PID 制御によるドローンの飛行制御

2016SC079 椎野功大

指導教員:中島明

1 はじめに

現在,ドローンは各所で使用されており,その用途は多 岐にわたる.現代社会における利用価値は益々高まって いる.

本研究では姿勢角の制御器を用いて,昨年度の制御器に I 制御を追加した, PID 制御によりドローンの飛行を制御 することを目的とする.本稿の構成は,まずドローンの座 標系とパラメータを定義し,運動方程式の導出を行う.次 に飛行シミュレーションの結果を示し,飛行実験の結果を 示す.最後に本研究の反省,今後の展望について記す.

2 ドローンのモデリング

2.1 ドローンの座標系とパラメータ

図 1,表1においてドローンの座標系と各種パラメータ を示す.

図1 ドローンの座標系

表1	ドローン	ノにおける	る各種パラ	メータ	の定義
----	------	-------	-------	-----	-----

記号	名称及び単位
m_b	機体の質量 [kg]
x	機体の x 座標 [m]
y	機体の y 座標 [m]
z	機体の z 座標 [m]
ϕ	機体 roll 軸 (x 軸) 周りの姿勢角 [rad]
θ	機体 pitch 軸 $(y$ 軸) 周りの姿勢角 $[rad]$
ψ	機体 yaw 軸 (z 軸) 周りの姿勢角 [rad]
J_{xx}	機体の x 軸慣性モーメント $[m kgm^2]$
J_{yy}	機体の y 軸慣性モーメント $[m kgm^2]$
J_{zz}	機体の z 軸慣性モーメント [kgm ²]
l_x	ローターと y 軸間の距離 [m]
l_y	ローターと <i>x</i> 軸間の距離 [m]
f_{i}	ローター i 番の推力 [N]

図1において、3次元空間における姿勢角、座標を定義 する際に、基準となる座標系である基準座標系 (Σ_r)、ド ローンの機体に固定された機体座標系 (Σ_b)の2つの直交 座標系を用いる.これらの座標系はいずれも右手座標系 である.また、左側の添え字は基準となる座標系、右側は 表現に使用される座標系を表している.wは基準座標系、 bは機体座標系である.ここで、 U_f を以下のように定義 する.

$$\boldsymbol{U_f} = \sum_{i=1}^{4} f_i \tag{1}$$

2.2 ドローンモデルの導出

ドローンの位置ベクトルを $^{\boldsymbol{w}}P_{\boldsymbol{b}} = [x, y, z]^T$, ドローン の姿勢角を $\boldsymbol{\eta} = [\phi, \theta, \psi]^T$ とすると,基準座標系における ドローンの一般化座標は以下のように書くことができる.

$$\boldsymbol{q} = \left[egin{array}{cc} \boldsymbol{w} \boldsymbol{P_b}^T & \boldsymbol{\eta}^T \end{array}
ight]^T$$

次に, ラグランジュ関数 $L_b(q, \dot{q})$ は, 位置エネルギー $T_b(q, \dot{q})$ とポテンシャルエネルギー $U_b(q)$ を用いて以下の ように表すことができる.

$$L_b(q, \dot{q}) = T_b(q, \dot{q}) - U_b(q) \tag{2}$$

2.3 ラグランジュの運動方程式による状態方程式の導出

並進運動では力,回転運動ではモーメントのことを指す 一般化力を F とおくと, (2) 式は以下のように変形できる.

$$\frac{d}{dt} \left(\frac{\partial L(q, \dot{q})}{\partial \dot{q}} \right) - \frac{\partial L(q, \dot{q})}{\partial q} = \boldsymbol{F}$$
(3)

ここで慣性行列を M(q), $N(q,\dot{q}) = \frac{d}{dt}(M(q))\dot{q} - \frac{\partial T_b(q,\dot{q})}{\partial q} + \frac{\partial U_b(q)}{\partial q}$ と定義することにより, (3) 式は以下のように表せる.

$$\boldsymbol{M}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{N}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \boldsymbol{F}$$
(4)

