極配置によるペンダボットの制御系設計

- 状態フィードバック制御と最適レギュレータ -

2000MM002 坂野 誠一 2000MM040 川津 勇治

指導教員 高見 勲

1 はじめに

近年,非線形性,低次元化等で生じるモデルの不確かさ を考慮したロバスト制御が盛んに研究されており、ロバ スト性の高いコントローラが要求されている.一方、世の 中のほとんどの現場では、制御系の過渡応答を自由に指 定できる古典制御理論や現代制御理論等の扱いやすい従 来法が広く使われているため、実際に実装されている従 来法のロバスト性について考えることは必要なことであ る.本論文で採用している現代制御理論は、可制御であれ ばその制御系の過渡応答が自由に決められ、最適化手法 を用いれば入力の定数倍変化に対するロバスト性が一部 保障されるが制御対象自身の変動に対するロバスト性は 保障されないことが分かっている [5]. そこで、従来法の コントローラの特性変動に対するロバスト性を考察する ために、制御対象としてロボット工学の分野において 2-リンクア - ムマニピュレータの簡単なモデルで有名なペ ンダボット [1] を選んだ.本研究の中心テーマは二つあ る. 一つは世の中で非線形モデルから線形モデル導出の 際に広く使われている、制御したい平衡点での線形近似 に着目し、そのモデルから導かれたコントローラのロバ スト性について検証することである. すなわち, 平衡点が 変化してもそのコントローラがペンダボットを安定化で きるかどうかを実際に実験を通して考察する.その際,平 衡点を目標値と考え、新たにその目標値に追従させるよ うなフィードバックモデルを考え、シミュレーションお よび実験を行う. コントローラはアッカーマンの極配置 法による状態フィードバック制御を用いた.もう一つは、 目標値への追従性を上げるため、新たに偏差の積分項を 追加した五次拡大系を考え,さらに追従性の高いコント ローラを設計することを目指した.

2 モデリングと線形化

ペンダボットは図1のような様式であり、 ラグランジュ の運動方程式によって物理モデルを求め $q_1 = -\frac{\pi}{2}, q_2 = \pi$ における平衡点 (以下ミドルポジション)で線形化を施 すと、次の状態方程式が得られる [1].

$$\begin{aligned} \dot{\boldsymbol{x}} &= \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1} \\ \boldsymbol{y} &= \boldsymbol{C}\boldsymbol{x} \quad \boldsymbol{\mathcal{E}}\boldsymbol{\mathcal{E}}\boldsymbol{\mathcal{E}}, \boldsymbol{x} = [q_1 - x_{r1}, \dot{q}_1, q_2 - x_{r3}, \dot{q}_2] \\ \boldsymbol{A} &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{\partial f_2}{\partial x_1} & 0 & \frac{\partial f_2}{\partial x_3} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{\partial f_4}{\partial x_1} & 0 & \frac{\partial f_4}{\partial x_3} & 0 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 0 \\ \frac{\partial f_2}{\partial u} \\ 0 \\ \frac{\partial f_4}{\partial u} \end{bmatrix}, \\ \boldsymbol{C} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{aligned}$$
(2)

図1 ペンダボットのモデル

3 ペンダボットの特性

線形化によって平衡点近傍のペンダボットの特性につ いて調べることができる. ミドルポジションでペンダ ボットの極を調べると, $\{\pm j12.1358, \pm 7.7876\}$ である ことが分かった. これより, 右半平面に極を持つので, ミ ドルポジションではペンダボットは不安定な対象であ ると言える. また, 異なる平衡点近傍で線形化したとき の特性変動については, ボード線図を使うと直観的に分 かりやすいであろう. 図 2 は, ミドルポジションから 0 ~ $\pm \frac{\pi}{3}$ [rad] 移動したときの式 (1) をボード線図で表し たものである. この図から, ミドルポジションからずれ

図2 異なる平衡点におけるペンダボットの制御特性

る程,ペンダボットのピーク周波数帯が左にシフトして いくことが分かる.さらに、葉付近から摂動が大きくなっ ていることも確認できる.

