最深回帰推定量の研究

M2005MM020 大見 俊司 指導教員 木村 美善

1 はじめに

本研究では Regression Depth の概念に基づく最深回 帰推定量の性質を調べる.また,Fortran でのみ使用可能 であった最深回帰推定量の計算用プログラム Medsweep を統計解析システム R で使用できるように書き直し,そ のプログラムを使用して,他の回帰推定量との比較研究 を行う.

2 Regression Depth

任意の次元 p に対して n 個のデータを $Z_n = \{z_i = (x_{i1}, \dots, x_{i,p-1}, y_i); i = 1, \dots, n\} \subset \mathbb{R}^p$ とする. この Z_n に式 $y = \theta_1 x_1 + \dots + \theta_{p-1} x_{p-1} + \theta_p, \theta = (\theta_1, \dots, \theta_p)^t \in \mathbb{R}^p$ を当てはめたい. $x_i = (x_{i1}, \dots, x_{i,p-1})^t \in \mathbb{R}^{p-1}$ に よって z_i の x の部分を表す. $r_i = r_i(\theta) = y_i - \theta_1 x_{i1} - \dots - \theta_{p-1} x_{i,p-1} - \theta_p$ を z_i の残差とする. 2.1 Regression Depth の定義と性質

定義 1 x 空間上でどの $x_i(i = 1, \dots, n)$ も属さない 超平面 V が存在し,V で分けた開半空間の片方に属す る全ての x_i に対して $r_i(\theta) > 0$ であり, もう一方の開 半空間に属する全ての x_i に対して $r_i(\theta) < 0$ ならば $\theta = (\theta_1, \dots, \theta_p)$ は Z_n に対して nonfit と呼ばれる. 定義 2 データ $Z_n \subset R^p$ に対する θ の $rdepth(\theta, Z_n)$ は θ を nonfit にするために取り除く必要がある観測値の 最小数であり, $rdepth(\theta, Z_n)$ は次のように定義される.

$$rdepth(\boldsymbol{\theta}, Z_n) = \min_{\mathbf{u}, v} \{ \sharp(r_i(\boldsymbol{\theta}) \ge 0 \text{ or } \mathbf{x}_i^t \mathbf{u} < v) + \sharp(r_i(\boldsymbol{\theta}) \le 0 \text{ or } \mathbf{x}_i^t \mathbf{u} > v) \}$$
(1)

ただし、 $(x_i^t, y_i) \in Z_n$ に対して、最小は $x_i^t \mathbf{u} \neq v$ を満た す全ての単位ベクトル $\mathbf{u} = (u_1, \dots, u_{p-1})^t \in \mathbb{R}^{p-1}$ と 、 $v \in \mathbb{R}$ でとられるものとする.この定義により、データ $Z_n \subset \mathbb{R}^p$ に対する $\theta \in \mathbb{R}^p$ のrdepthはvを中心に垂直 になるまで超平面 θ を傾ける時、通過しなければならな い観測値の最少数であるともいえる.

定理 1 (Exact Fit Property) θ 上にある観測値の数が k ($0 \le k \le n$) ならば, そのとき

$$k \le rdepth(\boldsymbol{\theta}, Z_n) \le \left[\frac{n+k}{2}\right].$$
 (2)

よって,k = n のとき $rdepth(\theta, Z_n) = n$ となる. ここで [λ] は λ 以下の最大の整数である.次に確率分布に対す る rdepth を定義する.

定義 3 \mathbb{R}^p 上の分布 Hに対する θ の $rdepth(\theta, H)$ は

$$rdepth(\boldsymbol{\theta}, H) = \min_{\boldsymbol{u}, v} \left\{ H(y - (\boldsymbol{x}^t, 1)\boldsymbol{\theta} > 0 \text{ かつ} \\ \boldsymbol{x}^t \boldsymbol{u} < v) + H(y - (\boldsymbol{x}^t, 1)\boldsymbol{\theta} < 0 \text{ かつ } \boldsymbol{x}^t \boldsymbol{u} > v) \right\}$$
(3)

によって定義される. ここで H は確率変数 (x^t, y) の分 布であり, 最小は $H(x^t u = v) = 0$ を満たす全ての単位 ベクトル $\mathbf{u} = (u_1, \dots, u_{p-1})^t \in \mathbb{R}^{p-1}$ と $v \in \mathbb{R}$ でとら れるものとする. $rdepth(\boldsymbol{\theta}, H)$ は v を中心に垂直にな るまで超平面 $\boldsymbol{\theta}$ を傾ける時, 通過しなければならない部 分の確率の最小値として定義される.

