DualPenduBot の製作と安定化制御

2018SC022 池端壮太 2018SC075 大内涼平 指導教員:中島明

1 はじめに

近年,深海や宇宙での作業を想定した極限作業ロボット のみならず,産業用や家庭用ロボットの開発が進んでい る.しかしロボットの駆動部すべてにアクチュエータを必 要とするような全駆動システムでは,高コストや高重量と いった問題が生じてしまう.そのため,これらの問題の解 消が期待できる劣駆動システムが注目を集めている.劣駆 動システムとは、システムの自由度に対してアクチュエー タの総数が少ないシステムであり、アクチュエータの数が 従来より少なく済むためコスト,重量,信頼性といった点 で全駆動システムより優れている[1].しかしこの劣駆動 システムは非線形性が強く、すべての自由度を少ないアク チュエータで制御しなければならないため、制御は困難を 要する.

本研究では、そんな劣駆動システムの一つである DualPenduBot の設計と安定化制御をテーマとして研究を 行った. DualPenduBot は PenduBot と呼ばれる倒立振 子システム [2] の一種を発展させたものであり、モータ軸 を回転中心として垂直平面内を回転するアームの両端に、 同じく垂直平面内を回転する長さの異なる振子が取り付け られたシステムである.

また,本研究の最終目標は線形最適制御による DualPenduBot の安定化制御を行うこととしている.

2 実験機の製作

2.1 概要

本研究において DualPenduBot 実験機の設計は重要な 要素の一つである.実験機の基本構造は磯村氏,野沢氏の PenduBot[2]を参考に設計した.設計については 3DCAD ソフトの SOLIDWORKS を用い,製作は株式会社テクニ カルサポートに依頼した。

2.2 設計

実験機の設計図を図1に示す.材料はアーム部分である リンク1と振子部分であるリンク2,リンク3に軽く丈夫 なアルミ,その他部品は上部なステンレス鋼を使用する予 定である.エンコーダは3つ使用する.一つはモータ内に 付属しており,残り二つはリンク1とリンク2,リンク1 とリンク3の接続部にそれぞれ固定している.振子につい ては,10cm,15cm,20cm,25cmの長さの違うものを4 本用意し,様々なパターンでの実験を可能とするために取 り外しが可能な設計としている.

図1 実験機の外観

2.3 システムの構成

実験機のシステムの構成を図2に示す.リンク1の角度 はギヤを介してモータ内に取り付けられたエンコーダで観 測し,リンク2とリンク3の角度は接続部にそれぞれ固定 されたマイクロエンコーダで観測する.エンコーダからの 観測データと PC からの制御入力は CompactRIO を介し て送受信している.また,制御プログラムは Labview で 設計する.

図2 実験機の構成

2.4 モータの選定

DualPenduBot の線形モデルに対して線形最適制御で シミュレーションを行い,結果から得た値を参考に実験 機に適したモータの選定を行った.本研究において回路 部分は研究室既存の設備を用いるため,モータには最大電 流 10[A],最大電圧 ±40[V]の制約がかかる.そして,機 械設計をする上では安全率を考慮する必要がある.今回 はメーカーが推奨している安全率 1.5を基準に選定を行っ たため,設計上の限界値を最大電流を 6.6[A],最大電圧を ±26.6[V] とした. モータの最大トルクに関しては, カタロ グ値から安全率を考慮し, 設計する上での限界値を定めた.

2.4.1 モータの性能検証

表1は,設計上の限界値と DualPenduBot の線形モデ ルに対して線形最適制御でシミュレーション行って得ら れた値の比較である.シミュレーションで得られた最大電 圧,最大電流,最大トルクがそれぞれ安全率1.5を満たし ているため選んだモータは適切だと判断した.

表1 シミュレーション値と設計上の限界値の比較

	シミュレーション値	設計上の限界値
最大電圧	$\pm 6.03[V]$	$\pm 26.6[V]$
最大電流	3.1[A]	6.6[A]
最大トルク	1.9[Nm]	2.2[Nm]

3 DualPenduBot システムのモデル化

3.1 運動方程式の導出

DualPenduBot システムを図3で示すモデルとする. こ のモデルから Lagrange の運動方程式を導出する.

アームの中心部に原点をとり,水平面方向を x 軸, y 軸 とした. θ_1, θ_2 は反時計回り方向を, θ_3 は時計回り方向を 正とする. また,表 2 で各パラメータの定義をする.