4 状態フィードバック制御

図 3 の r = 0 のときに u = -Kx でシステムを安 定化させることを状態フィードバック制御という. この とき, 常に状態 $x \rightarrow 0$ となるように制御される (レギュ レータ) [4]. そして, 安定化可能な必要十分条件はシステ ムが可制御であることである [4]. アッカーマンの極配置

図3 状態フィードバック制御のブロック線図

法 [2] を用いて状態フィードバックゲイン K を求める. ペンダボットの指定極は,取扱説明書 [3] で指定された極 を用いる.この値は,

$$\{-13.6 \pm j7.2, -8.75 \pm j1.45\}$$
(3)

である. これより, 状態フィードバックゲイン *K* が求ま る. ミドルポジションで線形化した行列 *A*, *B* を用いて MATLAB ^{*1} で計算すると,

 $\boldsymbol{K} = [122.2984, 13.0833, 151.9063, 19.8340] \quad (4)$

が求まる. すなわち, 入力
$$u$$
 は $u = -Kr$

$$= -122.2984(x_1 + \frac{\pi}{2}) - 13.0833x_2$$
$$-151.9063(x_3 - \pi) - 19.8340x_4$$

(5)

となる. また, 状態 x_2, x_4 はエンコーダから計測できな いため, 状態 x_1, x_3 を微分して, 過去三項の平均でフィル ターしたものを使う [1]. すなわち,

$$x_{2}(t) = \frac{x_{1}(t) - x_{1}(t-h)}{h}$$
$$\bar{x}_{2}(t) = \frac{x_{2}(t) + x_{2}(t-h) + x_{2}(t-2h)}{3}$$

である.x4 についても同様である.

4.1 実験結果と考察

図 4(左) に実験結果を示す. ミドルポジションに対し て約 0.07[rad] のずれが生じた. これをオフセットと呼 ぶ. 操作量 u は, 目標値 (ミドルポジション) に近い程小 さくなる. ミドルポジションでは, 摩擦の影響が強くなる ため, 操作量によるトルク, 重力の分解による力, そして 摩擦による力関係が均衡するためオフセットが残ると考 えられる.

5 最小次元オブザーバ

状態 x_2, x_4 を推定するための手法としてオブザーバ を導入する.オブザーバには測定不可能な状態変数だけ を推定する最小次元オブザーバを用いる.ゴピナスの方 法 [4] に従い最小次元オブザーバを設計した. 状態フィー ドバック系の極とオブザーバの極は分離定理により独立 に設計できることが分かっている. そのため,オブザーバ を追加した全体の閉ループ系は, 極配置による極とオブ ザーバの極となる. そこで,オブザーバの極が全体の閉 ループ系で支配的にならないように, 極配置による極よ りも十分に左に来るように設計する. ここでは, オブザー バの極を $\rho_1 = -60.0, \rho_2 = -60.0$ として設計した.

5.1 実験結果と考察

図 4(右) に実験結果を示す. ミドルポジションに対し て約 0.1[rad] のオフセットが残った. 結果的にオフセッ トが大きくなったので制御性能は悪くなったと言えるが, 制御信号や推定量に表れるノイズは減少した. また, 演算 上に問題があるせいか実験では安定性も悪くなった. そ のため,後の実験では三項平均を用いた.

