カルマンフィルタを用いた二輪倒立振子の状態推定

2014SC039 栗原 拓也 指導教員:陳 幹

1 はじめに

現在,気象予測や航空産業など様々な分野においてカル マンフィルタは用いられている.状態フィードバックにお いて状態変数の数だけ計測器を用意することが望ましい. しかし,現実には状態変数の数だけ計測器を用意すること はコストなどの観点から困難である、そのため観測可能の 出力変数や入力変数の値から必要な状態変数を推定する必 要がある.それを行うのが状態推定器である.状態推定器 を用いることによって,状態変数の数だけ計測器を用意す ることなく状態変数の値を入手することが可能である.し かし,実際にはシステムの入力時や出力時には不規則な雑 音が干渉してしまう.カルマンフィルタは,システムの入 力時や観測時に干渉する雑音の影響を極力小さくすること を目的とした状態推定器である.本研究の目的は,カルマ ンフィルタの設計を行い設計したカルマンフィルタを用い て二輪倒立振子の状態推定を行うことによって設計したカ ルマンフィルタの性能の評価を行うことである.

2 制御対象

2.1 制御対象の概要

本研究の制御対象に Vstone 社製の Beauto Balance2 を 用いる.制御対象の概略図を図1に示す.制御対称のパラ メータ得るにあたって参考文献[1],[2]を参考にした.制 御対象の物理パラメータを表1に示す.

図1 BeautoBalancer2の概略図

3 モデリング

ラグランジュの運動方程式を用いて制御対象の振る舞い をモデリングした.状態空間表現は以下のようになる.

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) \tag{2}$$

それぞれの行列A, B, Cを以下に示す.

化工 町岬灯家の物珪ハノハ	表 1	制御対象の物理パラメー	・タ
---------------	-----	-------------	----

名称	記号	数値	単位
重力加速度	g	9.81	m/s^2
本体質量	M	0.2194	kg
車輪質量	M_w	0.0053	kg
車輪半径	R_w	0.021	m
重心までの距離	L	0.0745	m
本体慣性モーメント	J_b	6.93×10^{-5}	$kg \cdot m^2$
車輪慣性モーメント	J_w	1.16×10^{-6}	$kg \cdot m^2$
モータ慣性モーメント	J_m	8.22×10^{-7}	$kg \cdot m^2$
モータと車体間の摩擦係数	f_m	4.91×10^{-7}	$N\boldsymbol{\cdot}m/rad$
ギア比	n	21	
モータのトルク定数	K_t	9.46×10^{-4}	$N \cdot m/A$

$$A = \begin{bmatrix} 0 & I \\ -E^{-1}G & -E^{-1}F \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ E^{-1}H \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A, B, C内の行列E, F, G, Hを表1のパラメータを用いて以下に示す.

$$E = \begin{bmatrix} MR_w^2 + M_w R_w^2 + J_w + J_m n^2 & MR_w L - J_m n^2 \\ MR_w L - J_m n^2 & ML^2 + J_b + J_m n^2 \end{bmatrix}$$
$$F = \begin{bmatrix} -f_m n & f_m n \\ (2n-2)f_m & -(2n-2)f_m \end{bmatrix}$$
$$G = \begin{bmatrix} 0 & 0 \\ 0 & M_w gL \end{bmatrix}$$
$$H = \begin{bmatrix} -nK_t \\ (2n-2)K_t \end{bmatrix}$$

4 カルマンフィルタ

カルマンフィルタを設計するにあたって参考文献 [3], [4] を参考にした.(1),(2) のシステムに対してカルマン フィルタを適応するために,(1),(2) をサンプリングタイ ムh = 0.001[s]としてオイラー近似を用いて離散時間系に 変換した。変換したシステムを以下に示す.

