代用電荷法による等角写像の計算

2008MI112 小山田 麻祐子

指導教員:杉浦 洋

1 はじめに

代用電荷法は,2次元ラプラス方程式の数値解法とし て提案された.2次元領域Dにおけるラプラス方程式の 解である調和関数を,領域の外に配置された2次元点電 荷の作る電場と想定し,境界条件に合わせて点電荷の電 荷量を調整する.天野は,近似解の共役調和関数が簡単 に得られることに注目し,代用電荷法を数値等角写像の 計算法に発展させた.

本研究では,任意の単連結領域 D を単位円に写す等角 写像を取り上げ,天野の方法を学び,その様々な側面を 調べることを目的とする.

2 天野のアルゴリズム

_ / \

天野は, 複素平面の原点を含む有界単連結領域 D から, 単位円板への近似等角写像 f_N を

$$f_N(z) = z e^{P_N(z)}$$

$$P_N(z) = -\sum_{i=1}^n q_i \log |z - \zeta_i| - i \sum_{i=1}^n q_i \arg(1 - \frac{z}{\zeta_i})$$

で表現する . $f_N(0) = 0$, $f'_N(0) > 0$ である . これを天野 の近似モデルという . ここで , ζ_i は D の外部にとられ , 電荷点と呼ばれる . q_i は , 電荷量である .

$$\operatorname{Re}P_N(z) = 0 \ (z \in \partial D) \tag{1}$$

なら, $f_N(z)$ は真の等角写像である.天野は,条件(1)を 離散化した

$$\log |z_j| - \sum_{i=1}^{N} q_i \log |z - \zeta_i| = 0 \ (1 \le j \le N)$$

により,電荷量を q_i を決定する. z_j は ∂D 上にとられ, 拘束点と呼ばれる.

以下の数値実験には, Mathematica の倍精度計算を用 いた.

3 数值実験1:円

中心 0 < a < 1, 半径 1 の円 C

$$C: (x-a)^2 + y^2 = 1$$

の内部を単位円の内部,原点を原点に写す等角写像w = f(z)で,f'(0) > 0を満たすものを求める.写像関数は,

$$f(z) = \frac{z}{az+1-a^2}$$

であることが知られている. a の値は

$$a = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$$

とした.電荷配置は,天野 [1] に従い,領域拡大法を用いた.すなわち,拘束点 z_j ,電荷点 ζ_j ($1 \le j \le N$)は,

$$z_j = a + e^{i\theta j}$$
 ,
 $\zeta_j = a + R_Q e^{i\theta j}$,
 $\theta_j = \frac{2\pi}{N}(j-1)$

で定義する.円周CのN等分点を拘束点とし,中心aと 拘束点を結ぶ線分を $R_Q: (R_Q - 1)$ に外分する点を電荷 点とする.電荷点は,中心a,半径 R_Q の円周上に等間隔 に配置される.

数値等角写像 $f_N(z)$ の誤差を測定するために,境界上 に等間隔点

$$\xi_j = a + e^{\frac{\pi i}{N}j} (0 \le j < 2N)$$

をとる.そして,最大絶対誤差を

$$E_R = \max_{0 \le j < 2N} |f_N(\xi_j) - f(\xi_j)|$$
(2)

で計算する.計算結果を表1に示す.

計算のパラメータと精度の間には,次のような関係が あることがわかる.

1) a が大きいほど精度は低下する(問題が難しくなる).

2) 電荷数 N の増加に従って精度は向上する.

3) 電荷配置の拡大率 R_Q の増大に従って,精度は向上する.

4) R_Q , Nが大きくなると条件数が大きくなる.特に $a = \frac{1}{4}$, $R_Q = 4.0$, N = 64のときは条件数が 1.48×10^{18} である.このような条件数の元では,線形方程式の解は1桁も正しくない可能性がある.それにもかかわらず, $f_N(z)$ の精度は非常に良い.これは謎である.

天野の実験は単精度で行われたため,条件数が 10^7 以上の問題は解けていない.しかし, $a = \frac{1}{4}$, $R_Q = 4.0$, N = 16で,条件数が 7×10^5 であるにもかかわらず絶対誤差が 2.1×10^{-6} であった.条件数からみると,電荷量の精度はかなり悪いはずなので,これも不思議である.

4 数値実験 2: Cassini の橙形

2 点 (-1,0), (1,0) からの距離の積が一定値 a⁴ である ような点の軌跡

$$C: (x+1)^2 + y^2(x+-1)^2 + y^2 = a^4$$

は Cassini の橙形と呼ばれる . C の内部を単位円の内部, 原点を原点に写す等角写像 w = f(z) で, f'(0) > 0 を満 たすものを求める.写像関数は,

$$f(z) = \frac{az}{\sqrt{a^4 - 1 + z^2}}$$

		N = 16	N = 32	N = 64
a	R_{O}		E_R	
			条件数	
$\frac{1}{4}$	1.2	5.83×10^{-3}	1.64×10^{-4}	2.41×10^{-7}
		1.42×10^{1}	1.23×10^2	4.56×10^{3}
	1.6	1.32×10^{-4}	3.94×10^{-8}	5.88×10^{-15}
		1.61×10^{2}	1.39×10^{4}	5.12×10^7
	2.0	1.13×10^{-5}	1.81×10^{-10}	2.22×10^{-16}
		1.42×10^{3}	7.27×10^5	9.53×10^{10}
	4.0	2.91×10^{-11}	5.55×10^{-16}	2.66×10^{-15}
		7.27×10^5	9.53×10^{10}	1.48×10^{18}
$\frac{1}{2}$	1.2	1.90×10^{-2}	6.38×10^{-4}	9.67×10^{-7}
		1.42×10^{1}	1.23×10^2	4.56×10^{3}
	1.6	7.88×10^{-4}	2.21×10^{-6}	1.93×10^{-11}
		1.61×10^2	1.39×10^4	5.12×10^7
	2.0	1.91×10^{-6}	1.46×10^{-11}	1.11×10^{-15}
		1.42×10^{3}	7.27×10^5	9.53×10^{10}
$\frac{3}{4}$	1.2	3.46×10^{-2}	3.25×10^{-3}	1.96×10^{-5}
		1.42×10^1	1.23×10^2	4.56×10^{3}
	1.6	1.82×10^{-2}	1.12×10^{-3}	6.39×10^{-6}
		1.61×10^2	1.39×10^{4}	5.12×10^7