定理 2 Zn が密度関数をもつ分布 H からの標本のとき

$$\frac{rdepth(\boldsymbol{\theta}, Z_n)}{n} \xrightarrow[n \to \infty]{a.s.} rdepth(\boldsymbol{\theta}, H).$$
(4)

2.2 最大 rdepth 定理 3

a. $(\boldsymbol{x}_i^t, y_i)$ が general position(どの p-1次元アフィン 部分空間にも p 点以上の観測値がない) にあるとき

$$\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, Z_n) \le \left[\frac{n+p}{2}\right].$$
(5)

b. 密度関数をもつ \mathbb{R}^p 上の任意の分布 Hに対して

$$\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, H) \le \frac{1}{2}.$$
(6)

c. 分布 H が密度関数をもち, ある $\tilde{\boldsymbol{\theta}} = (\tilde{\theta}_1, \cdots, \tilde{\theta}_p)^t \in \mathbb{R}^p$ に対し,

$$med[y|\boldsymbol{x}] = \tilde{\theta}_1 x_1 + \dots + \tilde{\theta}_{p-1} x_{p-1} + \tilde{\theta}_p \qquad (7)$$

を満たすならば

$$\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, H) = rdepth(\tilde{\boldsymbol{\theta}}, H) = \frac{1}{2}.$$
 (8)

次に *rdepth* の下界を与える.しかし,証明されているの は2次元のときだけで3次元以上はまだ証明されておら ず,予想が与えられているのみである (Rousseeuw and Hubert(1999) 参照).以降はこの予想が正しいものとし て話を進める.

推測 1

a. 任意のデータ $Z_n \subset \mathbb{R}^p$ に対して

$$\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, Z_n) \ge \left\lceil \frac{n}{p+1} \right\rceil.$$
(9)

ここで $\lceil \lambda \rceil$ は λ 以上の最小の整数である.

b. 密度関数をもつ \mathbb{R}^p 上の任意の分布 H に対して

$$\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, H) \ge \frac{1}{p+1}.$$
 (10)

3 最深回帰推定量

定義 4 p 次元における最深回帰推定量 $DR(Z_n)$ は $rdepth(\theta, Z_n)$ を最大にする θ と定義する. すなわち

$$DR(Z_n) = \arg\max \ rdepth(\boldsymbol{\theta}, Z_n).$$
 (11)

データに対する最深回帰推定量は分布の仮定を必要と せず、回帰共変、尺度共変、アフィン共変推定量である. max $rdepth(\theta, Z_n)$ を与える θ が複数ある場合はそれ ら θ の平均を推定量とする.

分布 H に従う p 次元確率変数 (x^t, y) に対して、最深回 帰推定量 DR(H) を次のように定義する.

定義 5

$$DR(H) = \arg\max_{\boldsymbol{\theta}} rdepth(\boldsymbol{\theta}, H)$$
 (12)

ここで分布 H は狭義に正の密度関数を持ち

$$med_H(y|\boldsymbol{x}) = (\boldsymbol{x}^t, 1)\hat{\boldsymbol{\theta}}$$
 (13)

を満たす $ilde{m{ heta}} \in \mathbb{R}^p$ が存在すると仮定する.

このモデルは誤差の分布が非対称であったり,異なっ た分散であったりする場合にも有効である.次の定理 は Aelst and Rousseeuw(2000)によるもので,誤差分布 がノンパラメトリックであり,Hが大きなセミパラメト リックモデル \mathcal{H} に属するとき,最深回帰推定量 DR(H)が $\tilde{\theta}$ の Fisher-consistent 推定量であることを示す. 定理 4 (Fisher-consistency) 任意の $H \in \mathcal{H}$ に対し

定理 \mathfrak{q} (Fisher-consistency) 正意の $H \in \mathcal{H}$ に対 \mathfrak{c} $\tau, DR(H) = \tilde{\theta}$ が成り立つ.

Bai and He(1999) によって示された $\hat{\theta}$ に対する最深回 帰推定量 DR の一致性と定理 4 の Fisher-consistency から z_1, \dots, z_n が独立で同一の分布 $H \in \mathcal{H}$ に従うと き, $DR(H_n) = DR_n(z_1, \dots, z_n)$ は DR(H) に確率収 束する. H_n は z_1, \dots, z_n の経験分布関数を表す.