図 4 ミドルポジションにおける振上げ実験. 極配置 {-13.6 + *j*7.2, -13.6 - *j*7.2, -8.75 + *j*1.45, -8.75 - *j*1.45} とした場合.速度指定 (左), オブザーバ(右)

6 目標値指定の場合のオフセット解析

図3に目標値rを与えることによって目標値に追従す るモデルを考え、オフセットはどの程度残るかを考察す る.最終値定理を用いてオフセットを計算すると、

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \begin{bmatrix} e_1\\ e_2\\ e_3\\ e_4 \end{bmatrix} = \begin{bmatrix} \frac{-(a_2 - a_1)(a_4 - b_2k_3) + (a_4 - a_3)(a_2 - b_1k_3)}{a_1a_4 - a_2a_3 - a_1b_2k_3 + a_3b_1k_3 - a_4b_1k_1 + a_2b_2k_1} r_1$$

$$\frac{(a_2 - a_1)(a_3 - b_2k_1) - (a_4 - a_3)(a_1 - b_1k_1)}{a_1a_4 - a_2a_3 - a_1b_2k_3 + a_3b_1k_3 - a_4b_1k_1 + a_2b_2k_1} r_1$$

となる. ただし、 $a_1 = \frac{\partial f_2}{\partial x_1}, a_2 = \frac{\partial f_2}{\partial x_3}, a_3 = \frac{\partial f_4}{\partial x_1}, a_4 = \frac{\partial f_4}{\partial x_3}, b_1 = \frac{\partial f_2}{\partial u}, b_2 = \frac{\partial f_4}{\partial u}, r_1 = -r_3, r_2 = r_4 = 0$ である. 図 5 は、ミドルポジションからの各目標値に対して、オフ セットがどれだけ残るかをシミュレーションし、プロッ トしたものである. 図 5 より線形的にオフセットは増加 し、目標値が大きいと、ありえない所に振子が動くことが 分かる. 従って、このモデルでは根本的に希望の目標値に

^{*1} MATLAB/Simulink は米国 Math Works 社の登録商標です.

図 5 目標値に対するオフセット

7 積分器拡大系による最適レギュレータ

目標値にオフセットなく追従するため, 偏差の積分器 を導入し, その拡大システム系を考える. 出力の目標値 r_0 からの偏差を e(t) とし 次のような変数

$$z(t) = -\int_0^t e(\tau)d\tau \tag{6}$$

を導入する. この拡大システムの偏差系は次のように なる.

$$\begin{bmatrix} \dot{\tilde{\boldsymbol{x}}}(t) \\ \dot{\tilde{\boldsymbol{z}}}(t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{C} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{x}}(t) \\ \tilde{\boldsymbol{z}}(t) \end{bmatrix} + \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} \tilde{\boldsymbol{u}}(t)$$
(7)

ただし $\tilde{x}(t) = x(t) - x_s$, $\tilde{z}(t) = z(t) - z_s$, $\tilde{u}(t) = u(t) - u_s$ とする. また, 平衡状態を x_s, z_s, u_s とする. 次に式 (7) に評価関数

$$\int_{0}^{\infty} \left\{ \begin{bmatrix} \tilde{\boldsymbol{x}}(t) \\ \tilde{\boldsymbol{z}}(t) \end{bmatrix}^{T} \tilde{\boldsymbol{Q}} \begin{bmatrix} \tilde{\boldsymbol{x}}(t) \\ \tilde{\boldsymbol{z}}(t) \end{bmatrix} + r \tilde{\boldsymbol{u}}^{2}(t) \right\} dt \qquad (8)$$

を設定する. この評価関数を最小化するように状態フィードバックゲイン \tilde{K} を求める方法を最適レギュレータと呼ぶ [5]. ただし,

$$\tilde{\boldsymbol{Q}} = \begin{bmatrix} q_1 \boldsymbol{C}^T \boldsymbol{C} & 0\\ 0 & q_2 \end{bmatrix}, \boldsymbol{C} = [1, 0, 0, 0] \qquad (9)$$

である. 評価関数の重みは $q_1 > 0, q_2 > 0, r > 0$ であり, このとき最適フィードバック制御則は,

$$\tilde{\boldsymbol{u}}(t) = -\tilde{\boldsymbol{K}} \begin{bmatrix} \tilde{\boldsymbol{x}}(t) \\ \tilde{\boldsymbol{z}}(t) \end{bmatrix}$$
(10)

