this, the slip ratio is
needed to follow the ideal slip ratio which can maximize
the braking force.

3.1 GS Control Design

Parameter boxes that upper and lower bounds of the
scheduling parameter θ and its changing speed θ̇ are tops
are defined.

Θ = {θ = [θ1, θ2, θ3 : θi ∈ {θi, θi}}
Θd = {θ̇ = [θ̇1, θ̇2, θ̇3 : θ̇i ∈ {vi, vi}}

θ1 = S, θ2 = S2, θ3 = x2(t) (i = 1, 2, 3)

In eq.(12), the matrixes A, B, E have the schedul-
ing parameters. Being able to derive the computable
LMI condition by implementing the redundant descrip-
tor variable for the system like this is known [2]. In
this research, the scheduling parameters are gathered
into the matrix AG by giving a descriptor variable as
xG(t) = [

∫
(λ− λ∗)dt λ− λ∗ λ̇ M1 −M∗

1 ]
T .

EGẋG = AGxG +BGu (13)

AG =

0 1 0 0
0 0 1 0
0 α11θ2 + β2θ1 (−c22θ1 + β1)θ3 α21θ2 + α22θ1 + β2

1
0 0 0 1



EG =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , BG =

 0
0
0
−1


The scheduling parameters have been gathered into the
matrix AG from eq.(13). There is a polynominal ex-
pression of the scheduling parameters in the matrix AG.
Therefore, a descriptor variable xǴ(t) = [

∫
(λ−λ∗)dt λ−

λ∗ λ̇ M1 −M∗
1 λ − λ∗ λ̇ M1 −M∗

1 M1 −M∗
1 ]

T is
given to express polynominal expressions of the schedul-
ing parameters monominally.

EǴẋǴ = AǴxǴ +BǴu (14)



AǴ =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 α11θ2 −c22θ1θ3 α21θ2 β2θ1 β1θ3 α22θ1 β2

1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



EǴ =

[
EG 0
0 0

]
, BǴ =

[
BG

0

]
The matrix AǴ has a bilinear term of the scheduling
parameters θ1θ3. Here, the matrix AǴ is transformed
equally to the form which doesn’t have θ1θ3 to derive the
computable LMI condition in the case of using Lyapunov
function which depends on parameters. The method to
extract the scheduling parameters with LFT in order
to transform like this is adopted [7]. In this research,
a scheduling parameter ∆ is given as eq.(16) and the
matrix AǴ(θ) is given as eq.(15) with ∆ considering the
form of the scheduling parameters in the matrix AǴ.

AǴ(θ) = An +Bδ∆(I −Dδ∆)−1Cδ (15)

∆ =

3∑
i=1

θi∆i (16)

∆1 = diag(1, 1, 1, 1, 0, 0, 0, 0)

∆2 = diag(0, 0, 0, 0, 1, 1, 0, 0)

∆3 = diag(0, 0, 0, 0, 0, 0, 1, 1)

Then, a system which equals to eq.(14) is expressed as
eq.(17)-(19). In this research, considering the design of
the GS controller which based on Lyapunov function
which depends on parameters, the matrixes An, Cδ are
transformed without including the scheduling parame-
ters.

EǴẋǴ = AnxǴ +Bδwδ +BǴu (17)

zδ = CδxǴ +Dδwδ (18)

wδ = ∆zδ (19)

An =

[
An11 An12

An21 An22

]
, Bδ =

[
Bδ1

Bδ2

]

Cδ = [Cδ1 Cδ2]

Finally, the coefficient matrix Ad of xd is trans-
formed to the form which doesn’t have the term (I −
Dδ∆)−1 by giving a new descriptor variable xd(t) =
[xǴ(t)

T zδ(t)
T ]T . From the above, the computable LMI

condition can be derived. The system after this trans-
formation is given as eq.(20).

Edẋd = Ad(θ)xd +Bduu (20)

Ad =

[
An Bδ∆
Cδ Dδ∆− I

]
=

[
An11 An12 Bδ1∆
An21 An22 Bδ2∆
Cδ1 Cδ2 Dδ∆− I

]

Ed =

[
EǴ 0
0 0

]
, Bdu =

[
BǴ
0

]

3.2 Condition to discriminate stability

The condition to discriminate stability for the descrip-
tor system which expressed by eq.(20) is shown as fol-
lows[7]. Considering the structure of the matrix Ed in
this research, the candidates of the Lyapunov matrix
Xd(θ) and the variable matrix Yd(θ) are limitted as fol-
lows.