4 最深回帰推定量のロバストネス

4.1 有限標本破綻点

推測1の系 推測1が成り立ち, x_i が general position にあるならば

$$\varepsilon_n^*(DR, Z_n) \ge \frac{1}{n} \left(\left\lceil \frac{n}{p+1} \right\rceil - p + 1 \right) \approx \frac{1}{p+1}.$$
 (14)

ここで \approx は $n \rightarrow \infty$ のときの極限値であり, $\varepsilon_n^*(T, Z_n)$ は データ Z_n に対する推定量 T の有限標本破綻点である. 最深回帰推定量 DR の ε_n^* はもとのデータ Z_n がそれ自 身異常なとき $\frac{1}{p+1}$ になる. 定理 5 $Z_n = \left\{ (x_1^t, y_1), \cdots, (x_n^t, y_n) \right\}$ が狭義に正の密 度関数をもつ $\mathbb{R}^p (p \ge 2)$ 上の分布 H からの標本であ り,H が (13) を満たすならば

$$\varepsilon_n^*(DR, Z_n) \xrightarrow[n \to \infty]{a.s.} \frac{1}{3}.$$
 (15)

4.2 影響関数

2 次元の最深回帰推定量 $DR = (DR_1, DR_2)^t$ の影響 関数を導く. ただし, DR_1 は傾き DR_2 は切片である. 最 深回帰推定量は回帰共変, 尺度共変, アフィン共変なの で球形分布 $H = H_{0,I}$ における影響関数を導けばよい. 定理 6 最深回帰推定量の $H=H_{0,I}$ における影響関数は

$$\begin{split} &IF((x,y), DR_1, H) = sgn(x)sgn(y) \times \left(\\ &\frac{I(G(|x|) \le 2G(+\infty)/3)}{4[G(+\infty) - G(|x|)]} + \frac{I(G(|x|) \ge 2G(+\infty)/3)}{[2G(+\infty) - G(|x|)]} \right) \\ &IF((x,y), DR_2, H) = \frac{sgn(y)}{2h_Y(0)} \\ & \times \left(\frac{I(H_{X|Y}(|x| \mid 0) \le \frac{2}{3})}{H_{X|Y}(|x| \mid 0)} + \frac{I(H_{X|Y}(|x| \mid 0) \ge \frac{2}{3})}{2(2H_{X|Y}(|x| \mid 0) - 1)} \right) \end{split}$$

である. ただし, $G(t) = \int_0^{t^2} g(u) du$, h_Y は Y の周辺密度 関数, $H_{X|Y}$ は Y = 0 が与えられたもとでの X の条件付 累積分布関数である.

図 1 は 2 変量標準正規分布 $H = N_2(\mathbf{0}, I)$ における最深回帰推定量の傾きの影響関数であり、図 2 は $H = N_2(\mathbf{0}, I)$ における最深回帰推定量の切片の影響関数である.

4.3 感度関数

影響関数は母集団分布上で定義されているので、その 有限標本版の影響関数と比較するために、平均置換型感 度関数 (the averaged permutation-stylized sensitivity function)を計算する. 任意の推定量 T_n に対する感度関 数は標本 $Z_n = \{z_1, \dots, z_n\}$ に一つの観測値 z = (x, y)を加えることによる影響を測る. すなわち、

$$SF_n(\boldsymbol{z}, T, Z_n) = n(T_{n+1}(\boldsymbol{z}_1, \cdots, \boldsymbol{z}_n, \boldsymbol{z}) - T_n(\boldsymbol{z}_1, \cdots, \boldsymbol{z}_n)).$$
(16)

感度関数は実際の標本 Z_n に強く依存するので置換型標 本 $Z_n(\pi) = \{(x_i^s, x_{\pi(i)}^s); i = 1, \cdots, n\}$ を使うことでこ の影響を軽減する. ここで $x_i^s = \Phi^{-1}(\frac{i}{n+1})$ であり, π は $\{1, \cdots, n\}$ 上の置換を表す. この変換された標本は無作 為標本の場合よりも母集団分布 $N_2(\mathbf{0}, I)$ に近い分布を し, 周辺分布は中央値 0 に関して対称になるという利点 をもつ. 特定の置換 π の効果は非復元抽出リサンプリン グで感度関数を平均化した

$$APSF_{n}(\boldsymbol{z}) = \frac{1}{B} \sum_{B} SF_{n}(\boldsymbol{z}, T, Z_{n}(\pi))$$
(17)

によって和らげられる. ここで,*B* は非復元抽出リサン プリングの繰り返し回数である. これを用いてデータ数 20,格子点の数 2500,繰り返し回数 3000 で計算すると, 傾きと切片の *APSF* 図はそれぞれ図 1,図 2 と似てい たので,影響関数のロバストネスは小標本に対しても有 効であるといえるだろう.

