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1 Introduction

This paper presents a robust LQ control system
with Model Reference Adaptive Control(MRAC) law for
MIMO system which is described as descriptor form.
Generally, the performance degradation is expected to
happen in case that uncertainty excess the upper and
lower bound which is considered in the robust control
synthesis process. For this problems, adaptive control
algorithms have potential to improve performance and
reliability in control system. In this study, we focus on
this characteristics of adaptive control algorithms and
add adaptive law into usual robust control system. The
proposed system is synthesized by two-step approach.
First of all robust LQ controller is synthesized through
solving some LMI conditions. This robust LQ controller
can be handle with limited uncertainty parameters. Sec-
ond, adaptive law is designed and consolidated closed
loop stability of adaptive loop and robust LQ control
loop is analyzed though solving quadratic stability con-
ditions.
In this study, LMI based stability analysis method

for the combined system of attached adaptive law and
MIMO system described as descriptor form, whose E
matrix is singular, is developed after Yang’s method
for SISO state space [6]. Our approach for MIMO de-
scriptor systems is natural extension of Yang’s results
for state space representation. Furthermore, adaptive
law introduced in this study guarantees the convergence
speed. Quadratic stability is analyzed for proposed sys-
tem is analyzed. Finally, the effectiveness of the pro-
posed procedure is verified by some experiment with
using 2 Degree-of-Freedom (2DOF) helicopter. Com-
paring the proposed method with usual robust LQ con-
trol without MRAC and nominal LQ with MARC, the
effectiveness of the proposed method is validated.

2 Robust LQ controller synthesis

It is difficult to deal with uncertainties in state space
representation whose dependency is not affine. In this
paper, we avoid this difficulty with using descriptor
representation and Linear Fractional Transformation
(LFT). Consider a continuous time multi-input multi-
output system described by:(
Ep +

k∑
i=1

δiEi

)
ẋp =

(
Ap +

k∑
i=1

δiAi

)
xp +

(
Bp +

k∑
i=1

δiBi

)
up

y = Cpxp (1)

where Ep, Ei, Ap, Ai ∈ ℜn×n, Bp, Bi ∈ ℜn×m, Cp ∈
ℜp×n. Eq.(1) has affine perturbation in each coefficient
matrices. Additionally, δi ∈ ℜ is perturbation elements
which satisfy |δi| ≤ 1. For simplicity E(δ), A(δ) and
B(δ) matrices are defined as :

E(δ) = Ep +
k∑

i=1

δiEi, A(δ) = Ap +
k∑

i=1

δiAi, (2)

B(δ) = Bp +

k∑
i=1

δiBi.

Generally, it is difficult to analyze the system stability
directly whose E(δ) matrix has uncertainty parameters.
However, through adopting descriptor variables as x̂ :=
[xTp ẋTp uT ], uncertainties in each coefficient matrices are
integrated into matrix A.

Ê ˆ̇x = Â(∆)x̂+ B̂up, y = Ĉx̂ (3)

Â(∆) = A0 +
k∑

i=1

δiAi, Ê = diag{I, 0, 0, 0}, Ĉ = [Cp 0 0]

Â(∆) =

[
0 I 0

A(δ) −E(δ) B(δ)
0 0 −I

]
, B̂ =

[
0
0
I

]
Due to the uncertainties in the matrix A depend poly-
nomially at Eq.(3), therefore Eq.(3) need to convert into
equivalent model whose uncertainty terms depend as
first order with adopting Linear Fractional Transforma-
tion(LFT). Â(∆) can be represented as follows:

Â(∆) = A0 +Bδ∆Cδ, ∆ = diag[δ1I1 · · · δkIk]. (4)

Eq.(3) is converted into the following system with using
Eq.(4).

Ê ˙̂x = A0x̂+Bδδω + B̂up (5)

δη = Cδx̂

δω = ∆δη

Let descriptor variable x̂d = [x̂ δω] then closed loop
system is obtained as:

Ed = Adx̂d +Bdup (6)

Êd =

[
Ed 0
0 0

]
, Âd =

[
A0 Bσ

∆Cδ −I

]
, B̂d =

[
B̂
0

]
Note that Ed is independent from uncertainty parame-
ters and only Ad linearly depends on uncertainty. One
integrator is added into the closed loop system. For the
plant model Eq. (6), let y, r , ep := r− y and z are ob-
servable output, reference, error and integrated value of
ep, respectively. Letting state as x̃ = [z xTd ]

T , we finally
obtain Eq.(7) for the augmented system with integrator.