Xd(θ) =

[
X(θ) 0 0
X21(θ) X22(θ) X23(θ)
X31(θ) X32(θ) X33(θ)

]
, X(θ) > 0

EdẊd(θ) =

Ẋ(θ) 0 0
0 0 0
0 0 0

 , Yd(θ) = [Y (θ) 0 0]

By the reference [7], the sufficient condition to
make the system of eq.(20) stable is to be X(θ) >
0, X21(θ), X22(θ), X23(θ), X31(θ), X32(θ), X33(θ), Y (θ)
which satisfied with eq.(21). Here, He{M} = M +MT

is adopted.

He{Ad(θ)Xd(θ) +BduYd(θ)} − EdẊd(θ) < 0 (21)

Eq.(22) is obtained by multiplying [I Bδ∆(I−Dδ∆)−1]
and its transposition into the left side and the right side
of eq.(21).

He{AǴ(θ)X(θ) +BǴY (θ)} − Ẋ(θ) < 0 (22)

There is the product of the scheduling parameter ∆
and the Lyapunov matrix which depends on parame-
ters X(θ) in eq.(22). But there is not this product
in eq.(21). In eq.(21), there is the product of ∆ and
X31(θ), X32(θ), X33(θ). By giving Xd(θ) as eq.(23) and
giving limitation as eq.(24) for X31(θ), X32(θ), X33(θ),
eq.(21) becomes multi affine for θ. This means that the
stability is guaranteed by resolving the LMI condition
at the endpoint nodes of the scheduling parameter θ and
its changing speed θ̇.

Xd(θ) = X̂d0 +
3∑

i=1

θiX̂di (23)

∆i[X31i X32i X33i] = 0 (24)

In the case of considering H2 control specification for
eq.(20), the generalized controlled system is given as
eq.(25)-(26).

Edẋd = Ad(θ)xd +Bdww +Bduu (25)

z = Cdxd +Ddu (26)

Bdw =

[
Bw

0
0

]
, Cd = [C 0 0] , C =

[
Q

1
2

0

]
, Dd =

[
0

R
1
2

]
Here, w means a disturbance input, z means a evalua-
tion output, Q means a　weighting matrix for the state
variable xG(t), R means a weight for a control input.
The matrixes Ad, Xd, Yd are expressed as eq.(27).

[Ad(θ) Xd(θ) Yd(θ)] =
8∑

i=1

βi(θ) [Adi Xdi Ydi] (27)



βi ≥ 0,

8∑
i=1

βi = 1

The LMI conditions are given as eq.(28)-(33) to seek
the state feedback style GS controller in order to make
the system which expressed by eq.(25)-(26) stable in the
variation ranges of the scheduling parameter θ and its
changing speed θ̇. The problem is to minimize H2 norm
from w to z.

minimize : γ (28)

s.t. : X(θ) > 0 (29)[
He{Ad(θ)Xd(θ) +BduYd(θ)} − Sk Bdw

BT
dw −I

]
< 0 (30)[

X(θ) (CX(θ) +DY (θ))T

CX(θ) +DY (θ) W

]
> 0 (31)

Trace(W ) < γ2 (32)

Sk =

3∑
i=1

θ̇iEdXd(θi) (33)

The GS controller Kd(θ) in Descriptor Expression is
given as eq.(34) by obtaining X(θ), Y (θ) which satisfied
with eq.(28)-(33).

Kd(θ) = Y (θ)X(θ)−1 (34)

Moreover, if X(θ), Y (θ),W are single and Sk = 0 in
eq.(28)-(33), the robust controller of a fixed gain con-
sidering the time varying of the scheduling parameter is
obtained.

4 Simulation

Whether designed GS controller with designed ob-
server can control correctly is tested on the following
conditions.

• The vehicle velocity slows from 50 km/h.

• Simulation is done with designed observer.

Figure 3 Vehicle Velocity and Wheel Velocity

Figure 4 Slip Ratio

5 Conclusion

Results are shown as follows.
• The observer to estimate µ correctly has been de-
signed.

• The GS controller for the friction coefficient of the
road surface µ and the vehicle velocity x2(t) with
designed observer has been designed.

Problems are shown as follows.
• To follow the ideal slip ratio more perfectly.

• To do simulation and experiment considering the
friction behavior of the hydraulic disk brake system.

• Only S and x2(t) are adopted as the scheduling
parameters.
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