図3 DualPenduBot のモデル

リンク 1, リンク 2, リンク 3 の重心の座標 *P*₁, *P*₂, *P*₃ は以下の式で示す.

$$P_1 = \begin{bmatrix} P_{x1} \\ P_{y1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{1}$$

$$P_2 = \begin{bmatrix} P_{x2} \\ P_{y2} \end{bmatrix} = \begin{bmatrix} -lc_2\sin(\theta_1 + \theta_2) - \frac{1}{2}l_1\sin\theta_1 \\ lc_2\cos(\theta_1 + \theta_2) + \frac{1}{2}l_1\cos\theta_1 \end{bmatrix}$$
(2)

$$P_3 = \begin{bmatrix} P_{x3} \\ P_{y3} \end{bmatrix} = \begin{bmatrix} lc_3\sin(\theta_3 - \theta_1) + \frac{1}{2}l_1\sin\theta_1 \\ lc_3\cos(\theta_3 - \theta_1) - \frac{1}{2}l_1\cos\theta_1 \end{bmatrix}$$
(3)

このうち P₂, P₃ を時間微分すると,

$$\dot{P}_{2} = \begin{bmatrix} -\frac{1}{2}\dot{\theta}_{1}l_{1}\cos(\theta_{1}) - (\dot{\theta}_{1} + \dot{\theta}_{2})lc_{2}\cos(\theta_{1} + \theta_{2}) \\ -\frac{1}{2}\dot{\theta}_{1}l_{1}\sin(\theta_{1}) - (\dot{\theta}_{1} + \dot{\theta}_{2})lc_{2}\sin(\theta_{1} + \theta_{2}) \end{bmatrix}$$
(4)

$$\dot{P}_{3} = \begin{bmatrix} \frac{1}{2}\dot{\theta}_{1}l_{1}\cos(\theta_{1}) - (\dot{\theta}_{1} - \dot{\theta}_{3})lc_{3}\cos(\theta_{1} - \theta_{3})\\ \frac{1}{2}\dot{\theta}_{1}l_{1}\sin(\theta_{1}) - (\dot{\theta}_{1} - \dot{\theta}_{3})lc_{3}\sin(\theta_{1} - \theta_{3}) \end{bmatrix}$$
(5)

となる.

表 2 DualPenduBot のパラメータ

記号	名称		
l_1	リンク1の長さ		
l_2	リンク2の長さ		
l_3	リンク3の長さ		
l_{c2}	リンク2の回転中心から重心までの長さ		
l_{c3}	リンク3の回転中心から重心までの長さ		
m_1	リンク1の質量		
m_2	リンク2の質量		
m_3	リンク3の質量		
g	重力加速度		
J_1	リンク1の慣性モーメント		
J_2	リンク2の慣性モーメント		
J_3	リンク3の慣性モーメント		
b_1	リンク1の粘性摩擦係数		
b_2	リンク 2 の粘性摩擦係数		
b_3	リンク3の粘性摩擦係数		
R_a	電気抵抗		
K_t	トルク定数		
K_e	逆起電力定数		
n	モータとリンク1のギア比		

システム全体の運動エネルギーT,ポテンシャルエネル ギーUは,

$$T = \frac{1}{2}J_1\dot{\theta_1}^2 + \frac{1}{2}(J_2(\dot{\theta_1} + \dot{\theta_2})^2 + m_2\dot{P}_2^T\dot{P}_2) + \frac{1}{2}(J_3(\dot{\theta_3} - \dot{\theta_1})^2 + m_3\dot{P}_3^T\dot{P}_3)$$
(6)

$$U = m_2 g P_{y2} + m_3 g P_{y3} \tag{7}$$

となる.

上記の式より Lagrangian は次式で求まる.

$$L = T - U \tag{8}$$

この時, リンク 1, リンク 2, リンク 3 それぞれの粘性摩 擦を考慮した運動方程式は,

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_1}\right) - \frac{\partial L}{\partial \theta_1} + b_1 \dot{\theta}_1 = \tau \tag{9}$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_2}\right) - \frac{\partial L}{\partial \theta_2} + b_2 \dot{\theta}_2 = 0 \tag{10}$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}_3}\right) - \frac{\partial L}{\partial \theta_3} + b_3 \dot{\theta}_3 = 0 \tag{11}$$

となる.また,実験機に用いる DC サーボモータの伝達特性を考える.