4.4 漸近効率

漸近効率とは最小2乗推定量が有効推定量であると き、この漸近分散に対して比較したい統計量の漸近分散 を比較したものである. He and Portnoy(1998) によっ て最深回帰推定量は正規分布からわずかに異なる極限分 布を持つことが証明された. よって最深回帰推定量は漸 近正規ではないので、漸近分散による、漸近効率を測る ことができない. しかし、極限分布が正規分布に似てい るのでシミュレーションにより、近似の漸近効率を求め ると傾き 40%、切片 64% となった.

5 プログラム

Rousseeuw et al.(2002) によって最深回帰推定量の近 似プログラム Medsweep が Fortran で書かれた. Fortran は古い言語であるため, 統計解析システム R で使 用できるようにプログラムを書き換えた.

5.1 プログラムのパフォーマンス

与えられた n,p に対して正規分布から m = 10000のサンプル $Z^{(j)} = \{(x_{i1}, \dots, x_{i,p-1}, y_i); i = 1, \dots, n\}, j = 1, \dots, m$ を生成する. それらのサンプルに対してそれぞれ Medsweep アルゴリズムの最深回帰推定量 $(\hat{\theta}_1^{(j)}, \dots, \hat{\theta}_p^{(j)})$ を計算する.

$$MSE(\hat{\theta}_1, \cdots, \hat{\theta}_{p-1}) = \frac{1}{m} \sum_{j=1}^m \frac{1}{p-1} \sum_{i=1}^{p-1} (\hat{\theta}_i^{(j)} - \theta_i)^2$$
(18)

ここで真値は $\theta_i = 0; i = 1, \cdots, p$ である. 切片の MSE は $\frac{1}{m} \sum_{j=1}^{m} (\hat{\theta}_p^{(j)})^2$ である. それぞれの $n \ge p$ に対して 切片と傾きの平均 2 乗誤差 (*MSE*)を計算したものを 表 1 に載せる. データ数が増加すると *MSE* が減少し, 次元が増加すると *MSE* は増加しており, 異常値もない のでこのプログラムに欠陥はないだろう. しかし、デー タ数が 20 のとき MSE は大きい. これは Medsweep が p次元に対して p 点通らなければならず、データの影響 を強く受けるからである.

表1 切片と傾きの MSE(×10⁻³)

		<i>p</i>			
n	MSE	2	3	5	10
20	切片	95.39	113.12	150.06	453.95
	傾き	147.33	166.42	233.64	5095.47
50	切片	33.31	32.68	36.89	44.80
	傾き	53.64	51.57	52.57	59.18
100	切片	16.36	16.66	17.32	17.99
	傾き	25.03	25.28	26.42	27.08
500	切片	3.18	3.23	3.21	3.22
	傾き	4.93	4.92	4.98	4.97
1000	切片	1.57	1.55	1.57	1.61
	傾き	2.53	2.46	2.47	2.49

6 比較

最深回帰推定量(Deepest)は回帰モデルの誤差分布が 互いに独立で、各誤差分布の中央値を0と仮定するだけ でよい.これらはとても弱い条件である.誤差分布が対 称であることを仮定する必要がなく、同一の分布である ことを仮定する必要もない.また、このモデルは歪んだ誤 差分布や分散が均一でなくてもよい.他のロバスト回帰 推定量は最深回帰推定量よりも多くの制約を必要とし、 より制限されたモデルを仮定する.実際、これらの推定量 は歪んだ誤差分布や分散の不均一性を許してはいない. 6.1 単回帰分析

データは Chatterjee et al.(2000)(1986 年の広告枚数 と広告収入,p177)から引用する. 説明変数を広告枚数 P(百枚),目的変数を広告収入 R(百万ドル)とする. ロ バスト推定量による回帰直線は 23 番の観測値の影響 を受けずにいる. 外れ値 (1,2,23)を抜いた LS(LS2)の Shapiro-Wilk normality test のp - 値は 0.0706 なの で残差の正規性は否定されない. したがって,LS2 と似 た直線を引いている S はよい推定をしているだろう. Deepest と Catline はほぼ同じ回帰直線となった. そし て、これらの回帰直線は LS2 に似ているが若干傾きが大 きい. これは左上の観測値の影響を受けているからであ る. この広告収入データに対してどの推定量が一番適し ているかについては、外れ値を抜いた LS の結果から残 差に正規性があるならば S 推定量が一番適しているか もしれない. しかし、スチューデント化残差図を見ると

図3 広告データに対する回帰直線図

等分散性があるとは言い切れないので、残差に正規性や 等分散性の仮定を必要としない Deepest と Catline が 適しているだろう.

