翼型まわりの流れの位相的データ解析

2019SE019 川合 晴己 2019SE022 北野 渚

指導教員 : 横山 哲郎

1 はじめに

流体解析は,我々が日々有益な情報を取得するのに役 立っている.例えば,大気・河川の流れや血流の画像デー タを解析することで,天気予報・河川の異常検知や心臓の 異常症状の検知が行われている.

流体解析は、モデル化を行う理論解析、風洞などを用い た実験解析、計算機を用いたシミュレーションによる解析 に分類される.特に、流体の運動方程式の数値シミュレー ションによる数値流体解析(CFD)は1990年代頃から信 頼性が高まり、他の研究手段を補うようになってきた.高 精度な CFD には膨大な量のデータ処理を必要とする.特 に、近年では観測機器・技術の発展によって、得られる流 れに関するデータ量が非常に膨大化しており、それに伴っ てその処理に必要とされる計算量は増加の一途を辿って いる.

近年,計算機を用いたシミュレーションによる解析の一 種として流れのトポロジーを用いた解析(TFDA)に関す る研究が行われてきた [5].トポロジーは,何かの形または 空間が連続変形したとしても同じ性質を保つ形状のことで ある.例えば,輪ゴムで三角形や四角形の形を作るとき, 連続変形できる点から,そのトポロジーは同一と捉えられ る.従来の流れのデータ処理に比較して TFDA では流れ に関するデータ量とその処理に必要とされる計算量を大幅 に削減できるという利点がある.

翼型の基本的な性能を表す指標に揚力・抗力がある.本 研究では最も基本的なモデルのひとつである Joukowsky 翼型まわりの気流を対象とし,揚力・抗力とトポロジーが どう対応しているかを明らかにする.翼型まわりの一様流 の速度と迎角に対応する Joukowsky 翼型まわりの2次元 ベクトル場データを生成していく.このベクトル場データ から COT 表現を抽出し,ベクトル場データと COT 表現 の対応,及びにベクトル場データから求めた揚力・抗力と COT 表現の対応を可視化する.これらの対応は翼型まわ りの渦の剥離現象の分析に活用されることが期待される.

2 関連研究

2.1 数値流体力学と位相的流れデータ解析

数値流体力学 (CFD: Computational Fluid Dynamics) とは運動方程式をコンピュータによる数値的な計算により 流れを可視化して観察する手法であり,空間方向だけでな く,時間方向からのデータも取得可能というメリットがあ る.流れの構造の分析では時間的変化により得たデータか ら特徴的な固有モードが抜き出せる分析手法である固有直 交分解や実験や数値シミュレーションで使われた時空間 データ中から特徴的な構造を入手するための方法である 動的モード分解を使用した研究が多く行われてきた.しか し、上記の手法でも大規模な流線データに直接適用できな いといったデメリットがあった.

位相的データ解析(TDA: Topological Data Analysis) とはトポロジーという観点からデータの特徴を捉えて分類 や定量化を行って解析していく方法である. これを流れの データにも適用したのが位相的流れデータ解析(TFDA: Topological Flow Data Analysis)[5] である. TFDA は 流線同士の位相的関係性をグラフで表した Reeb グラフや 流れ構造を木表現で表現された COT 表現などで使われて いる. TFDA は従来の解析法になかったトポロジーの観 点からデータ構造に着目することで新しい視点を持ち,文 字列だけで渦の剥離現象を捉えらることができる. このた め,流線データのときと比べて大幅にデータを圧縮できる ことが期待される.

2.2 COT 表現

本研究では、トポロジーの表現に COT (partially Cyclically Ordered rooted Tree)を採用する. COT 表現は、 非圧縮・非粘性の条件下で構造安定な流れの構造と一対一 対応し、流れの部分構造の親子関係を表すことができるよ うな表現力をもつ. このため、COT 表現は流れの客観的 な指標となり、着目すべき流体構造の抽出を可能とする. また、局所部分構造から COT 表現である文字列に変換が でき、情報データの容量を抑えることが可能となる. COT 表現で表されるトポロジーの情報から、気象ブロッキング 現象の同定 [1] 、翼型まわりの流れの分析 [4]、及びに紛体 分級装置における最適機械形状の評価 [5] が行われたとい う報告がある.