入力電圧を u とすると,

$$u = R_a i + n K_e \omega \tag{12}$$

$$\tau = nK_t i \tag{13}$$

で表される.これを整理すると,

$$\tau = -\frac{n^2 K_e K_t}{R_a} \dot{\theta}_1 + \frac{n K_t}{R_a} u \tag{14}$$

となる.以降は $t_a = \frac{n^2 K_e K_t}{R_a}$, $t_b = \frac{n K_t}{R_a}$ と置き $\tau = -t_a \dot{\theta}_1 + t_b u$ で表す.

以上より運動方程式は以下の式で表す.

$$\begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & 0 \\ M_{31} & 0 & M_{33} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \ddot{\theta_2} \\ \ddot{\theta_3} \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$
(15)

_ .. _

3.2 状態方程式の導出

システムの状態変数 $\boldsymbol{x} \in \boldsymbol{x} = [x_1, x_2, x_3, x_4, x_5, x_6]^T = [\theta_1, \theta_2, \theta_3, \dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3]^T$ とすると、システムは以下のように表せる.

$$\dot{\boldsymbol{x}} = \begin{bmatrix} x_4 \\ x_5 \\ x_6 \\ \frac{F_3 M_{13} M_{22} + F_2 M_{12} M_{33} - F_1 M_{22} M_{33}}{D_1} \\ -\frac{F_3 M_{13} M_{21} + F_2 M_{11} M_{33} - F_2 M_{13} M_{31} - F_1 M_{21} M_{33}}{D_1} \\ -\frac{F_3 M_{11} M_{22} - F_3 M_{12} M_{21} + F_2 M_{12} M_{31} - F_1 M_{22} M_{31}}{D_1} \end{bmatrix}$$
(16)

なお, ここでは D を次式のように置き換えた.

$$D_1 = M_{12} M_{21} M_{33} - M_{11} M_{22} M_{33} + M_{13} M_{22} M_{31}$$

そしてテイラー展開の1次近似を用いて式 (16) をx = [0,0,0,0,0,0]回りで線形化すると

$$\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u} \tag{17}$$

となる.

4 パラメータ同定

4.1 実験方法

粘性摩擦係数と慣性モーメントの値は実験的にのみ得る ことができる.未知パラメータをリンクそれぞれの粘性摩 擦係数と慣性モーメントとし,最小二乗法を用いて同定を 行った.実験方法は以下の3通りで行った.

- 1. リンク2とリンク3をはずしてリンク1に正弦波を入 力して角度を測定する.その後,測定結果からリンク 1の粘性摩擦係数と慣性モーメントの同定を行う.
- リンク3を取り外してリンク2を振り上げた状態から 自由応答させ角度を測定する。その後、測定結果を用 いてリンク2の粘性摩擦係数と慣性モーメントの同定 を行う.

3. リンク2を取り外してリンク3を振り上げた状態から 自由応答させ角度を測定する.その後,測定結果を用 いてリンク3の粘性摩擦係数と慣性モーメントの同定 を行う.

4.2 同定結果

同定精度を上げるために複数回実験を行いパラメータ 同定を行った.導出した同定値と,同定値を用いたシミュ レーション結果と実験結果を比較するための図を示す.

表3 パラメータ同定結果

	慣性モーメント J	粘性摩擦係数 b
リンク1	$4.16\times 10^{-2}[\rm kg\cdot m^2]$	$0.384[\text{Nm}\cdot\text{sec/rad}]$
リンク 2	$1.64\times 10^{-3}[\mathrm{kg\cdot m^2}]$	$1.97 \times 10^{-4} [\rm Nm \cdot sec/rad]$
リンク 3	$1.42\times 10^{-3}[\rm kg\cdot m^2]$	$0.94 \times 10^{-4} [\rm Nm \cdot sec/rad]$

5 DualPenduBot の安定化制御

5.1 シミュレーション上での物理パラメータ

シミュレーションで使用した物理パラメータを以下の表 4に示す.