6.2 相対効率と破綻点の比較

線形回帰の標準的仮定を満たしているデータを用い てLSと他の推定量との相対効率を求める.与えられた nに対して正規分布から2次元のm = 10000のサンプ $\nu Z^{(j)} = \{(x_i, y_i); i = 1, \cdots, n\}, j = 1, \cdots, m$ を生成 する.それらのサンプルに対して各回帰推定量の切片と 傾きの分散を計算し,LSの切片と傾きの分散との相対効 率を測ると表2のようになった.LADは効率は高いが 有限標本破綻点は低い.LMS,LTS,Sは効率は低いが有 限標本破綻点は高い.Deepestは傾きの効率は若干低い が切片の効率は高い.有限標本破綻点はLMS,LTS,Sよ り低いがLADよりも外れ値の影響を受けない.

7 終わりに

最深回帰推定量は有限標本破綻点,影響関数,相対効 率から残差に正規性が認められるデータに対しても,外 れ値のあるデータに対しても良い推定ができるだろう. 他のロバスト回帰推定量との大きな違いは残差の中央値 が0であれば,それ以外は非対称だろうが分散が違って いようが良い性質をもつことである.実際に単回帰分析 では等分散性のないデータを用いて最深回帰推定量の良 さを確認することができた.また,本研究の課題であっ た統計解析システム R で最深回帰推定量の近似プログ ラムを作成することができたので,今後このプログラム が回帰分析を行う人の役に立てばうれしく思う.

参考文献

 Aelst,S.V.and Rousseeuw,P.J.(2000).Robustness of deepest regression, Journal of Multivariate Analysis, 73, 82-106.

表 2 LS との有限標本相対効率

	切片の有限標本相対効率					
n	LAD	LMS	LTS	S	Deepest	
20	67.0%	21.5%	23.4%	36.7%	56.0%	
50	63.3%	17.0%	16.3%	30.0%	61.6%	
100	63.6%	13.9%	12.9%	29.5%	61.7%	
500	62.4%	8.9%	8.7%	28.1%	62.3%	
1000	63.1%	7.1%	8.0%	28.5%	64.0%	
	傾きの有限標本相対効率					
n	LAD	LMS	LTS	S	Deepest	
20	C9 107	10.001				
20	03.1%	19.9%	22.8%	33.6%	40.0%	
20 50	63.1% 63.8%	19.9% 18.6%	22.8% 17.8%	$33.6\%\ 29.4\%$	40.0% 40.0%	
50 100	63.1% 63.8% 63.2%	19.9% 18.6% 16.1%	22.8% 17.8% 14.3%	33.6% 29.4% 28.0%	40.0% 40.0% 41.7%	
50 100 500	63.1% 63.8% 63.2% 65.4%	$19.9\% \\ 18.6\% \\ 16.1\% \\ 10.4\%$	$22.8\% \\ 17.8\% \\ 14.3\% \\ 9.4\%$	$\begin{array}{c} 33.6\% \\ 29.4\% \\ 28.0\% \\ 29.0\% \end{array}$	$\begin{array}{c} 40.0\% \\ 40.0\% \\ 41.7\% \\ 40.5\% \end{array}$	

表 3 有限標本破綻点

LAD	LMS	LTS	S			
<u>1</u>	$\frac{\left[\frac{n}{2}\right]-p+2}{n}$	$\frac{\left[\frac{n-p}{2}\right]+1}{n}$	$\frac{\left[\frac{n}{2}\right]-p+2}{n}$			
Deepest						
$\frac{\lceil \frac{n}{p+1}\rceil - p + 1}{n} \le \varepsilon_n^*(DR, Z_n) \le \frac{1}{3}$						

- [2] Aelst,S.V.,Rousseeuw,P.J.,Hubert,M.and Struyf,A.(2002).The deepest regression method, Journal of Multivariate Analysis,81,138-166.
- [3] Bai, Z. and He, X. (1999).Asymptotic distributions of the maximal depth estimators for regression and multibariate location, Ann. Statist, Vol. 27, No. 5, 1616-1637.
- [4] Chatterjee, S., Hadi, A. S. and Price, B. (2000).Regression Analysis By Example , Wiley , New York.
- [5] 藤木美江 (2003). Regression Depth の理論とその応用に関する研究,南山大学経営学研究科修士論文.
- [6] He, X. and Portnoy, S. (1998). Asymptotics of the deepest line, in "Applied Statistical Science : Nonparametic Statistics and Related Topics", Nova Science Publishers, New York, 71-81.
- [7] Rousseeuw, P.J. and Hubert, H. (1999). Regression depth, Journal of the American Statistical Association, 94, 388-402.
- [8] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection, Wiley, New York.