Ẽds
˙̃x = Ãdsx̃+ B̃dsup (7)

Ẽds =

[
I 0
0 Ed

]
, Ãds =

[
0 −Cd

0 Ad

]
B̃ds =

[
0 BT

d

]T
To derive a stabilizing state feedback u = Kxp, consider
to minimize the following cost function.

J =

∫ ∞

0

(xTpQxp + uTpRup)dt (8)

Where Q ∈ ℜn×n > 0 and R ∈ ℜm×m > 0 are given
weighting matrices. For the redundant descriptor sys-
tem, we have already obtained the following lemma in
the previous research[4].



Lemma 1 If there exist X11 > 0, Xd, Yd such that
Eq. (9) hold, then the closed loop system with the state
feedback u = −Kxp := Y X−1

11 xp is stable. He[AdsXd −BdYd] XT
d (Q

1
2 )T Yd

T (R
1
2 )T

Q
1
2 Xd −I 0

R
1
2 Yd 0 −I

 < 0 (9)

Xd =

[
X11 0 0
X21 X22 0
X31 X32 X33

]
,Yd = [ Y 0 0 ] (10)

Furthermore, through maximizing the trace of X11, J is
guaranties J < trace(X11)

−1.
Synthesized controller is divided into integration gain

Kr ∈ ℜm×m and state gain Kx ∈ ℜm×n as K =
[Kr Kx]. Where unom is nominal input using robust
LQ state feedback for reference and actual model and
r(t) is step reference.

unom = −Kxxp +Kr

∫
(r(t)− y)dt (11)

3 Adaptive law with σ modification for
descriptor system

In this section, adaptive law and quadratic stability
analysis for adaptive control loop are discussed. Yang et
al [6] developed a LMI-based stability analysis method
that employs σ-modification for SISO system. In this
study, we expand Yang et al’s method to MIMO de-
scriptor system.
Consider the the MIMO system described as descrip-

tor system. For Eq.(1), let descriptor variable is x̂p =
[xp ẋp]

T then Eq.(1) is described as follows.

Êp
˙̂xp = Âpx̂p + B̂p(u+WTϕ(x̂p)), y = Ĉpx̂p (12)

Êp =

[
I 0
0 0

]
, Âp =

[
0 I

A(δ) −E(δ)

]
,

B̂p =
[
0 B(δ)T

]T
, Ĉp = [ Cp 0 ]

Where W (t) = [W1(t) · · ·Wm(t)] ∈ ℜ2n×m, Wi(t) ∈
ℜ2n×1 is uncertain parameter matrix and ϕ(x̂p) ∈ ℜ2n×1

is a known set of smooth basis functions. WT (t)ϕ(x̂p)is
a matched system uncertainty. Actual input u for the
argued system is describe as follows.

u = unom − uad, uad = Ŵ (t)Tϕ(x̂p) (13)

Where unom is the nominal input for reference model
derived in the previous section and uad is the adaptive
signal. uad functions as canceling matched uncertainty
ŴTϕ(x̂p) through estimating the uncertain parameter

matrix W (t) with Ŵ (t) = [Ŵ1(t) · · · Ŵm(t)] ∈ ℜ2n×m,

Ŵi(t) ∈ ℜ2n×1. Reference model which generates ideal
output for Eq.(12) is described as follows:

Reference model : Êp
˙̂xm = Âmx̂m+ B̂m

∫
(r(t)− y)dt

(14)

Where Âm and B̂m as Âm = Âp − B̂p[Kx 0], B̂m =

B̂pKr. Let e = x̂m − x̂p is tracking error and W̃ (t) =

Ŵ (t) − W (t) (W̃1(t) = Ŵ1(t) − W1(t) · · · W̃m(t) =

Ŵm(t) − Wm(t)) is the estimation error. Let B̂p =

[B̂p1 · · · B̂pm] ∈ ℜ2n×m, B̂pi ∈ ℜ2n×1. Finally the er-
ror between Eq.(12) and Eq.(14) is obtained as Eq.(15).

Êpė = Âme+ B̂pW̃ (t)Tϕ(x̂p) (15)

Ŵ (t) are updated using Eq. (16) as adaptive law with
σ-modification[6], [7], [8].

˙̂
W (t) = −γϕ(x̂p)eT P̂ B̂p − σŴ (t) (16)

Where γ > 0 ∈ ℜ is adaptive gain and σ is σ-
modification gain. The matrix P̂ > 0 in Eq.(16) satisfies
following LMI condition Eq.(17).