さらに,状態変数 χ を $\chi = [q^T, \dot{q}^T]^T$,ロータの推力を $\boldsymbol{u} = [f_1, f_2, f_3, f_4]^T$ とおくと状態方程式を表すと以下のよ うになる.

$$\frac{d}{dt} \begin{bmatrix} \boldsymbol{q} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{q}} \\ -M^{-1}(\boldsymbol{q})(\boldsymbol{N}(\boldsymbol{q}, \dot{\boldsymbol{q}})) \end{bmatrix} + \begin{bmatrix} O_{7 \times 4} \\ M^{-1}(\boldsymbol{q})B_f \end{bmatrix} \boldsymbol{u} \qquad (5)$$

これより,以下の非線形状態方程式が得られる.

$$\dot{\chi} = f(\chi) + g(\chi)\boldsymbol{u} \tag{6}$$

ただし,

$$f(\chi) = \begin{bmatrix} \dot{q} \\ -M^{-1}(q)(N(q, \dot{q})) \end{bmatrix},$$
$$g(\chi) = \begin{bmatrix} O_{7 \times 4} \\ M^{-1}(q)B_f \end{bmatrix} u \qquad (7)$$

1

である.

3 飛行シミュレーション

3.1 シミュレーションの状況設定

今回のシミュレーションは,実際の飛行実験を想定し小 さいゲインの値を設定した.詳細は,1[s]後に高度への目 標値入力を印加,10[s]後のホバリング中に roll 軸正方向 に対して $\frac{\pi}{6}$ 傾かせる入力を印加する.その後,30[s]後に 外乱として各ローターに [0.1,0.1,0.02,0.02]^T[N]の力を印 加する.ここで,シミュレーションにおける PID 制御器 の各ゲインを以下のように設定する.

表2 シミュレーションにおける PID 制御器の各ゲイン

記号	名称
P_{roll}	1
P_{pitch}	1
P_{yaw}	1
P_Z	10
I_{roll}	0.08
I_{pitch}	0.08
I_{yaw}	0.001
I_Z	1
D_{roll}	0.2
D_{pitch}	0.2
D_{yaw}	1
D_Z	7

3.2 シミュレーション結果

以下に pitch 角の角度のシミュレーション結果を示す.

機体を傾けた後,そして外乱を与えた際も目標値にしっ かりと収束させることが出来ている.このことから,適切 なゲインの値を特定することができたと考えられる.

4 飛行実験

4.1 制御器の説明及び各ゲインの値

今回の PID 制御器は yaw 角制御は角速度を制御対象と した P 制御,高度の制御はかけず,目標値を入力する送信 機の入力に依存するものとする.システム開発ソフトウェ アは NATIONAL INSTRUMENT 社の LabVIEW を用 いている.ここで,飛行実験時の PID 制御器の各ゲイン の値を以下に示す.

記号	名称
P_{roll}	0.09
P_{pitch}	0.1
P_{yaw}	0.1
I_{roll}	0.05
I_{pitch}	0.05
D_{roll}	0.75
D_{pitch}	0.75

4.2 実験結果

以下に pitch 角の角度のグラフを示す.

図3 姿勢角 θ 及び目標角 θ_{ref}

上の図から分かるように,目標値に対して姿勢角が追従 できていることが分かる.しかし,I制御による偏差の打 ち消しを認めるには至らない結果となった.

5 おわりに

PID 制御器を用いてドローンを飛行制御することは達成 できた.しかし、本研究の最重要事項である I 制御による 飛行制御への影響を見出すことが出来なかった.今後はよ り良いゲインの値を特定, I 制御の恩恵を感じられる実験 結果が得られることを目指す.

6 参考文献

- [1] 林美咲・宮野峻・西田裕貴・米川翔太:『クアッドコプ ターの飛行安定化制御システムの開発』. 2018 年卒業 学士論文,南山大学理工学部機械電子制御工学科坂本・ 中島研究室, 2018.
- [2] 佐藤和也・平元和彦・平田研二:『はじめての制御工学』. 講談社,東京,2010.