となる. ただし $ilde{K}$ は,

$$\tilde{\boldsymbol{K}} = [\boldsymbol{k} \ k_5] = r^{-1} \tilde{\boldsymbol{B}}^T \tilde{\boldsymbol{P}}$$
(11)

であり, $ilde{P}$ は次のリカッチ型行列方程式

$$\tilde{\boldsymbol{A}}^{T}\tilde{\boldsymbol{P}}+\tilde{\boldsymbol{P}}\tilde{\boldsymbol{A}}+\tilde{\boldsymbol{Q}}-\tilde{\boldsymbol{P}}\tilde{\boldsymbol{B}}r^{-1}\tilde{\boldsymbol{B}}^{T}\tilde{\boldsymbol{P}}=\boldsymbol{0} \quad (12)$$

の解である. 式 (8) に対する最適状態フィードバック則 は (10) のように求まったが,*u*(*t*) について書き直すと

$$u(t) = -\mathbf{k}\mathbf{x}(t) - k_5 z(t) \tag{13}$$

7.1 実験結果と考察

以下の図4に,シミュレーションと実験の結果を示した.表1は時定数(目標値入力から,目標値に対し63.2%になる時間)を比較したものである. ミドルポジショ

図 6 ミドルポジションから目標値 +20 。(+0.348888[*rad*]) 指定したシミュレーショ ン(左)と実験(右).重み *q*₁ = 400,*q*₂ = 30 と した場合

表1 時定数による検証 その一

	時定数 T	$0.632r_0$	$\frac{0.632r_0}{T}$
シミュレーション	4.3927	0.22049	0.05019
実験	4.1022	0.22049	0.05375

ン安定状態から、目標値を指定した際の過渡応答部分(5) 秒~50秒)のみの実験結果と比較検証する.過渡応答は 一次遅れ系のような波形を示したので、検証のための指 標として、時定数 T とそのときの x1 座標の比を用いた. 表1を見ると、時定数 T は約 0.3 秒の誤差があるが許容 範囲と考えられる.ただし、図4における実験では、目標 値を指定する 20 秒以前はミドルポジション付近でふら ついている現象が見られ,正確な時定数は計れなかった ことと目標値入力の際のタイミング誤差があることを述 べておく.このふらつきは、リミットサイクルと呼ばれる 現象であり、この周期と振幅で安定な振動が持続する.リ ミットサイクルが生じると現場ではハードの摩耗や騒音 が起こり、故障の原因となるため、できるだけこれを小さ くすべきである.この原因として線形化で無視された非 線形特性やモデルに考慮しなかった摩擦が考えられるが、 特に摩擦の影響が強いと推測される.図4では、このよ うな現象は見られなかった. それは、力が均衡するためと 既に述べた. 拡大系においては、目標値に追従させる機構 として積分器が加わり、積分器によって増幅された入力 が力の均衡を崩すと推測される.ペンダボットのメカニ ズムを考えると、ミドルポジションにちょうど来たき、少 しでも行き過ぎると近付いてきた方向に摩擦を受ける. またミドルポジションでは重力が真下に働くため、ペン ダボットは摩擦の影響を最も強くうける. つまり、積分器 が助長した摩擦によって行き過ぎ量が生じ、この繰り返 しがリミットサイクルとなると推測できる. またミドル ポジション以外の点でリミットサイクルが生じないのは、 摩擦が常に一定方向に働いているからと考えられる.本

となる.

来なら摩擦モデルを組み込んで検証すべきであるが, 最 適レギュレータの重みのチューニングによってリミット サイクルを減少できることが分かった. すなわち, 積分器 のゲインを決める重み q_2 を制御系の安定性に影響を与 えない程度の値 (約 30) に固定しておき, もう一つの座 標変動を抑制する重み q_1 をできるだけ大きくすればよ い. 図 7 の実験では, ふらつきは見られない.