COT 表現は基本構造と局所部分構造の 2 つで構成され ている [2]. 基本構造とは、障害物のような物理境界が領 域の中に存在しない場合の流れを指す.本研究では、非有 界領域内で流れる一様流 a_{\emptyset} において、障害物が 1 つ存在 する局所部分構造 a_2 を対象とする.図 1 で示す通り、 a_2 の軌道は物理境界の周りを上側は時計回りに、下側は反 時計回りに進んでいき、再度合流して一本の軌道上に進む [3, 4].本研究では a_2 の障害物は翼に当たる.

局所部分構造には C 系列と呼ばれる 2 つの構成要素 c₊, c₋ がある [2].図 1で示す通り、c₊ とは障害物の境界上に 反時計回りの流れが発生し、反時計回りの渦がおこって得 られた構造を指す.c₋ とは障害物の境界上に時計回りの 流れが発生し、時計回りの渦がおこって得られた構造を指

図1 a₂とC系の流れ

す. c_+ と c_- はそれぞれ境界上に並ぶことができる.本研 究では障害物上の c_+ と c_- の並びは翼型まわりの渦の並 びに当たる.

3 方法

本研究では、Joukowsky 写像を計算する Python プログ ラムを用いて、2次元ベクトル場データを生成した. 揚力・ 抗力はベクトル場データから抽出した. このデータの抽出 には数値計算の支援をするライブラリである numpy を使 用した. 2次元ベクトル場データの描画には matplotlib を 用いた. 2次元ベクトル場データは、翼の厚み xc、翼の歪 み yc、迎角 θ、一様流の速さ U、流れの変化に作用する b、 メッシュサイズ msize の 6 つのパラメータを変化させて生 成した.

xc, yc, U, b, msize の 5 つのパラメータを固定して θ のパラメータを変更したときにトポロジーの遷移が見やす く,トポロジーの変化が最低でも 2 回起きるものを選び, それ未満の変化だったものは遷移が少ないものとして選択 肢から外した.図??はトポロジーの遷移が 1 度しか起き なかったため,遷移が少ないものと判断した.また,角度 の変化は 0° から 57° の間を 3° ずつ上昇させるもの,U は 1.0 から 3.0 の間を 0.5 ずつ上昇させるものとした.U を大きくすると流線が密集するようになっており,トポロ ジーが見にくくなることが分かった.メッシュサイズを変 化されると処理時間に変化があったが,メッシュサイズの みを変化させても流れのトポロジーに変化は起きなかっ た.その結果,トポロジーの遷移の変化が 2 回起きてかつ トポロジーが見やすい条件を満たした xc=-0.1, yc=0.15, U=1.0, a=1.42 の値を本研究の対象として採用した.

図 2 迎角を変化したときの速度ポテンシャル,特徴線・特 異点・障害物, COT 表現が 1 度変化した図

3.1 前提条件

本研究では、一様流の中におかれた Joukowsky 翼型ま わりの非粘性・非圧縮性の構造安定な流れを対象とする. 一様流はすべての点で速度のベクトルが等しい流れを指 し、流れの向きは左から右とする. 渦の向きは反時計回り を+,時計回りを – で表す. 非粘性とは流れの運動によっ て生じる変形に抵抗力が働かない性質を指す. 非圧縮性と は変形によって密度に影響のない性質を指す. 構造安定な 流れとは、流線トポロジーに小さな力を加えても影響のな い流れを指す [4].

3.2 COT 表現の抽出

2 次元ベクトル場データから COT 表現を次の 2 つの手 順で抽出する:

- 1.2次元ベクトル場データから障害物,特徴線,特異点 を特定
- 2. 局所的構造の特定, COT 表現の割当て

この手順で2次元ベクトル場データから COT 表現を抽 出する過程を図3に示す.図3(I)は翼型まわりの2次元ベ クトル場データである.翼型の上面には時計回りの渦が, 下面には反時計回りの渦がそれぞれ付着している.これら の渦の流線を一様流との間のセパラトリクスを残して消去 し,時計回りの渦には –,反時計回りの渦には + のラベル をつけると図3(II)が得られる.本研究では障害物は翼の ことを指し,特徴線は翼についている渦の流れの線のこと を指す.流線は障害物の前縁の衝突した際に流れが上下に 分離し,障害物境界の周りを上側は時計回りに、下側は反 時計回りに進み再度合流した.この流れを分離・合流した 点のことを特異点と呼ぶ.