なお粘性摩擦係数 b_1, b_2, b_3 については実験的にしか得 ることができないため、ここでは古川氏、星野氏、野々氏 の倒立振子 [3] と磯村氏、野沢氏の PenduBot[2] で使用さ れていた値を参考にした

5.2 線形最適レギュレータの設計

DualPenduBot の安定化制御を線形最適制御問題として、線形最適状態フィードバックによる安定化を目指す. 線形最適状態フィードバックは、評価関数

$$J = \int_0^\infty \left(\boldsymbol{x}^T Q \boldsymbol{x} + \boldsymbol{u}^T R \boldsymbol{u} \right) dt, Q \ge 0, R > 0 \quad (18)$$

記号	値	記号	值
l_1	0.368[m]	J_1	$4.16\times 10^{-2}[\rm kg\cdot m^2]$
l_2	0.25[m]	J_2	$1.64\times 10^{-3} [\rm kg\cdot m^2]$
l_3	0.1[m]	J_3	$1.42\times10^{-3}[\rm kg\cdot m^2]$
l_{c2}	0.17[m]	b_1	$0.384[\mathrm{Nm}\cdot\mathrm{sec/rad}]$
l_{c3}	0.08[m]	b_2	$1.97 \times 10^{-4} [\text{Nm} \cdot \text{sec/rad}]$
m_1	0.27[kg]	b_3	$0.94 \times 10^{-4} [\text{Nm} \cdot \text{sec/rad}]$
m_2	0.087[kg]	R_a	$2.13[\Omega]$
m_3	0.054[kg]	K_t	$0.152[N \cdot m/A]$
g	$9.8[\mathrm{m/s^2}]$	K_e	$0.153[V \cdot s/rad]$
		n	4

表 4 DualPenduBot の物理パラメータ

を最小化するような線形最適入力の Riccati 方程式の解 P を用いて,

$$u = -K\boldsymbol{x} = -R^{-1}B^T P \boldsymbol{x} \tag{19}$$

と得られる. 評価関数 J の重み行列 Q と R は次のように 選んだ.

$$Q = \text{diag}(0.5, 4, 2, 0.1, 0.1, 0.1), R = 10$$
 (20)

フィードバックゲイン K は次式のようになった.

$$K = [494.9, 293.3, -200.6, 79.1, 53.5, -22.7] \quad (21)$$

また、閉ループ系の固有値は以下のようになった.

$$eig(A - BK) = \begin{bmatrix} -13.2866\\ -0.4184\\ -8.4954 + 0.2283i\\ -8.4954 - 0.2283i\\ -5.4864\\ -5.3864 \end{bmatrix}$$
(22)

5.3 非線形モデルでのシミュレーション

以下の図は 5.2 節で導出した制御器による非線形モ デルのシミュレーション結果である.初期値は x(0) = [0,3,6,0,0,0][deg]とした.

図 7, 図 8 を見るとリンク 1 とリンク 2 とリンク 3 の応 答が定常状態で 0 に収束していることがわかる.よって, シミュレーション上においては DualPenduBot の安定化 に成功している.

6 安定化制御実験

DualPenduBotの安定化制御を行う前に,振子1本の状態で倒立することを確認する.そのために,振子1本の状態で安定化制御を行った.その結果,倒立状態を維持することが可能であることを確認できたため,DualPenduBotの安定化制御の実験に移る.

6.1 DualPenduBot の安定化制御

DualPenduBot の安定化制御実験を行った.実験結果を 図 9 と図 10 に示す.

安定化制御を初めておよそ2秒程度は振子の倒立状態を 維持しているが、それ以降は振子の動きにアームがついて 行けず不安定化している.これは不感帯が1.5[V]~2[V] ほ どあり、低電圧時の制御が十分にできていないことが原因 と考えられる.また、実験機に想定外のがたつきが見られ たことも原因に挙げられる.

7 おわりに

本稿では DualPenduBot の実験機の設計,製作,システ ムのモデル化,制御則設計,安定化実験について説明した. 実機実験では,DualPenduBot の倒立状態は数秒程度維持 できたが,長時間安定することはなかった.そのため今回 の研究目標である安定化制御は安定時間の面から十分にで きていないと考える.安定化制御が達成できなかった主な 原因としては,不感帯がかなり大きく低電圧時の制御が十 分に出来ていなかったことが挙げられる.対策として不感 帯があることを想定した制御器の設計やチューニング,オ ブザーバの実装等を考えている.

参考文献

- - [2] 磯村真也・野澤武:『PenduBot の製作と安定化制御』. 南山大学, 2020
 - [3] 古川大輝・星野紘輝・野々雄斗:『回転型二重倒立振子 の製作と安定化制御』、南山大学,2019