図7 図6同様の実験.重み q1 = 3000, q2 = 30 とした場合

8 ロバスト安定性評価と追従性能の向上

本来,制御理論でいう根軌跡はノミナル(変動しない) な制御対象に対して,フィードバックゲインを変化させ たときの閉ループ系の極の軌跡を描いたものである.こ こでは,逆の発想で求めた状態フィードバックゲインを 固定し,制御対象が変動したときの閉ループ系の極の軌 跡について調べる.以下に手順を示す.

- 線形化により、基準となるモデル A_n, B_n を求める (ミドルポジション).
- 2. そのモデルに対して極配置法あるいは最適レギュ レータ法により、状態フィードバックゲイン *K_n* を求める.
- 3. そのゲイン K_n を固定し、考えられうる全ての制 御対象の変動に対して、閉ループ系 $A_r - B_r K_n$ の極を求める.
- 4. 最後に求めた極を複素平面上にプロットする.

この作業により、実際に変動後の閉ループ系の極が計算 できるため、その状態フィードバックゲインがどの程度 目標値変動に対して耐性があるかどうかを調べることが できた.特性変動による根軌跡の解析の結果、拡大系では $\pm \frac{\pi}{6}$ 付近が安定限界であることが分かった.さらに、 $\pm \frac{\pi}{9}$ においては十分大きい重みを指定しても、安定性を保障 できることが分かった.そこで、 $\pm \frac{\pi}{9}$ までなら目標値を 指定でき、過渡応答が十分速く、リミットサイクルによ る影響ができるだけ少なくなるような制御系設計を目指 した.

8.1 実験結果と考察

以下の図 8 は、この仕様の下でできるだけ重みを大き くし、ミドルポジションから目標値を +20°(+0.348888) ~ - 20°(-0.348888) 変化させたときのシミュレーショ ンと実験の結果である. これより、追従性、速応性ともに かなりよくリミットサイクルも生じない制御系を設計す ることができた.

図8 目標値を10秒後にミドルポジションから +20°(+0.348888)に指定し、30秒後に-20 °(-0.348888)に指定するシミュレーション (左)と実験(右).重みq₁ = 1000,q₂ = 40000 とした場合

表2 時定数による検証 その二

	時定数 T	$0.632r_{0}$	$\frac{0.632r_0}{T}$
シミュレーション	0.475	0.22049	0.46420
実験	0.48	0.22049	0.45936

9 おわりに

本研究では目標値を指定できるような制御系を設計 し、またペンダボットの特性を生かし、土ฐ[rad] までの目 標値を指定することもできた. このように厳密な線形化 を行い、特性をうまく把握できれば、ペンダボットのよう な多変数制御系を扱うには状態方程式に基づく現代制御 理論が非常に有効な手法となる. 何より、限界まで性能を 向上させる制御系設計を目指すなら、現代制御理論はま さに最適な手法と言える. しかしながら、実験ではシミュ レーションで表れないような現象がいくつも生じ、これ らを説明するにはより厳密に解析してシミュレーション を行う必要がある.

謝辞

本論文を作成するにあたり、多大な助言を頂き、また熱 心に御指導下さいました指導教員である高見勲教授に深 く感謝致します.

参考文献

- BLOCK,D.J.: MECHANICAL DESIGN AND CONTROL OF THE PENDUBOT, University of Illinois at Urbana-Champaign(1996).
- [2] 岩井善太:制御工学,朝倉書店 (1999).
- [3] Mechatronic Systems, Inorporated : Mechatronics Control Kit Model M-1 Use's Manual, Mechatronic Systems, Inorporated (2001).
- [4] 白石昌武:入門現代制御理論,朝倉書店 (1995).
- [5] 野波健蔵, 西村秀和, 平田光男: MATLAB による制 御系設計, 東京電気大学出版局 (1998).