次に、局所構造に記号を割り当てると図 3(III) が得られる. すなわち、一様流 (a_0) 中の障害物に a_2 、時計回りの 渦に c_- 、反時計回りの渦に c_+ を割当てる. この図を元 に、これらの親子関係を保った木表現である COT 表現 $a_0(a_a(c_-, c_+))$ が得られる.

図3 COT 表現を得るための3ステップ

3.3 揚力と抗力の求め方

本研究では,翼の形を後端 L,最高点 N,先端 A,最低 点 M の 4 つの有意点を結ぶ四角形 LNAM と近似しその 揚力・抗力を求め,それらを翼の揚力・抗力とした.ただ し,図 4の左端の図のように,最低点と後端が同一である 場合,後端 L (最低点 M),最高点 N,先端 A を有意点と し,翼の形を \triangle LNA と近似した.

LNAM の揚力・抗力はそれぞれ各平面で発生する揚力・ 抗力の合計とした.ただし,全ての面の奥行きは同一とし, 各面の面直に作用する力 F はその翼の奥行きの長さ S と 飛行速度 V に比例するものとした.また,最低点と後端が 同一である場合,平面 ML に揚力・抗力は発生しないもの とした.図 6のように,F を鉛直上向きと進行方向の逆向 きに分解することで,それぞれ揚力と抗力を得た:

$$揚力 = FSV\cos\theta \tag{1}$$

抗力 =
$$FSV\sin\theta$$
 (2)

ここで, θを平面の水平面からの傾きとする.

例えば、図 4の左端の図における翼に対する揚力と抗力 は、図 4①-③のように面直の力 F から 3 つの各平面に おいて式 1と式 2でそれぞれ揚力と抗力を求めて、それら の合計値として求めた.全ての面の奥行きを同じとしてい るので、各面の面積はそれぞれ図 4における線分 LN, NA, AL に比例する.図 4①-③のように揚力は、平面 AL と 平面 LN では鉛直上向きに、平面 NA では鉛直下向きにそ れぞれ働いていた.ここで、平面 LN が鉛直上向きに力を 受けているのは、翼の中を通り抜けた気流から力を受けた と仮定したためである.また、3 つの面全てが抗力として 進行方向の逆向きに力を受けた.

4 結果

4.1 2次元ベクトル場データと COT 表現の対応

迎角がそれぞれ 0°, 33°, 51° のときの速度ポテンシャ ル,特徴線・特異点・障害物, COT 表現を図 6 に示す.迎 角を 0° から 57° まで 3° ずつ変化させるとそれに伴って速 度ポテンシャルとトポロジーが変化した.

速度ポテンシャルは次の様に変化した.上面に付着して いた渦が分離して下面に行き,33°から51°までの間に一 時的に下面に2つの渦が付着した.その間も下面に発生し た渦が左から右へ移動し,右側の渦が小さくなっていき, 51°のとき下面に付着する渦は1つになった. トポロジーは次のように変化した. 迎角が 0° のとき 翼の上面に渦 c-,下面に渦 c+がそれぞれ 1 つずつ存 在し,COT 表現が $a_0(a_2(c_-,c_+))$ であった. 迎角を 0° から大きくしていくと、33° のときに渦 c-がもうひと つ下面に発生し、COT 表現が初めて $a_0(a_2(c_-,c_+))$ か ら $a_0(a_2(c_-,c_+,c_+))$ に変化した.さらに迎角を大きく していくと、51° のときに 0° のときと同じ COT 表現 $a_0(a_2(c_-,c_+))$ になった.