Lemma 2 If there exists P̂ > 0 such that Eq.(17)
hold, then state vector x̂p in Eq.(12) is exponentially
bounded by:

∥x̂p(t)∥ <
√

λmax(P̂ )

λmin(P̂ )
e−ρt∥x̂p(0)∥.

ÂT
mP̂

T + P̂ Âm+2ρÊpP̂ < 0, P̂ =

[
P11 0
PT
12 P22

]
(17)

Proof: Considering following Lyapnov function V (x̂p),

V (x̂p) = x̂Tp ÊpP̂ x̂p (18)

V̇ (x̂p) = x̂Tp (Â
T
mP̂

T + P̂ Âm)x̂p < x̂Tp (−2ρÊpP̂ )x̂p = −2ρV (x̂p)

V (x̂p) satisfies V (x̂p) < e−2ρtV (x̂p(0)). Further-

more through adopting λmin(P̂ )∥x̂p∥2 ≤ x̂Tp P̂ x̂p ≤
λmax(P̂ )∥x̂p∥2, we obtained following relationship:

λmin(P̂ )∥x̂p(t)∥2 ≤ x̂Tp P̂ x̂p < e−2ρtx̂Tp (0)P̂ x̂p(0) (19)

≤ e−2ρtλmax(P̂ )∥x̂p(0)∥2.

From Eq.(19) state vector x̂p(t) converge to 0 with faster
than convergence rate ρ.

Letting ζ = [W̃T
1 · · · W̃T

m e]T as error dynamics vari-
ables, the consolidated error dynamics whose descriptor
variable is consist of the tracking error and weight esti-
mation error is described as Eq.(20).

Ěζ̇ = Ǎζ + B̌σW (20)

Ǎ =


−σIN 0 0 −γϕ(x̂)BT

1 P̂

0
. . . 0

.

..

0 0 −σIN −γϕ(x̂)BT
n P̂

B1ϕ(x̄) · · · Bnϕ(x̂) Am

 ,

B̌ =

[
−IN×n

0

]
, Ě =

[
I 0
0 Ep

]
=

[
I 0
0 0

]
A stability analysis for the system Eq.(20) is carried
out by considering the following Lyapnov function.

V (ζ) = eT ÊpP̂ e+
1

γ
W̃ (t)T W̃ (t)T (21)

The time derivative of Lyapnov function Eq.(21) V̇ (ζ)
is calculated as follows.

V̇ (ζ) = −2ρeT ÊpP̂ e− 2
σ

γ
W̃T Ŵ (22)

= −2ρeT ÊpP̂ e−
σ

γ
[∥W̃∥2 + ∥Ŵ∥2 − ∥W∥2]

≤ −
[
−2ρλmin(ÊpP̂ )

σ

γ

]
∥ζ∥2 + σ

γ
∥W∥2 (23)



Eq.(23) is not negative semidefinite for small values of
e, this means σ-modification increase robustness at the
expense of the precise convergence of e to the origin.
Where q = ϕ(x̂) = [ϕ1(x̂), . . . , ϕN (x̂)]T is a set of ba-

sis functions. Each vertex of the uncertainty region is
defined as: qi ∈ [q

i
, qi] Eq.(20) is considered as LPV

system with respect to q. For the uncertainties, let Ǎ as
Eq. (24).

Ǎ =
n∑

i=1

aiǍi,
n∑

i=1

ai = 1, ai ≥ 0 (24)

The following lemma is already obtained for stability
analysis of descriptor systems for Eq.(20) [6]. Quadratic
stability is analyzed by solving Eq.(25) at each vertexes
of ϕ(·).
Lemma 3 Eq.(20) is quadratically stable for pertur-
bation ϕj if there exists X11 > 0 such that

X̂T ǍT
n + ǍnX̂ < 0, n = 1, . . . 2n (25)

X̂ =

[
X11 0
X21 X22

]
hold.

Where σ and γ are analyzed whether satisfy the
quadratic stability through solving above LMI at each
vertices.

4 Illustrative example

Proposed system is experimented with using test scale
2 DOF(Degree-Of-Freedom) helicopter to illustrate the
main results of this paper. Let input up(t) as up(t) =
[Vm,p Vm,y]

T . Vm,p and Vm,y are input voltage to pitch
motor and yaw motor respectively. The pitch angle θ
and the yaw angle ψ are available as measurement out-
puts. The robustness of the proposed system is vali-
dated through adding weight below the center of pitch
propeller. Therefore controlled plant is described as
the model which depends on madd(mass of the added
weight) as not simply affine. madd is considered as
the uncertainty parameter in deriving robust controller.
The uncertainty is assumed that true value of madd ex-
ists in between 0 and 30[g]. Let x̂ := [θ ψ θ̇ ψ̇ θ̈ψ̈ uTp ]

T

as descriptor variable, then plant dynamics is described
as Eq.(26). Due to the limitation of the space, the de-
tail of derivation of Eq.(26) and breakdown of coefficient
matrices are omitted. Details are in our full paper.