表 1 円の等角写像

であることが知られている.aの値は

$$a = 2^{1/2}, 2^{1/8}, 2^{1/32}$$

とした.ここでは,凹型領域の例として, $1 < a \le \sqrt{2}$ の範囲を取り上げた.

Cassini の橙形を極座標表示すると

$$(x,y) = r(\cos t,\sin t)$$
 ,
$$r = \sqrt{2\cos^2 t - 1 + \sqrt{(2\cos^2 t - 1)^2 + a^4 - 1}} \; .$$

したがって,領域拡大法による拘束点 z_j ,電荷点 ζ_j ($1 \leq j \leq N$)は

 (α) $i\theta$

$$\begin{split} z_j &= r(\theta_j) e^{i \theta_j} ,\\ \zeta_j &= R_Q r(\theta_j) e^{i \theta_j} ,\\ \theta_j &= \frac{\pi}{2N} j \ (0 \leq j < 2N) \end{split}$$

で定義する.ここでは,誤差を観測する点を

$$\zeta_j = r(t_j)e^{it_j} \quad t_j = \frac{\pi}{N}j \quad (0 \le j < 2N)$$

とした.最大絶対誤差 E_R の定義は,式(2)と同様である. 計算のパラメータと精度の間には,次のような関係が あることがわかる.

1) *a* が小さいほど精度は低下する.

2) *R_Q* を大きくしても精度は向上しない.条件数が大きくなるので,数値計算上は不利である.

3) N を増やしても,円の場合ほど効果が見られない.むしろ, $a = 2^{1/8}$ と $a = 2^{1/32}$ の場合には,精度が低下する場合さえある.

表 2 Cassini の 橙形 N = 16N = 32N = 64 E_R a R_Q 条件数 2.38×10^{-6} 1.2 1.59×10^{-2} 6.26×10^{-1} 1.59×10^{1} 1.75×10^2 2.80×10^{5} 3.08×10^{-5} 1.4 5.23×10^{-3} 2.19×10^{-1} 1.16×10^{4} 6.81×10^{9} 8.07×10^{1} $2^{1/2}$ 7.56×10^{-5} 2.23×10^{-3} 3.35×10^{-1} 1.6 4.03×10^{12} 4.27×10^5 3.53×10^{2} 7.55×10^{-5} 1.22×10^{-3} 2.91×10^{-1} 1.8 5.30×10^{14} 1.33×10^3 6.83×10^{6} $6.\overline{71 \times 10^{-2}}$ $7.\overline{20 \times 10^{-3}}$ 2.45×10^{-2} 1.2 $2^{1/8}$ 1.05×10^1 1.30×10^2 3.70×10^8 14 1.47×10^{-2} 5.82×10^{-2} 4.14×10^1 1.61×10^5 1.69×10^{15} 2.74×10^{-2} 1.25×10^{-2} 6.09×10^{-2} 1.2 $2^{1/32}$ 1.60×10^1 1.62×10^2 1.26×10^{8} 1.14×10^{-2} 3.38×10^{-2} 1.4 4.48×10^1 8.86×10^4 1.15×10^{17}

5 まとめ

代用電荷法による等角写像について研究した.まず基礎的な実験として,複素平面の原点に電荷量-1の2次元 点電荷を置き,それが作る複素ポテンシャルを補助電荷 を用いて変形する実験を行った.その結果,比較的少な い補助電荷数で,等電位線の形状が多様に変化すること がわかった.代用電荷法では,複素ポテンシャルと指数 関数の合成関数で単位円板への等角写像を構成する.そ の際,電位0の等電位線が単位円に写像される.

次に,天野の代用電荷法を天野の提案する拘束点,電 荷点の配置法である領域拡大法を用いて,Mathematica 上で実現した.天野の数値例を検討するために,原像を 円とした問題と,Cassiniの橙形とした問題を取り上げ, 天野の数値例を51例全て追試した.その際,ほとんどの 例では我々の結果と天野の結果がよく一致したが,少数, 結果が合わない例を発見した.また,天野で計算が悪条 件のためにできなかった例が,我々の実験では正常に計 算できた.

原因の1つは計算精度の差で,天野が単精度計算を行っ たのに対し,我々は倍精度計算を行ったからである.こ のことを詳しく調べるために,線形方程式の条件数を計 算してみた.天野の計算は,条件数が10⁷以上になると, 破たんしていることがわかった.しかし,条件数が10⁵程 度なら,天野の計算でも絶対誤差が10⁻⁶程度の非常に精 度のよい等角写像が構成できている.単精度計算は10⁻⁶ 程度の丸め誤差を含むので,条件数を考慮すると,これ は異常な高精度である.この現象の詳しい調査は,今後 の課題である.

6 参考文献

- [1] 天野要:代用電荷法に基づく等角写像の数値計算法.情 報処理学会論文誌, vol.28, No7, pp.697-704, 1987.
- [2] 小寺平治: 複素解析. 共立出版株式会社, 2010.
- [3] 山口昭男:岩波数学辞典第4版.岩波書店,2007.