4.2 揚力・抗力と COT 表現の対応

求めた揚力・抗力と COT 表現の対応を表1に,求めた 揚力・抗力と COT 表現の対応を可視化したグラフを図7 に示した.表1の揚力・抗力は SV で割って表した.その 結果,1つの揚抗比に対応する COT 表現が複数個存在す ることが分かった.迎角が 33°のとき表1の COT 表現を 見ると変化が起き,渦である c₊が発生したが,揚力・抗力 には変化は起きなかった.また,迎角を大きくすると抗力 は同じように大きくなるが,抗力は 33°を境に上がり方が 失速した.これによって 51°のときに揚抗比1を切った. 全体を通して,1つの COT 表現に対して揚力・抗力は一 意に定まった.

表1 迎角,揚力,抗力,及び COT 表現の対応

迎角	揚力	抗力	COT 表現
0	0.358	0.252	$a_0(a_2(c, c_+))$
9	0.881	0.252	$a_0(a_2(c, c_+))$
18	1.844	0.956	$a_0(a_2(c, c_+))$
33	3.010	2.242	$a_0(a_2(c, c_+, c_+))$
51	3.152	4.236	$a_0(a_2(c, c_+))$

5 考察

本研究では迎角を変えたときに流れのトポロジーが2回 変化したベクトル場データを対象とし,実験を行った.そ の結果,1つの揚抗比に対応するCOT表現が複数個存在 することが分かった.しかし,1つのサンプルデータでし か実験を行えていない.数値の幅を狭めたデータや急激な トポロジー変化したデータで同じ実験を行えば他の関連性 を見つけることが可能と考えられる.また本研究の結果で は,迎角が33°の場合のみCOT表現が変化したので迎角 が33°周辺の揚力・抗力を求めていくことでCOT表現が 変化する場合の揚力・抗力の変化を捉えることができると 考えられる.

6 おわりに

本研究では基本的なモデルのひとつである Joukowsky 翼型まわりの気流を対象とし, 揚力・抗力とトポロジーがど う対応しているのかを明らかにしようと考えた.そこで, 翼型まわりの一様流の速度と迎角に対応する Joukowsky 翼型まわりの2次元ベクトル場データを生成した.このベ クトル場データから COT 表現を抽出し, ベクトル場デー

図4 △LNA で近似した翼における各面の揚力・抗力の例

図5 迎角を変化したときの速度ポテンシャル,特徴線・特異点・障害物, COT 表現の変化した図

図6 面直の力 F からの揚力・抗力の求め方

図7 揚力, 抗力, COT 表現の対応

タと COT 表現の対応,及びにベクトル場データから求めた場力・抗力と COT 表現との対応を可視化した.最終的に本研究では揚力・抗力とトポロジーの対応を 2 次元グラフで表し,可視化した.その結果,1つの揚抗比に対応する COT 表現が複数個存在することが分かった.

今後の課題として、サンプルの数が少ないため、数 値の幅を狭めたデータなどで同じ実験を行う必要があ る.また、迎角の値を 33° に変更したのみ COT 表現が $a_0(a_2(c_-, c_+, c_+))$ となっているので迎角が 33° 周辺の値 をさらに調べる必要がある.

参考文献

- UDA, T., SAKAJO, T., INATSU, M. and KOGA, K.: Identification of Atmospheric Blocking with Morphological Type by Topological Flow Data Analysis, *Journal of the Meteorological Society of Japan.* Ser. II, Vol. 99, No. 5, pp. 1169–1183 (2021).
- [2] 横山知郎:ユーザガイド:2次元非圧縮流体の COT 表現,数理解析研究所講究録, No. 2181, pp. 205-214 (2021).
- [3] 横山知郎:流れのトポロジーの可視化―曲流面の COT 表現―,可視化情報, Vol. 41, No. 162, pp. 33–34 (2021).
- [4] 横山知郎,坂上貴之,数本 優:流線トポロジーの文字 列表現を用いた翼型周りの流れの分析手法の研究,数 値流体力学シンポジウム講演論文集,Vol. 34, pp. 1–8 (2020).
- [5] 横山知郎,坂上貴之,数本 優:トポロジカルフロー データ解析(TFDA)社会的課題への適用,応用数理, Vol. 32, No. 1, pp. 27–31 (2022).