Êp
ˆ̇x = Âpx̂+ B̂pup (26)

There exist squared terms of uncertainty parameter
madd in matrix Âp. LFT (Linear Fractional Transfor-
mation) is adopted to obtain an equivalent model with-

out squared term. Let Âp as Âp =: Â0 +Bδ1maddCδ1 +
Bδ2maddmaddCδ2 and LFT is applied into argued sys-
tem [4], Eq. (27) is obtained.

Êp
˙̂x = Â0x̂+Bδ1w1 +Bδ2w2 + B̂pup

w1 = maddCδ1x̂
w2 = maddCδ2x̂

(27)

By letting xd := [x̂T w1 w2]
T as descriptor variables,

Eq. (27) is finally described as Eq. (28).

Edẋd = Adxd +Bdup (28)

Ad =

 Ã0 Bδ1 Bδ2madd
maddCδ1 −I 0
maddCδ2 0 −I

 (29)

Ed =

 Êp 0 0
0 0 0
0 0 0

 , Bd =
[

B̂T
p 0 0

]T
Note that Ed is independent of the uncertain param-

eter madd and Ad depends linearly on madd. let y, r
, ep := r − y and z are observable output, reference,
error and integrated value of ep, respectively. Letting
state as x̃ = [z xTd ]

T , we finally obtain Eq.(30) for the
augmented system with integrator.

Ẽds
˙̃x = Ãdsx̃+ B̃dsup (30)

Ẽds =

[
I 0
0 Ed

]
, Ãds =

[
0 −Cd
0 Ad

]
B̃ds =

[
0 BT

d

]T
Cost function J shown in section 2.3 is considered to
derive a stabilizing state feedback u = Kx̂. Through
maximizing the trace of X11, J is guaranteed as J <
trace(X11)

−1. For the uncertainties 0 ≤ madd ≤ 30, let
Ads as Eq. (31), and we expect that the true plant stays
in the polytope (31).

Ads = (1− α)Ads0 + αAds1, 0 ≤ α ≤ 1 (31)

Ads0 and Ads1 are the vertices of the polytope of the
uncertain parameters, i.e. Ads0 is Ads with madd=0 and
Ads1 is Ads with madd=30, respectively.
We derive a single state feedback law u = Kx̂ that

minimize cost function J for the system whose coeffi-
cient matrices described by polytope (31). He[AdsiXd −BdsYd] XT

d (Q
1
2 )T Yd

T (R
1
2 )T

Q
1
2 Xd −I 0

R
1
2 Yd 0 −I

 < 0 (32)

i = 0, 1

maximize : trace(X11) (33)

For the weighting matrices
Q=diag[80, 90, 150, 150, 100, 200], R=diag [0.5, 0.5],
finally the following state feedback gain K is obtained.
Controller gain K is divided into integration gain
Kr ∈ ℜ2×2 and state feedback gain Kx ∈ ℜ2×4. From
here adaptive law is designed after previous section.
Let descriptor variables of our controlled plant Eq.(26)

as x̂p := [θ, ψ, θ̇, ψ̇, θ̈, ψ̈]T . Then actual plant is
described as Eq.(12). Detail of each coefficient matrices
are shown in our full paper.
In this study weight is added below the pitch pro-

peller to verify the effectiveness of proposed method.
Hence, coefficient matrix Âp depends only polynomi-
ally on the uncertain parameters. Actually it is possible
to obtain usual state space model for our plant, how-
ever there exist rational terms of uncertain parameter
in the matrices A and B. For this reason, redundant
descriptor representation is appropriate to describe the
actual plant and the reference model. An LMI-based
stability analysis method for SISO system, which is de-
scribed as usual state space, is discussed in [6]. In
this study LMI based stability analysis method for the
MIMO system, which is described as descriptor form,



is developed after Yang’s method. Uncertain parame-
ter matrix is W (t) = [W1(t) W2(t)] and estimated by

Ŵ = [Ŵ1(t) Ŵ2(t)] furthermore, known set of smooth
basis function is ϕ(x̂p) ∈ ℜ6×1. Adaptive law with σ-
modification is described as Eq.(34).