$$x(k+1) = A(k)x(k) + B(k)u(k)$$
(3)

$$y(k) = Cx(k) \tag{4}$$

カルマンフィルタの更新式は Q_k をシステムノイズ, R_k を観測ノイズ,状態の事前推定値を $\hat{x}_{k|k-1}$,事後推定値 \hat{x}_k ,事前推定値の共分散を $P_{k|k-1}$,事後推定値の共分散を P_k ,カルマンゲインを G_k として以下の式で (5) から (9) で表される.

$$\hat{x}_{k|k-1} = A_{k-1}\hat{x}_{k-1} + B_{k-1}u_{k-1} \tag{5}$$

$$P_{k|k-1} = A_{k-1}P_{k-1}A_{k-1}{}^{T} + Q_k \tag{6}$$

$$G_k = P_{k|k-1}C^T (CP_{k|k-1}C^T + R_k)^{-1}$$
(7)

$$\hat{x}_k = \hat{x}_{k|k-1} + G_k(y_k - C\hat{x}_{k|k-1}) \tag{8}$$

$$P_k = (I - G_k C) P_{k|k-1} \tag{9}$$

BeautoBalance2 を完全に静止させた状態でセンサーに 対して発生するノイズを確認した結果,BeautoBalance2 の車輪の角度のセンサーにおよそ ± 0.002 [rad],本体の角 速度のセンサーにおよそ ± 0.005 [rad/s]のノイズが発生し ていた.よって観測ノイズ R_k は,

$$R_k = \begin{bmatrix} 0.002 & 0\\ 0 & 0.005 \end{bmatrix}$$

とした.

システムノイズ Q_k は, BeautoBalance2 の動作を考慮 して,車輪の角度におよそ ± 0.1 [rad],車輪の角速度におよ そ ± 0.1 [rad/s],本体の角度におよそ ± 0.03 [rad],本体の 角速度におよそ ± 0.03 [rad/s]のノイズが発生するように,

	0.1	0	0	0 -	1
0	0	0.03	0	0	
$Q_k =$	0	0	0.1	0	
	0	0	0	0.03	

と定めた.

5 シミュレーション結果

設計したカルマンフィルタを用いた Beauto Balance2 のシミュレーションを行った.全ての状態変数を観測でき るときに得られた状態変数の値のグラフを,図2に示す. Beauto Balance2の車輪の角度と車輪の角速度が観測でき る状態で、カルマンフィルタを用いて状態変数を推定して 得られた値のグラフを,図3に示す.図2と図3の各時刻 ごとの誤差を図4に示す.

6 おわりに

自ら設定したノイズが干渉するシステムの状態推定 をシミュレーションにおいて本体の角度の誤差はお よそ ±4.0 × 10⁻⁴[rad],車輪の角速度の誤差はおよそ ±0.01[rad/s]の誤差で状態推定できるようなカルマンフィ ルタを作成することができたため,カルマンフィルタによ る状態推定を行うことができたと判断した.

図 2 全ての状態変数を観測できるときに得られた状態変 数の値のグラフ

図3 車輪の角度と本体の角速度が観測できる状態で状態 変数を推定して得られた値のグラフ

図4 図2と図3の各時刻ごとの誤差の値のグラフ

参考文献

- [1] ヴィストン株式会社、"ビュートバランサー2 取扱い 説明書",https://www.vstone.co.jp/products/ beauto_balancer_2/download/BeautoBalancer2_ Manual_1_03_2015_0527_1025.pdf,(最終閲覧 日:2020年2月10日).
- [2] 2011SE044 平子温, 2011SE100 岩瀬昂大:2 輪倒立振
 子のファジィ制御,南山大学情報理工学部システム創
 成工学科卒業論文,(2015).
- [3] 足立修一, 丸田一郎:カルマンフィルタの基礎, 東京電 機大学, (2012).
- [4] Zhang Wanli, Li Guoxin, Wang Lirong: Research on the Control Method of Inverted Pendulum Based on Kalman Filter, 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, 520-523(2014).