˙̂
W1 = −γϕ(x̂p)eT P̂ B̂1 − σŴ1

˙̂
W2 = −γϕ(x̂p)eT P̂ B̂2 − σŴ2 (34)

Through solving Eq.(17) at the convergence rate ρ = 1,

matrix P̂ for Eq.(34) is obtained. Let B̂1, B̂2 as

[B̂1 B̂2] = B̂p ∈ ℜ6×2 and estimation error W̃ (t) =

Ŵ (t) − W (t) := (W̃1(t) = Ŵ1(t) − W1(t), W̃2(t) =

Ŵ2(t)−W2(t)). The error dynamics is obtained as fol-
lows:

Êpė = Âme+ B̂1W̃1(t)
Tϕ(x̂p) + B̂2W̃2(t)

Tϕ(x̂p) (35)

Considering of adaptive law Eq.(34), let ζ =

[W̃T
1 W̃T

2 e]T as error dynamics variables, consolidated
error dynamics is obtained as follows.

Êdζ̇ = Ǎζ + B̌σW (36)

Ǎ =

 −σIN 0 −γϕ(x̂p)B̂
T
1 P̂

0 −σIN −γϕ(x̂p)B̂
T
2 P̂

B̂1ϕ(x̂p)
T B̂2ϕ(x̂p)

T Âm

 ,

B̌ =

[
−IN
0

]
, Êd =

[
I 0
0 Ep

]

Eq.(36) is considered as LPV system with respect to

x̂p = [θ, ψ, θ̇, ψ̇, θ̈, ψ̈]T . Uncertain parameters exist in

only 5th and 6th rows in the coefficient matrix Âp and

B̂p. 5th and 6th descriptor variables represents θ̈, ψ̈ re-
spectively. Furthermore, there is no uncertain param-
eters in 1st-4th rows in Âp and B̂p. Hence, region of

basis function is decided through considering θ̈ and ψ̈.
Let basis function ϕ(x) = [0, 0, 0, 0, ϕ5(θ̈), ϕ6(ψ̈)]

T =

[0, 0, 0, 0, θ̈, ψ̈] and assumed ϕ5(θ̈) ∈ [−11.6487, 11.5529],

ϕ6(ψ̈) ∈ [−5.1646, 5.1590] from some experimentations.
For the uncertainties, let Ǎ as Eq. (37).

Ǎ =

4∑
i=1

aiǍi,

4∑
i=1

ai = 1, ai ≥ 0 (37)

Quadratic stability is analyzed by solving following
Eq.(38) at each vertexes of ϕ(·).

X̂T ǍT
n + ǍnX̂ < 0, n = 1, 2, 3, 4 (38)

X̂ =

[
X11 0
X21 X22

]
Adaptive gains γ and σ which satisfy above LMI is ob-
tained as γ = 10.5, σ = 0.3. These values are used in
the experiments.

5 Experiments

In this experiment, we add a weight of 45.5[g] at
the helicopter to verify the robust control performance.
This weight madd = 45.5 is larger than considered range
(0 ≤ madd ≤ 30). Therefore usual robust LQ con-
trol is expected to occur performance degradation. The

robustness of the proposed method (Robust LQ with
MRAC) is verified by comparison with robust LQ with-
out MRAC and nominal LQ with MRAC.
For more clearly comparison, the norm of difference

between ideal model output and actual output is com-

puted as: 1
T

∫ T

0
∥e(t)∥dt, T = 90. Pitch control is com-

puted and results of experiment 2 are as follows:
• Robust LQ (Pitch): 2.894[deg]

• Nominal LQ with MRAC law(Pitch): 2.701[deg]

• Robust LQ with MRAC law(Pitch): 2.536[deg]
Yaw control is computed as follows:
• Robust LQ (Yaw): 0.58999[deg]

• Nominal LQ with MRAC law(Yaw): 0.6003[deg]

• Robust LQ with MRAC law(Yaw): 0.4976[deg]
Proposed method reduces the norms between actual

and ideal output in case that parameter perturbation
excess the considered upper and lower bound both pitch
and yaw control. This result shows the effectiveness of
the combination of robust controller and MRAC law.

6 Conclusion
In this study, we designed robust LQ control system

with MRAC law. For added adaptive control loop, LMI
based stability analysis method for MIMO descriptor
system is developed based on former research[6]. The
effectiveness of proposed system is verified by the ex-
periments. Output of proposed system is closer to ideal
model’s output than that of usual robust LQ control
without MRAC and nominal LQ with MRAC. From
these experimental results, it can be said that the pro-
posed method, that is the combination of robust con-
troller and MRAC law, is able to improve the robust
control performance.
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